mirror of
https://github.com/CoolProp/CoolProp.git
synced 2026-01-23 04:47:57 -05:00
2749 lines
96 KiB
C++
2749 lines
96 KiB
C++
|
|
#include "PolyMath.h"
|
|
|
|
#include "CoolPropTools.h"
|
|
#include "Exceptions.h"
|
|
#include "MatrixMath.h"
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
//#include <sstream>
|
|
//#include <numeric>
|
|
#include <math.h>
|
|
#include <iostream>
|
|
|
|
#include "Solvers.h"
|
|
|
|
#include <unsupported/Eigen/Polynomials>
|
|
|
|
namespace CoolProp{
|
|
|
|
/// Basic checks for coefficient vectors.
|
|
/** Starts with only the first coefficient dimension
|
|
* and checks the matrix size against the parameters rows and columns.
|
|
*/
|
|
/// @param coefficients matrix containing the ordered coefficients
|
|
/// @param rows unsigned integer value that represents the desired degree of the polynomial in the 1st dimension
|
|
/// @param columns unsigned integer value that represents the desired degree of the polynomial in the 2nd dimension
|
|
bool Polynomial2D::checkCoefficients(const Eigen::MatrixXd &coefficients, const unsigned int rows, const unsigned int columns){
|
|
if (coefficients.rows() == rows) {
|
|
if (coefficients.cols() == columns) {
|
|
return true;
|
|
} else {
|
|
throw ValueError(format("%s (%d): The number of columns %d does not match with %d. ",__FILE__,__LINE__,coefficients.cols(),columns));
|
|
}
|
|
} else {
|
|
throw ValueError(format("%s (%d): The number of rows %d does not match with %d. ",__FILE__,__LINE__,coefficients.rows(),rows));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Integration functions
|
|
/** Integrating coefficients for polynomials is done by dividing the
|
|
* original coefficients by (i+1) and elevating the order by 1
|
|
* through adding a zero as first coefficient.
|
|
* Some reslicing needs to be applied to integrate along the x-axis.
|
|
* In the brine/solution equations, reordering of the parameters
|
|
* avoids this expensive operation. However, it is included for the
|
|
* sake of completeness.
|
|
*/
|
|
/// @param coefficients matrix containing the ordered coefficients
|
|
/// @param axis integer value that represents the desired direction of integration
|
|
/// @param times integer value that represents the desired order of integration
|
|
Eigen::MatrixXd Polynomial2D::integrateCoeffs(const Eigen::MatrixXd &coefficients, const int &axis = -1, const int × = 1){
|
|
if (times < 0) throw ValueError(format("%s (%d): You have to provide a positive order for integration, %d is not valid. ",__FILE__,__LINE__,times));
|
|
if (times == 0) return Eigen::MatrixXd(coefficients);
|
|
Eigen::MatrixXd oldCoefficients;
|
|
Eigen::MatrixXd newCoefficients(coefficients);
|
|
|
|
switch (axis) {
|
|
case 0:
|
|
newCoefficients = Eigen::MatrixXd(coefficients);
|
|
break;
|
|
case 1:
|
|
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
|
|
break;
|
|
default:
|
|
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
|
|
break;
|
|
}
|
|
|
|
std::size_t r, c, i, j;
|
|
for (int k = 0; k < times; k++){
|
|
oldCoefficients = Eigen::MatrixXd(newCoefficients);
|
|
r = oldCoefficients.rows(), c = oldCoefficients.cols();
|
|
newCoefficients = Eigen::MatrixXd::Zero(r+1,c);
|
|
newCoefficients.block(1,0,r,c) = oldCoefficients.block(0,0,r,c);
|
|
for (size_t i = 0; i < r; ++i) {
|
|
for (size_t j = 0; j < c; ++j) newCoefficients(i+1,j) /= (i+1.);
|
|
}
|
|
}
|
|
|
|
switch (axis) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
newCoefficients.transposeInPlace();
|
|
break;
|
|
default:
|
|
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
|
|
break;
|
|
}
|
|
|
|
return newCoefficients;
|
|
}
|
|
|
|
|
|
/// Derivative coefficients calculation
|
|
/** Deriving coefficients for polynomials is done by multiplying the
|
|
* original coefficients with i and lowering the order by 1.
|
|
*/
|
|
/// @param coefficients matrix containing the ordered coefficients
|
|
/// @param axis integer value that represents the desired direction of derivation
|
|
/// @param times integer value that represents the desired order of integration
|
|
Eigen::MatrixXd Polynomial2D::deriveCoeffs(const Eigen::MatrixXd &coefficients, const int &axis = -1, const int × = 1){
|
|
if (times < 0) throw ValueError(format("%s (%d): You have to provide a positive order for derivation, %d is not valid. ",__FILE__,__LINE__,times));
|
|
if (times == 0) return Eigen::MatrixXd(coefficients);
|
|
// Recursion is also possible, but not recommended
|
|
//Eigen::MatrixXd newCoefficients;
|
|
//if (times > 1) newCoefficients = deriveCoeffs(coefficients, axis, times-1);
|
|
//else newCoefficients = Eigen::MatrixXd(coefficients);
|
|
Eigen::MatrixXd newCoefficients;
|
|
|
|
switch (axis) {
|
|
case 0:
|
|
newCoefficients = Eigen::MatrixXd(coefficients);
|
|
break;
|
|
case 1:
|
|
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
|
|
break;
|
|
default:
|
|
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
|
|
break;
|
|
}
|
|
|
|
std::size_t r, c, i, j;
|
|
for (int k = 0; k < times; k++){
|
|
r = newCoefficients.rows(), c = newCoefficients.cols();
|
|
for (i = 1; i < r; ++i) {
|
|
for (j = 0; j < c; ++j) newCoefficients(i,j) *= i;
|
|
}
|
|
removeRow(newCoefficients,0);
|
|
}
|
|
|
|
switch (axis) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
newCoefficients.transposeInPlace();
|
|
break;
|
|
default:
|
|
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
|
|
break;
|
|
}
|
|
|
|
return newCoefficients;
|
|
}
|
|
|
|
/// The core functions to evaluate the polynomial
|
|
/** It is here we implement the different special
|
|
* functions that allow us to specify certain
|
|
* types of polynomials.
|
|
* The derivative might bee needed during the
|
|
* solution process of the solver. It could also
|
|
* be a protected function...
|
|
*/
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input
|
|
double Polynomial2D::evaluate(const Eigen::MatrixXd &coefficients, const double &x_in){
|
|
if (coefficients.rows() != 1) {
|
|
throw ValueError(format("%s (%d): You have a 2D coefficient matrix (%d,%d), please use the 2D functions. ",__FILE__,__LINE__,coefficients.rows(),coefficients.cols()));
|
|
}
|
|
double result = Eigen::poly_eval( Eigen::RowVectorXd(coefficients), x_in );
|
|
if (this->do_debug()) std::cout << "Running evaluate(" << mat_to_string(coefficients) << ", " << vec_to_string(x_in) << "): " << result << std::endl;
|
|
return result;
|
|
}
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input in the 1st dimension
|
|
/// @param y_in double value that represents the current input in the 2nd dimension
|
|
double Polynomial2D::evaluate(const Eigen::MatrixXd &coefficients, const double &x_in, const double &y_in){
|
|
size_t r = coefficients.rows(), c = coefficients.cols();
|
|
double result = evaluate(coefficients.row(r-1), y_in);
|
|
for(int i=r-2; i>=0; i--) {
|
|
result *= x_in;
|
|
result += evaluate(coefficients.row(i), y_in);
|
|
}
|
|
if (this->do_debug()) std::cout << "Running evaluate(" << mat_to_string(coefficients) << ", " << vec_to_string(x_in) << ", " << vec_to_string(y_in) << "): " << result << std::endl;
|
|
return result;
|
|
}
|
|
|
|
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input in the 1st dimension
|
|
/// @param y_in double value that represents the current input in the 2nd dimension
|
|
/// @param axis unsigned integer value that represents the axis to derive for (0=x, 1=y)
|
|
double Polynomial2D::derivative(const Eigen::MatrixXd &coefficients, const double &x_in, const double &y_in, const int &axis = -1){
|
|
return this->evaluate(this->deriveCoeffs(coefficients, axis, 1), x_in, y_in);
|
|
}
|
|
|
|
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input in the 1st dimension
|
|
/// @param y_in double value that represents the current input in the 2nd dimension
|
|
/// @param axis unsigned integer value that represents the axis to integrate for (0=x, 1=y)
|
|
double Polynomial2D::integral(const Eigen::MatrixXd &coefficients, const double &x_in, const double &y_in, const int &axis = -1){
|
|
return this->evaluate(this->integrateCoeffs(coefficients, axis, 1), x_in,y_in);
|
|
}
|
|
|
|
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
|
|
Eigen::VectorXd Polynomial2D::solve(const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const int &axis = -1){
|
|
std::size_t r = coefficients.rows(), c = coefficients.cols();
|
|
Eigen::VectorXd tmpCoefficients;
|
|
switch (axis) {
|
|
case 0:
|
|
tmpCoefficients = Eigen::VectorXd::Zero(r);
|
|
for(size_t i=0; i<r; i++) {
|
|
tmpCoefficients(i,0) = evaluate(coefficients.row(i), in);
|
|
}
|
|
break;
|
|
case 1:
|
|
tmpCoefficients = Eigen::VectorXd::Zero(c);
|
|
for(size_t i=0; i<c; i++) {
|
|
tmpCoefficients(i,0) = evaluate(coefficients.col(i).transpose(), in);
|
|
}
|
|
break;
|
|
default:
|
|
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for the solver, %d is not valid. ",__FILE__,__LINE__,axis));
|
|
break;
|
|
}
|
|
tmpCoefficients(0,0) -= z_in;
|
|
if (this->do_debug()) std::cout << "Coefficients: " << mat_to_string(Eigen::MatrixXd(tmpCoefficients)) << std::endl;
|
|
Eigen::PolynomialSolver<double,Eigen::Dynamic> polySolver( tmpCoefficients );
|
|
std::vector<double> rootsVec;
|
|
polySolver.realRoots(rootsVec);
|
|
if (this->do_debug()) std::cout << "Real roots: " << vec_to_string(rootsVec) << std::endl;
|
|
return vec_to_eigen(rootsVec);
|
|
//return rootsVec[0]; // TODO: implement root selection algorithm
|
|
}
|
|
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
|
|
double Polynomial2D::solve_limits(const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const double &min, const double &max, const int &axis){
|
|
Poly2DResidual res = Poly2DResidual(*this, coefficients, in, z_in, axis);
|
|
std::string errstring;
|
|
double macheps = DBL_EPSILON;
|
|
double tol = DBL_EPSILON*1e3;
|
|
int maxiter = 10;
|
|
double result = Brent(res, min, max, macheps, tol, maxiter, errstring);
|
|
if (this->do_debug()) std::cout << "Brent solver message: " << errstring << std::endl;
|
|
return result;
|
|
}
|
|
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param guess double value that represents the start value
|
|
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
|
|
double Polynomial2D::solve_guess(const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const double &guess, const int &axis){
|
|
Poly2DResidual res = Poly2DResidual(*this, coefficients, in, z_in, axis);
|
|
std::string errstring;
|
|
//set_debug_level(1000);
|
|
double tol = DBL_EPSILON*1e3;
|
|
int maxiter = 10;
|
|
double result = Newton(res, guess, tol, maxiter, errstring);
|
|
if (this->do_debug()) std::cout << "Newton solver message: " << errstring << std::endl;
|
|
return result;
|
|
}
|
|
|
|
|
|
/// Simple polynomial function generator. <- Deprecated due to poor performance, use Horner-scheme instead
|
|
/** Base function to produce n-th order polynomials
|
|
* based on the length of the coefficient vector.
|
|
* Starts with only the first coefficient at x^0. */
|
|
double Polynomial2D::simplePolynomial(std::vector<double> const& coefficients, double x){
|
|
double result = 0.;
|
|
for(unsigned int i=0; i<coefficients.size();i++) {
|
|
result += coefficients[i] * pow(x,(int)i);
|
|
}
|
|
if (this->do_debug()) std::cout << "Running simplePolynomial(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << "): " << result << std::endl;
|
|
return result;
|
|
}
|
|
double Polynomial2D::simplePolynomial(std::vector<std::vector<double> > const& coefficients, double x, double y){
|
|
double result = 0;
|
|
for(unsigned int i=0; i<coefficients.size();i++) {
|
|
result += pow(x,(int)i) * simplePolynomial(coefficients[i], y);
|
|
}
|
|
if (this->do_debug()) std::cout << "Running simplePolynomial(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << ", " << vec_to_string(y) << "): " << result << std::endl;
|
|
return result;
|
|
}
|
|
|
|
|
|
/// Horner function generator implementations
|
|
/** Represent polynomials according to Horner's scheme.
|
|
* This avoids unnecessary multiplication and thus
|
|
* speeds up calculation.
|
|
*/
|
|
double Polynomial2D::baseHorner(std::vector<double> const& coefficients, double x){
|
|
double result = 0;
|
|
for(int i=coefficients.size()-1; i>=0; i--) {
|
|
result *= x;
|
|
result += coefficients[i];
|
|
}
|
|
if (this->do_debug()) std::cout << "Running baseHorner(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << "): " << result << std::endl;
|
|
return result;
|
|
}
|
|
|
|
double Polynomial2D::baseHorner(std::vector< std::vector<double> > const& coefficients, double x, double y){
|
|
double result = 0;
|
|
for(int i=coefficients.size()-1; i>=0; i--) {
|
|
result *= x;
|
|
result += baseHorner(coefficients[i], y);
|
|
}
|
|
if (this->do_debug()) std::cout << "Running baseHorner(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << ", " << vec_to_string(y) << "): " << result << std::endl;
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
Poly2DResidual::Poly2DResidual(Polynomial2D &poly, const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const int &axis){
|
|
switch (axis) {
|
|
case iX:
|
|
case iY:
|
|
this->axis = axis;
|
|
break;
|
|
default:
|
|
throw ValueError(format("%s (%d): You have to provide a dimension to the solver, %d is not valid. ",__FILE__,__LINE__,axis));
|
|
break;
|
|
}
|
|
|
|
this->poly = poly;
|
|
this->coefficients = coefficients;
|
|
this->derIsSet = false;
|
|
this->in = in;
|
|
this->z_in = z_in;
|
|
}
|
|
|
|
double Poly2DResidual::call(double target){
|
|
if (axis==iX) return poly.evaluate(coefficients,target,in)-z_in;
|
|
if (axis==iY) return poly.evaluate(coefficients,in,target)-z_in;
|
|
return -_HUGE;
|
|
}
|
|
|
|
double Poly2DResidual::deriv(double target){
|
|
if (!this->derIsSet) {
|
|
this->coefficientsDer = poly.deriveCoeffs(coefficients,axis);
|
|
this->derIsSet = true;
|
|
}
|
|
return poly.evaluate(coefficientsDer,target,in);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// /// Integration functions
|
|
// /** Integrating coefficients for polynomials is done by dividing the
|
|
// * original coefficients by (i+1) and elevating the order by 1
|
|
// * through adding a zero as first coefficient.
|
|
// * Some reslicing needs to be applied to integrate along the x-axis.
|
|
// * In the brine/solution equations, reordering of the parameters
|
|
// * avoids this expensive operation. However, it is included for the
|
|
// * sake of completeness.
|
|
// */
|
|
// /// @param coefficients matrix containing the ordered coefficients
|
|
// /// @param axis unsigned integer value that represents the desired direction of integration
|
|
// /// @param times integer value that represents the desired order of integration
|
|
// /// @param firstExponent integer value that represents the first exponent of the polynomial in axis direction
|
|
// Eigen::MatrixXd integrateCoeffs(const Eigen::MatrixXd &coefficients, const int &axis, const int ×, const int &firstExponent);
|
|
//
|
|
/// Derivative coefficients calculation
|
|
/** Deriving coefficients for polynomials is done by multiplying the
|
|
* original coefficients with i and lowering the order by 1.
|
|
*
|
|
* Remember that the first exponent might need to be adjusted after derivation.
|
|
* It has to be lowered by times:
|
|
* derCoeffs = deriveCoeffs(coefficients, axis, times, firstExponent);
|
|
* firstExponent -= times;
|
|
*
|
|
*/
|
|
/// @param coefficients matrix containing the ordered coefficients
|
|
/// @param axis unsigned integer value that represents the desired direction of derivation
|
|
/// @param times integer value that represents the desired order of derivation
|
|
/// @param firstExponent integer value that represents the lowest exponent of the polynomial in axis direction
|
|
Eigen::MatrixXd Polynomial2DFrac::deriveCoeffs(const Eigen::MatrixXd &coefficients, const int &axis, const int ×, const int &firstExponent){
|
|
if (times < 0) throw ValueError(format("%s (%d): You have to provide a positive order for derivation, %d is not valid. ",__FILE__,__LINE__,times));
|
|
if (times == 0) return Eigen::MatrixXd(coefficients);
|
|
// Recursion is also possible, but not recommended
|
|
//Eigen::MatrixXd newCoefficients;
|
|
//if (times > 1) newCoefficients = deriveCoeffs(coefficients, axis, times-1);
|
|
//else newCoefficients = Eigen::MatrixXd(coefficients);
|
|
Eigen::MatrixXd newCoefficients;
|
|
|
|
switch (axis) {
|
|
case 0:
|
|
newCoefficients = Eigen::MatrixXd(coefficients);
|
|
break;
|
|
case 1:
|
|
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
|
|
break;
|
|
default:
|
|
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
|
|
break;
|
|
}
|
|
|
|
std::size_t r = newCoefficients.rows(), c = newCoefficients.cols();
|
|
std::size_t i, j;
|
|
for (int k = 0; k < times; k++){
|
|
for (i = 0; i < r; ++i) {
|
|
for (j = 0; j < c; ++j) {
|
|
newCoefficients(i,j) *= double(i)+double(firstExponent);
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (axis) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
newCoefficients.transposeInPlace();
|
|
break;
|
|
default:
|
|
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
|
|
break;
|
|
}
|
|
|
|
return newCoefficients;
|
|
}
|
|
|
|
|
|
/// The core functions to evaluate the polynomial
|
|
/** It is here we implement the different special
|
|
* functions that allow us to specify certain
|
|
* types of polynomials.
|
|
*
|
|
* Try to avoid many calls to the derivative and integral functions.
|
|
* Both of them have to calculate the new coefficients internally,
|
|
* which slows things down. Instead, you should use the deriveCoeffs
|
|
* and integrateCoeffs functions and store the coefficient matrix
|
|
* you need for future calls to evaluate derivative and integral.
|
|
*/
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input in the 1st dimension
|
|
/// @param firstExponent integer value that represents the lowest exponent of the polynomial
|
|
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
|
|
double Polynomial2DFrac::evaluate(const Eigen::MatrixXd &coefficients, const double &x_in, const int &firstExponent = 0, const double &x_base = 0.0){
|
|
if (coefficients.rows() != 1) {
|
|
throw ValueError(format("%s (%d): You have a 2D coefficient matrix (%d,%d), please use the 2D functions. ",__FILE__,__LINE__,coefficients.rows(),coefficients.cols()));
|
|
}
|
|
if ( (firstExponent<0) && (fabs(x_in-x_base)<DBL_EPSILON)) {
|
|
throw ValueError(format("%s (%d): A fraction cannot be evaluated with zero as denominator, x_in-x_base=%f ",__FILE__,__LINE__,x_in-x_base));
|
|
}
|
|
Eigen::MatrixXd tmpCoeffs(coefficients);
|
|
Eigen::MatrixXd newCoeffs;
|
|
size_t r=1;
|
|
size_t c;
|
|
double negExp = 0;// First we treat the negative exponents
|
|
double posExp = 0;// then the positive exponents
|
|
|
|
for(int i=0; i>firstExponent; i--) { // only for firstExponent<0
|
|
c=tmpCoeffs.cols();
|
|
if (c>0) {
|
|
negExp += tmpCoeffs(0,0);
|
|
removeColumn(tmpCoeffs, 0);
|
|
}
|
|
negExp /= x_in-x_base;
|
|
}
|
|
|
|
for(int i=0; i<firstExponent; i++) { // only for firstExponent>0
|
|
c = tmpCoeffs.cols();
|
|
newCoeffs = Eigen::MatrixXd::Zero(r,c+1);
|
|
newCoeffs.block(0,1,r,c) = tmpCoeffs.block(0,0,r,c);
|
|
tmpCoeffs = Eigen::MatrixXd(newCoeffs);
|
|
}
|
|
|
|
c = tmpCoeffs.cols();
|
|
if (c>0) posExp += Eigen::poly_eval( Eigen::RowVectorXd(tmpCoeffs), x_in-x_base );
|
|
return negExp+posExp;
|
|
}
|
|
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input in the 1st dimension
|
|
/// @param y_in double value that represents the current input in the 2nd dimension
|
|
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
|
|
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
|
|
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
|
|
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
|
|
double Polynomial2DFrac::evaluate(const Eigen::MatrixXd &coefficients, const double &x_in, const double &y_in, const int &x_exp, const int &y_exp, const double &x_base = 0.0, const double &y_base = 0.0){
|
|
if ( (x_exp<0) && (fabs(x_in-x_base)<DBL_EPSILON)) {
|
|
throw ValueError(format("%s (%d): A fraction cannot be evaluated with zero as denominator, x_in-x_base=%f ",__FILE__,__LINE__,x_in-x_base));
|
|
}
|
|
if ( (y_exp<0) && (fabs(y_in-y_base)<DBL_EPSILON)) {
|
|
throw ValueError(format("%s (%d): A fraction cannot be evaluated with zero as denominator, y_in-y_base=%f ",__FILE__,__LINE__,y_in-y_base));
|
|
}
|
|
|
|
Eigen::MatrixXd tmpCoeffs(coefficients);
|
|
Eigen::MatrixXd newCoeffs;
|
|
size_t r = tmpCoeffs.rows();
|
|
size_t c = tmpCoeffs.cols();
|
|
double negExp = 0;// First we treat the negative exponents
|
|
double posExp = 0;// then the positive exponents
|
|
|
|
for(int i=0; i>x_exp; i--) { // only for x_exp<0
|
|
r = tmpCoeffs.rows();
|
|
if (r>0) {
|
|
negExp += evaluate(tmpCoeffs.row(0), y_in, y_exp, y_base);
|
|
removeRow(tmpCoeffs, 0);
|
|
}
|
|
negExp /= x_in-x_base;
|
|
}
|
|
|
|
r = tmpCoeffs.rows();
|
|
for(int i=0; i<x_exp; i++) { // only for x_exp>0
|
|
newCoeffs = Eigen::MatrixXd::Zero(r+1,c);
|
|
newCoeffs.block(1,0,r,c) = tmpCoeffs.block(0,0,r,c);
|
|
tmpCoeffs = Eigen::MatrixXd(newCoeffs);
|
|
r += 1; // r = tmpCoeffs.rows();
|
|
}
|
|
|
|
//r = tmpCoeffs.rows();
|
|
if (r>0) posExp += evaluate(tmpCoeffs.row(r-1), y_in, y_exp, y_base);
|
|
for(int i=r-2; i>=0; i--) {
|
|
posExp *= x_in-x_base;
|
|
posExp += evaluate(tmpCoeffs.row(i), y_in, y_exp, y_base);
|
|
}
|
|
return negExp+posExp;
|
|
}
|
|
|
|
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input in the 1st dimension
|
|
/// @param y_in double value that represents the current input in the 2nd dimension
|
|
/// @param axis integer value that represents the axis to derive for (0=x, 1=y)
|
|
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
|
|
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
|
|
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
|
|
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
|
|
double Polynomial2DFrac::derivative(const Eigen::MatrixXd &coefficients, const double &x_in, const double &y_in, const int &axis, const int &x_exp, const int &y_exp, const double &x_base = 0.0, const double &y_base = 0.0){
|
|
Eigen::MatrixXd newCoefficients;
|
|
int der_exp,other_exp;
|
|
double der_val,other_val;
|
|
double int_base, other_base;
|
|
|
|
switch (axis) {
|
|
case 0:
|
|
newCoefficients = Eigen::MatrixXd(coefficients);
|
|
der_exp = x_exp;
|
|
other_exp = y_exp;
|
|
der_val = x_in;
|
|
other_val = y_in;
|
|
int_base = x_base;
|
|
other_base = y_base;
|
|
break;
|
|
case 1:
|
|
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
|
|
der_exp = y_exp;
|
|
other_exp = x_exp;
|
|
der_val = y_in;
|
|
other_val = x_in;
|
|
int_base = y_base;
|
|
other_base = x_base;
|
|
break;
|
|
default:
|
|
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
|
|
break;
|
|
}
|
|
|
|
const int times = 1;
|
|
newCoefficients = deriveCoeffs(newCoefficients,0,times,der_exp);
|
|
der_exp -= times;
|
|
|
|
return evaluate(newCoefficients,der_val,other_val,der_exp,other_exp,int_base,other_base);
|
|
}
|
|
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input in the 1st dimension
|
|
/// @param y_in double value that represents the current input in the 2nd dimension
|
|
/// @param axis integer value that represents the axis to integrate for (0=x, 1=y)
|
|
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
|
|
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
|
|
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
|
|
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
|
|
double Polynomial2DFrac::integral(const Eigen::MatrixXd &coefficients, const double &x_in, const double &y_in, const int &axis, const int &x_exp, const int &y_exp, const double &x_base = 0.0, const double &y_base = 0.0){
|
|
|
|
Eigen::MatrixXd newCoefficients;
|
|
int int_exp,other_exp;
|
|
double int_val,other_val;
|
|
double int_base, other_base;
|
|
|
|
switch (axis) {
|
|
case 0:
|
|
newCoefficients = Eigen::MatrixXd(coefficients);
|
|
int_exp = x_exp;
|
|
other_exp = y_exp;
|
|
int_val = x_in;
|
|
other_val = y_in;
|
|
int_base = x_base;
|
|
other_base = y_base;
|
|
break;
|
|
case 1:
|
|
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
|
|
int_exp = y_exp;
|
|
other_exp = x_exp;
|
|
int_val = y_in;
|
|
other_val = x_in;
|
|
int_base = y_base;
|
|
other_base = x_base;
|
|
break;
|
|
default:
|
|
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",__FILE__,__LINE__,axis));
|
|
break;
|
|
}
|
|
|
|
if (int_exp<-1) throw NotImplementedError(format("%s (%d): This function is only implemented for lowest exponents >= -1, int_exp=%d ",__FILE__,__LINE__,int_exp));
|
|
|
|
double result = 0;
|
|
size_t r = newCoefficients.rows();
|
|
size_t c = newCoefficients.cols();
|
|
|
|
if (int_exp==-1) {
|
|
if (fabs(int_base)<DBL_EPSILON){
|
|
Eigen::MatrixXd tmpCoefficients = newCoefficients.row(0) * log(int_val-int_base);
|
|
newCoefficients = integrateCoeffs(newCoefficients.block(1,0,r-1,c), 0, 1);
|
|
newCoefficients.row(0) = tmpCoefficients;
|
|
return evaluate(newCoefficients,int_val,other_val,0,other_exp,int_base,other_base);
|
|
}
|
|
else {
|
|
// Reduce the coefficients to the integration dimension:
|
|
newCoefficients = Eigen::MatrixXd(r,1);
|
|
for (int i=0; i<r; i++){
|
|
newCoefficients(i,0) = evaluate(coefficients.row(i), other_val, other_exp, other_base);
|
|
}
|
|
return fracIntCentral(newCoefficients.transpose(),int_val,int_base);
|
|
}
|
|
}
|
|
|
|
Eigen::MatrixXd tmpCoeffs;
|
|
r = newCoefficients.rows();
|
|
for(int i=0; i<int_exp; i++) { // only for x_exp>0
|
|
tmpCoeffs = Eigen::MatrixXd::Zero(r+1,c);
|
|
tmpCoeffs.block(1,0,r,c) = newCoefficients.block(0,0,r,c);
|
|
newCoefficients = Eigen::MatrixXd(tmpCoeffs);
|
|
r += 1; // r = newCoefficients.rows();
|
|
}
|
|
|
|
return evaluate(integrateCoeffs(newCoefficients, 0, 1),int_val,other_val,0,other_exp,int_base,other_base);
|
|
|
|
}
|
|
|
|
|
|
/// Returns a vector with ALL the real roots of p(x_in,y_in)-z_in
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param axis integer value that represents the axis to solve for (0=x, 1=y)
|
|
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
|
|
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
|
|
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
|
|
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
|
|
Eigen::VectorXd Polynomial2DFrac::solve(const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const int &axis, const int &x_exp, const int &y_exp, const double &x_base = 0.0, const double &y_base = 0.0){
|
|
|
|
Eigen::MatrixXd newCoefficients;
|
|
Eigen::VectorXd tmpCoefficients;
|
|
int solve_exp,other_exp;
|
|
double input;
|
|
|
|
switch (axis) {
|
|
case 0:
|
|
newCoefficients = Eigen::MatrixXd(coefficients);
|
|
solve_exp = x_exp;
|
|
other_exp = y_exp;
|
|
input = in - y_base;
|
|
break;
|
|
case 1:
|
|
newCoefficients = Eigen::MatrixXd(coefficients.transpose());
|
|
solve_exp = y_exp;
|
|
other_exp = x_exp;
|
|
input = in - x_base;
|
|
break;
|
|
default:
|
|
throw ValueError(format("%s (%d): You have to provide a dimension, 0 or 1, for the solver, %d is not valid. ",__FILE__,__LINE__,axis));
|
|
break;
|
|
}
|
|
|
|
if (this->do_debug()) std::cout << "Coefficients: " << mat_to_string(Eigen::MatrixXd(newCoefficients)) << std::endl;
|
|
|
|
const size_t r = newCoefficients.rows();
|
|
for(size_t i=0; i<r; i++) {
|
|
newCoefficients(i,0) = evaluate(newCoefficients.row(i), input, other_exp);
|
|
}
|
|
|
|
//Eigen::VectorXd tmpCoefficients;
|
|
if (solve_exp>=0) { // extend vector to zero exponent
|
|
tmpCoefficients = Eigen::VectorXd::Zero(r+solve_exp);
|
|
tmpCoefficients.block(solve_exp,0,r,1) = newCoefficients.block(0,0,r,1);
|
|
tmpCoefficients(0,0) -= z_in;
|
|
} else {// check if vector reaches to zero exponent
|
|
int diff = 1 - r - solve_exp; // How many entries have to be added
|
|
tmpCoefficients = Eigen::VectorXd::Zero(r+std::max(diff,0));
|
|
tmpCoefficients.block(0,0,r,1) = newCoefficients.block(0,0,r,1);
|
|
tmpCoefficients(r+diff-1,0) -= z_in;
|
|
throw NotImplementedError(format("%s (%d): Currently, there is no solver for the generalised polynomial, an exponent of %d is not valid. ",__FILE__,__LINE__,solve_exp));
|
|
}
|
|
|
|
if (this->do_debug()) std::cout << "Coefficients: " << mat_to_string( Eigen::MatrixXd(tmpCoefficients) ) << std::endl;
|
|
Eigen::PolynomialSolver<double,Eigen::Dynamic> polySolver( tmpCoefficients );
|
|
std::vector<double> rootsVec;
|
|
polySolver.realRoots(rootsVec);
|
|
if (this->do_debug()) std::cout << "Real roots: " << vec_to_string(rootsVec) << std::endl;
|
|
return vec_to_eigen(rootsVec);
|
|
//return rootsVec[0]; // TODO: implement root selection algorithm
|
|
}
|
|
|
|
/// Uses the Brent solver to find the roots of p(x_in,y_in)-z_in
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param min double value that represents the minimum value
|
|
/// @param max double value that represents the maximum value
|
|
/// @param axis integer value that represents the axis to solve for (0=x, 1=y)
|
|
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
|
|
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
|
|
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
|
|
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
|
|
double Polynomial2DFrac::solve_limits(const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const double &min, const double &max, const int &axis, const int &x_exp, const int &y_exp, const double &x_base = 0.0, const double &y_base = 0.0){
|
|
Poly2DFracResidual res = Poly2DFracResidual(*this, coefficients, in, z_in, axis, x_exp, y_exp, x_base, y_base);
|
|
std::string errstring;
|
|
double macheps = DBL_EPSILON;
|
|
double tol = DBL_EPSILON*1e3;
|
|
int maxiter = 10;
|
|
double result = Brent(res, min, max, macheps, tol, maxiter, errstring);
|
|
if (this->do_debug()) std::cout << "Brent solver message: " << errstring << std::endl;
|
|
return result;
|
|
}
|
|
|
|
/// Uses the Newton solver to find the roots of p(x_in,y_in)-z_in
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
|
|
/// @param z_in double value that represents the current output in the 3rd dimension
|
|
/// @param guess double value that represents the start value
|
|
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
|
|
/// @param x_exp integer value that represents the lowest exponent of the polynomial in the 1st dimension
|
|
/// @param y_exp integer value that represents the lowest exponent of the polynomial in the 2nd dimension
|
|
/// @param x_base double value that represents the base value for a centred fit in the 1st dimension
|
|
/// @param y_base double value that represents the base value for a centred fit in the 2nd dimension
|
|
double Polynomial2DFrac::solve_guess(const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const double &guess, const int &axis, const int &x_exp, const int &y_exp, const double &x_base = 0.0, const double &y_base = 0.0){
|
|
Poly2DFracResidual res = Poly2DFracResidual(*this, coefficients, in, z_in, axis, x_exp, y_exp, x_base, y_base);
|
|
std::string errstring;
|
|
//set_debug_level(1000);
|
|
double tol = DBL_EPSILON*1e3;
|
|
int maxiter = 10;
|
|
double result = Newton(res, guess, tol, maxiter, errstring);
|
|
if (this->do_debug()) std::cout << "Newton solver message: " << errstring << std::endl;
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/** Simple integrated centred(!) polynomial function generator divided by independent variable.
|
|
* We need to rewrite some of the functions in order to
|
|
* use central fit. Having a central temperature xbase
|
|
* allows for a better fit, but requires a different
|
|
* formulation of the fracInt function group. Other
|
|
* functions are not affected.
|
|
* Starts with only the first coefficient at x^0 */
|
|
|
|
//Helper functions to calculate binomial coefficients:
|
|
//http://rosettacode.org/wiki/Evaluate_binomial_coefficients#C.2B.2B
|
|
/// @param nValue integer value that represents the order of the factorial
|
|
double Polynomial2DFrac::factorial(const int &nValue){
|
|
double value = 1;
|
|
for(int i = 2; i <= nValue; i++) value = value * i;
|
|
return value;
|
|
}
|
|
/// @param nValue integer value that represents the upper part of the factorial
|
|
/// @param nValue2 integer value that represents the lower part of the factorial
|
|
double Polynomial2DFrac::binom(const int &nValue, const int &nValue2){
|
|
if(nValue2 == 1) return nValue*1.0;
|
|
return (factorial(nValue)) / (factorial(nValue2)*factorial((nValue - nValue2)));
|
|
}
|
|
///Helper function to calculate the D vector:
|
|
/// @param m integer value that represents order
|
|
/// @param x_in double value that represents the current input
|
|
/// @param x_base double value that represents the basis for the fit
|
|
Eigen::MatrixXd Polynomial2DFrac::fracIntCentralDvector(const int &m, const double &x_in, const double &x_base){
|
|
if (m<1) throw ValueError(format("%s (%d): You have to provide coefficients, a vector length of %d is not a valid. ",__FILE__,__LINE__,m));
|
|
|
|
Eigen::MatrixXd D = Eigen::MatrixXd::Zero(1,m);
|
|
double tmp;
|
|
// TODO: This can be optimized using the Horner scheme!
|
|
for (int j=0; j<m; j++){ // loop through row
|
|
tmp = pow(-1.0,j) * log(x_in) * pow(x_base,j);
|
|
for(int k=0; k<j; k++) { // internal loop for every entry
|
|
tmp += binom(j,k) * pow(-1.0,k) / (j-k) * pow(x_in,j-k) * pow(x_base,k);
|
|
}
|
|
D(0,j)=tmp;
|
|
}
|
|
return D;
|
|
}
|
|
///Indefinite integral of a centred polynomial divided by its independent variable
|
|
/// @param coefficients vector containing the ordered coefficients
|
|
/// @param x_in double value that represents the current input
|
|
/// @param x_base double value that represents the basis for the fit
|
|
double Polynomial2DFrac::fracIntCentral(const Eigen::MatrixXd &coefficients, const double &x_in, const double &x_base){
|
|
if (coefficients.rows() != 1) {
|
|
throw ValueError(format("%s (%d): You have a 2D coefficient matrix (%d,%d), please use the 2D functions. ",__FILE__,__LINE__,coefficients.rows(),coefficients.cols()));
|
|
}
|
|
int m = coefficients.cols();
|
|
Eigen::MatrixXd D = fracIntCentralDvector(m, x_in, x_base);
|
|
double result = 0;
|
|
for(int j=0; j<m; j++) {
|
|
result += coefficients(0,j) * D(0,j);
|
|
}
|
|
if (this->do_debug()) std::cout << "Running fracIntCentral(" << mat_to_string(coefficients) << ", " << vec_to_string(x_in) << ", " << vec_to_string(x_base) << "): " << result << std::endl;
|
|
return result;
|
|
}
|
|
|
|
|
|
Poly2DFracResidual::Poly2DFracResidual(Polynomial2DFrac &poly, const Eigen::MatrixXd &coefficients, const double &in, const double &z_in, const int &axis, const int &x_exp, const int &y_exp, const double &x_base, const double &y_base)
|
|
: Poly2DResidual(poly, coefficients, in, z_in, axis){
|
|
this->x_exp = x_exp;
|
|
this->y_exp = y_exp;
|
|
this->x_base = x_base;
|
|
this->y_base = y_base;
|
|
}
|
|
|
|
double Poly2DFracResidual::call(double target){
|
|
if (axis==iX) return poly.evaluate(coefficients,target,in,x_exp,y_exp,x_base,y_base)-z_in;
|
|
if (axis==iY) return poly.evaluate(coefficients,in,target,x_exp,y_exp,x_base,y_base)-z_in;
|
|
return -_HUGE;
|
|
}
|
|
|
|
double Poly2DFracResidual::deriv(double target){
|
|
if (axis==iX) return poly.derivative(coefficients,target,in,axis,x_exp,y_exp,x_base,y_base);
|
|
if (axis==iY) return poly.derivative(coefficients,in,target,axis,x_exp,y_exp,x_base,y_base);
|
|
return -_HUGE;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef ENABLE_CATCH
|
|
#include <math.h>
|
|
#include <iostream>
|
|
#include "catch.hpp"
|
|
|
|
TEST_CASE("Internal consistency checks and example use cases for PolyMath.cpp","[PolyMath]")
|
|
{
|
|
bool PRINT = false;
|
|
std::string tmpStr;
|
|
|
|
/// Test case for "SylthermXLT" by "Dow Chemicals"
|
|
std::vector<double> cHeat;
|
|
cHeat.clear();
|
|
cHeat.push_back(+1.1562261074E+03);
|
|
cHeat.push_back(+2.0994549103E+00);
|
|
cHeat.push_back(+7.7175381057E-07);
|
|
cHeat.push_back(-3.7008444051E-20);
|
|
|
|
double deltaT = 0.1;
|
|
double Tmin = 273.15- 50;
|
|
double Tmax = 273.15+250;
|
|
double Tinc = 200;
|
|
|
|
std::vector<std::vector<double> > cHeat2D;
|
|
cHeat2D.push_back(cHeat);
|
|
cHeat2D.push_back(cHeat);
|
|
cHeat2D.push_back(cHeat);
|
|
|
|
Eigen::MatrixXd matrix2D = CoolProp::vec_to_eigen(cHeat2D);
|
|
|
|
Eigen::MatrixXd matrix2Dtmp;
|
|
std::vector<std::vector<double> > vec2Dtmp;
|
|
|
|
SECTION("Coefficient parsing") {
|
|
CoolProp::Polynomial2D poly;
|
|
CHECK_THROWS(poly.checkCoefficients(matrix2D,4,5));
|
|
CHECK( poly.checkCoefficients(matrix2D,3,4) );
|
|
}
|
|
|
|
SECTION("Coefficient operations") {
|
|
Eigen::MatrixXd matrix;
|
|
CoolProp::Polynomial2D poly;
|
|
|
|
CHECK_THROWS(poly.integrateCoeffs(matrix2D));
|
|
|
|
CHECK_NOTHROW(matrix = poly.integrateCoeffs(matrix2D, 0));
|
|
tmpStr = CoolProp::mat_to_string(matrix2D);
|
|
if (PRINT) std::cout << tmpStr << std::endl;
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
|
|
|
|
CHECK_NOTHROW(matrix = poly.integrateCoeffs(matrix2D, 1));
|
|
tmpStr = CoolProp::mat_to_string(matrix2D);
|
|
if (PRINT) std::cout << tmpStr << std::endl;
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
|
|
|
|
CHECK_THROWS(poly.deriveCoeffs(matrix2D));
|
|
|
|
CHECK_NOTHROW(matrix = poly.deriveCoeffs(matrix2D, 0));
|
|
tmpStr = CoolProp::mat_to_string(matrix2D);
|
|
if (PRINT) std::cout << tmpStr << std::endl;
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
|
|
|
|
CHECK_NOTHROW(matrix = poly.deriveCoeffs(matrix2D, 1));
|
|
tmpStr = CoolProp::mat_to_string(matrix2D);
|
|
if (PRINT) std::cout << tmpStr << std::endl;
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
|
|
}
|
|
|
|
SECTION("Evaluation and test values"){
|
|
|
|
Eigen::MatrixXd matrix = CoolProp::vec_to_eigen(cHeat);
|
|
CoolProp::Polynomial2D poly;
|
|
|
|
double acc = 0.0001;
|
|
|
|
double T = 273.15+50;
|
|
double c = poly.evaluate(matrix, T, 0.0);
|
|
double d = 1834.746;
|
|
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(c,d,acc) );
|
|
}
|
|
|
|
c = 2.0;
|
|
c = poly.solve(matrix, 0.0, d, 0)[0];
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
CHECK( check_abs(c,T,acc) );
|
|
}
|
|
|
|
c = 2.0;
|
|
c = poly.solve_limits(matrix, 0.0, d, -50, 750, 0);
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
CHECK( check_abs(c,T,acc) );
|
|
}
|
|
|
|
c = 2.0;
|
|
c = poly.solve_guess(matrix, 0.0, d, 350, 0);
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
CHECK( check_abs(c,T,acc) );
|
|
}
|
|
|
|
// T = 0.0;
|
|
// solve.setGuess(75+273.15);
|
|
// T = solve.polyval(cHeat,c);
|
|
// printf("Should be : T = %3.3f \t K \n",273.15+50.0);
|
|
// printf("From object: T = %3.3f \t K \n",T);
|
|
//
|
|
// T = 0.0;
|
|
// solve.setLimits(273.15+10,273.15+100);
|
|
// T = solve.polyval(cHeat,c);
|
|
// printf("Should be : T = %3.3f \t K \n",273.15+50.0);
|
|
// printf("From object: T = %3.3f \t K \n",T);
|
|
|
|
}
|
|
|
|
SECTION("Integration and derivation tests") {
|
|
|
|
CoolProp::Polynomial2D poly;
|
|
|
|
Eigen::MatrixXd matrix(matrix2D);
|
|
Eigen::MatrixXd matrixInt = poly.integrateCoeffs(matrix, 1);
|
|
Eigen::MatrixXd matrixDer = poly.deriveCoeffs(matrix, 1);
|
|
Eigen::MatrixXd matrixInt2 = poly.integrateCoeffs(matrix, 1, 2);
|
|
Eigen::MatrixXd matrixDer2 = poly.deriveCoeffs(matrix, 1, 2);
|
|
|
|
CHECK_THROWS( poly.evaluate(matrix,0.0) );
|
|
|
|
double x = 0.3, y = 255.3, val1, val2, val3, val4;
|
|
|
|
//CHECK( fabs( polyInt.derivative(x,y,0)-poly2D.evaluate(x,y) ) <= 1e-10 );
|
|
|
|
std::string tmpStr;
|
|
|
|
double acc = 0.001;
|
|
|
|
for (double T = Tmin; T<Tmax; T+=Tinc) {
|
|
val1 = poly.evaluate(matrix, x, T-deltaT);
|
|
val2 = poly.evaluate(matrix, x, T+deltaT);
|
|
val3 = (val2-val1)/2/deltaT;
|
|
val4 = poly.evaluate(matrixDer, x, T);
|
|
CAPTURE(T);
|
|
CAPTURE(val3);
|
|
CAPTURE(val4);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
tmpStr = CoolProp::mat_to_string(matrixDer);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(val3,val4,acc) );
|
|
}
|
|
|
|
for (double T = Tmin; T<Tmax; T+=Tinc) {
|
|
val1 = poly.evaluate(matrixDer, x, T-deltaT);
|
|
val2 = poly.evaluate(matrixDer, x, T+deltaT);
|
|
val3 = (val2-val1)/2/deltaT;
|
|
val4 = poly.evaluate(matrixDer2, x, T);
|
|
CAPTURE(T);
|
|
CAPTURE(val3);
|
|
CAPTURE(val4);
|
|
tmpStr = CoolProp::mat_to_string(matrixDer);
|
|
CAPTURE(tmpStr);
|
|
tmpStr = CoolProp::mat_to_string(matrixDer2);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(val3,val4,acc) );
|
|
}
|
|
|
|
for (double T = Tmin; T<Tmax; T+=Tinc) {
|
|
val1 = poly.evaluate(matrixInt, x, T-deltaT);
|
|
val2 = poly.evaluate(matrixInt, x, T+deltaT);
|
|
val3 = (val2-val1)/2/deltaT;
|
|
val4 = poly.evaluate(matrix, x, T);
|
|
CAPTURE(T);
|
|
CAPTURE(val3);
|
|
CAPTURE(val4);
|
|
tmpStr = CoolProp::mat_to_string(matrixInt);
|
|
CAPTURE(tmpStr);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(val3,val4,acc) );
|
|
}
|
|
|
|
for (double T = Tmin; T<Tmax; T+=Tinc) {
|
|
val1 = poly.evaluate(matrixInt2, x, T-deltaT);
|
|
val2 = poly.evaluate(matrixInt2, x, T+deltaT);
|
|
val3 = (val2-val1)/2/deltaT;
|
|
val4 = poly.evaluate(matrixInt, x, T);
|
|
CAPTURE(T);
|
|
CAPTURE(val3);
|
|
CAPTURE(val4);
|
|
tmpStr = CoolProp::mat_to_string(matrixInt2);
|
|
CAPTURE(tmpStr);
|
|
tmpStr = CoolProp::mat_to_string(matrixInt);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(val3,val4,acc) );
|
|
}
|
|
|
|
for (double T = Tmin; T<Tmax; T+=Tinc) {
|
|
val1 = poly.evaluate(matrix, x, T);
|
|
val2 = poly.derivative(matrixInt, x, T, 1);
|
|
CAPTURE(T);
|
|
CAPTURE(val1);
|
|
CAPTURE(val2);
|
|
CHECK( check_abs(val1,val2,acc) );
|
|
}
|
|
|
|
for (double T = Tmin; T<Tmax; T+=Tinc) {
|
|
val1 = poly.derivative(matrix, x, T, 1);
|
|
val2 = poly.evaluate(matrixDer, x, T);
|
|
CAPTURE(T);
|
|
CAPTURE(val1);
|
|
CAPTURE(val2);
|
|
CHECK( check_abs(val1,val2,acc) );
|
|
}
|
|
|
|
}
|
|
|
|
|
|
SECTION("Testing Polynomial2DFrac"){
|
|
|
|
Eigen::MatrixXd matrix = CoolProp::vec_to_eigen(cHeat);
|
|
CoolProp::Polynomial2D poly;
|
|
CoolProp::Polynomial2DFrac frac;
|
|
|
|
double acc = 0.0001;
|
|
|
|
double T = 273.15+50;
|
|
double a,b;
|
|
double c = poly.evaluate(matrix, T, 0.0);
|
|
double d = frac.evaluate(matrix, T, 0.0, 0, 0);
|
|
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(c,d,acc) );
|
|
}
|
|
|
|
c = poly.evaluate(matrix, T, 0.0)/T/T;
|
|
d = frac.evaluate(matrix, T, 0.0, -2, 0);
|
|
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(c,d,acc) );
|
|
}
|
|
|
|
matrix = CoolProp::vec_to_eigen(cHeat2D);
|
|
double y = 0.1;
|
|
c = poly.evaluate(matrix, T, y)/T/T;
|
|
d = frac.evaluate(matrix, T, y, -2, 0);
|
|
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(c,d,acc) );
|
|
}
|
|
|
|
c = poly.evaluate(matrix, T, y)/y/y;
|
|
d = frac.evaluate(matrix, T, y, 0, -2);
|
|
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(c,d,acc) );
|
|
}
|
|
|
|
c = poly.evaluate(matrix, T, y)/T/T/y/y;
|
|
d = frac.evaluate(matrix, T, y, -2, -2);
|
|
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(c,d,acc) );
|
|
}
|
|
|
|
c = poly.evaluate(matrix, T, y)/T/T*y*y;
|
|
d = frac.evaluate(matrix, T, y, -2, 2);
|
|
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(c,d,acc) );
|
|
}
|
|
|
|
|
|
matrix = CoolProp::vec_to_eigen(cHeat);
|
|
T = 273.15+50;
|
|
c = 145.59157247249246;
|
|
d = frac.integral(matrix, T, 0.0, 0, -1, 0) - frac.integral(matrix, 273.15+25, 0.0, 0, -1, 0);
|
|
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(c,d,acc) );
|
|
}
|
|
|
|
|
|
T = 423.15;
|
|
c = 3460.895272;
|
|
d = frac.integral(matrix, T, 0.0, 0, -1, 0, 348.15, 0.0);
|
|
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(c,d,acc) );
|
|
}
|
|
|
|
|
|
deltaT = 0.01;
|
|
for (T = Tmin; T<Tmax; T+=Tinc) {
|
|
a = poly.evaluate(matrix, T-deltaT, y);
|
|
b = poly.evaluate(matrix, T+deltaT, y);
|
|
c = (b-a)/2.0/deltaT;
|
|
d = frac.derivative(matrix, T, y, 0, 0, 0);
|
|
CAPTURE(a);
|
|
CAPTURE(b);
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(c,d,acc) );
|
|
}
|
|
|
|
T = 273.15+150;
|
|
c = -2.100108045;
|
|
d = frac.derivative(matrix, T, 0.0, 0, 0, 0);
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(c,d,acc) );
|
|
}
|
|
|
|
c = -0.006456574589;
|
|
d = frac.derivative(matrix, T, 0.0, 0, -1, 0);
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(c,d,acc) );
|
|
}
|
|
|
|
c = frac.evaluate(matrix, T, 0.0, 2, 0);
|
|
d = frac.solve(matrix, 0.0, c, 0, 2, 0)[0];
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(T,d,acc) );
|
|
}
|
|
|
|
c = frac.evaluate(matrix, T, 0.0, 0, 0);
|
|
d = frac.solve(matrix, 0.0, c, 0, 0, 0)[0];
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(T,d,acc) );
|
|
}
|
|
|
|
c = frac.evaluate(matrix, T, 0.0, -1, 0);
|
|
CHECK_THROWS(d = frac.solve(matrix, 0.0, c, 0, -1, 0)[0]);
|
|
// {
|
|
// CAPTURE(T);
|
|
// CAPTURE(c);
|
|
// CAPTURE(d);
|
|
// tmpStr = CoolProp::mat_to_string(matrix);
|
|
// CAPTURE(tmpStr);
|
|
// CHECK( check_abs(T,d,acc) );
|
|
// }
|
|
|
|
d = frac.solve_limits(matrix, 0.0, c, T-10, T+10, 0, -1, 0);
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(T,d,acc) );
|
|
}
|
|
|
|
d = frac.solve_guess(matrix, 0.0, c, T-10, 0, -1, 0);
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(T,d,acc) );
|
|
}
|
|
|
|
c = -0.00004224550082;
|
|
d = frac.derivative(matrix, T, 0.0, 0, -2, 0);
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(c,d,acc) );
|
|
}
|
|
|
|
c = frac.evaluate(matrix, T, 0.0, 0, 0, 0.0, 0.0);
|
|
d = frac.solve(matrix, 0.0, c, 0, 0, 0, 0.0, 0.0)[0];
|
|
{
|
|
CAPTURE(T);
|
|
CAPTURE(c);
|
|
CAPTURE(d);
|
|
tmpStr = CoolProp::mat_to_string(matrix);
|
|
CAPTURE(tmpStr);
|
|
tmpStr = CoolProp::mat_to_string(Eigen::MatrixXd(frac.solve(matrix, 0.0, c, 0, 0, 0, 250, 0.0)));
|
|
CAPTURE(tmpStr);
|
|
CHECK( check_abs(T,d,acc) );
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
#endif /* ENABLE_CATCH */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/// Constructors for the base class for all Polynomials
|
|
//Polynomial1D::Polynomial1D();
|
|
//bool Polynomial2D::setCoefficients(const Eigen::MatrixXd &coefficients){
|
|
// this.coefficients = coefficients;
|
|
// return this.coefficients == coefficients;
|
|
//}
|
|
//bool Polynomial2D::setCoefficients(const std::vector< std::vector<double> > &coefficients){
|
|
// return this->setCoefficients(convert(coefficients));
|
|
//}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//namespace CoolProp{
|
|
//
|
|
//BasePolynomial::BasePolynomial(){
|
|
// this->POLYMATH_DEBUG = false;
|
|
//}
|
|
//
|
|
//
|
|
///// Basic checks for coefficient vectors.
|
|
///** Starts with only the first coefficient dimension
|
|
// * and checks the vector length against parameter n. */
|
|
//bool BasePolynomial::checkCoefficients(const std::vector<double> &coefficients, unsigned int n){
|
|
// if (coefficients.size() == n){
|
|
// return true;
|
|
// } else {
|
|
// throw ValueError(format("The number of coefficients %d does not match with %d. ",coefficients.size(),n));
|
|
// }
|
|
// return false;
|
|
//}
|
|
//bool BasePolynomial::checkCoefficients(std::vector< std::vector<double> > const& coefficients, unsigned int rows, unsigned int columns){
|
|
// if (coefficients.size() == rows){
|
|
// bool result = true;
|
|
// for(unsigned int i=0; i<rows; i++) {
|
|
// result = result && checkCoefficients(coefficients[i],columns);
|
|
// }
|
|
// return result;
|
|
// } else {
|
|
// throw ValueError(format("The number of rows %d does not match with %d. ",coefficients.size(),rows));
|
|
// }
|
|
// return false;
|
|
//}
|
|
//
|
|
//
|
|
///** Integrating coefficients for polynomials is done by dividing the
|
|
// * original coefficients by (i+1) and elevating the order by 1.
|
|
// * Some reslicing needs to be applied to integrate along the x-axis.
|
|
// */
|
|
//std::vector<double> BasePolynomial::integrateCoeffs(std::vector<double> const& coefficients){
|
|
// std::vector<double> newCoefficients;
|
|
// unsigned int sizeX = coefficients.size();
|
|
// if (sizeX<1) throw ValueError(format("You have to provide coefficients, a vector length of %d is not a valid. ",sizeX));
|
|
// // pushing a zero elevates the order by 1
|
|
// newCoefficients.push_back(0.0);
|
|
// for(unsigned int i=0; i<coefficients.size(); i++) {
|
|
// newCoefficients.push_back(coefficients[i]/(i+1.));
|
|
// }
|
|
// return newCoefficients;
|
|
//}
|
|
//std::vector< std::vector<double> > BasePolynomial::integrateCoeffs(std::vector< std::vector<double> > const& coefficients, bool axis){
|
|
// std::vector< std::vector<double> > newCoefficients;
|
|
// unsigned int sizeX = coefficients.size();
|
|
// if (sizeX<1) throw ValueError(format("You have to provide coefficients, a vector length of %d is not a valid. ",sizeX));
|
|
//
|
|
// if (axis==true){
|
|
// std::vector< std::vector<double> > tmpCoefficients;
|
|
// tmpCoefficients = transpose(coefficients);
|
|
// unsigned int sizeY = tmpCoefficients.size();
|
|
// for(unsigned int i=0; i<sizeY; i++) {
|
|
// newCoefficients.push_back(integrateCoeffs(tmpCoefficients[i]));
|
|
// }
|
|
// return transpose(newCoefficients);
|
|
// } else if (axis==false){
|
|
// for(unsigned int i=0; i<sizeX; i++) {
|
|
// newCoefficients.push_back(integrateCoeffs(coefficients[i]));
|
|
// }
|
|
// return newCoefficients;
|
|
// } else {
|
|
// throw ValueError(format("You can only use x-axis (0) and y-axis (1) for integration. %d is not a valid input. ",axis));
|
|
// }
|
|
// return newCoefficients;
|
|
//}
|
|
//
|
|
//
|
|
///** Deriving coefficients for polynomials is done by multiplying the
|
|
// * original coefficients with i and lowering the order by 1.
|
|
// */
|
|
//std::vector<double> BasePolynomial::deriveCoeffs(std::vector<double> const& coefficients){
|
|
// std::vector<double> newCoefficients;
|
|
// unsigned int sizeX = coefficients.size();
|
|
// if (sizeX<1) throw ValueError(format("You have to provide coefficients, a vector length of %d is not a valid. ",sizeX));
|
|
// // skipping the first element lowers the order
|
|
// for(unsigned int i=1; i<coefficients.size(); i++) {
|
|
// newCoefficients.push_back(coefficients[i]*i);
|
|
// }
|
|
// return newCoefficients;
|
|
//}
|
|
//std::vector< std::vector<double> > BasePolynomial::deriveCoeffs(const std::vector< std::vector<double> > &coefficients, unsigned int axis){
|
|
// std::vector< std::vector<double> > newCoefficients;
|
|
// unsigned int sizeX = coefficients.size();
|
|
// if (sizeX<1) throw ValueError(format("You have to provide coefficients, a vector length of %d is not a valid. ",sizeX));
|
|
//
|
|
// if (axis==0){
|
|
// std::vector< std::vector<double> > tmpCoefficients;
|
|
// tmpCoefficients = transpose(coefficients);
|
|
// unsigned int sizeY = tmpCoefficients.size();
|
|
// for(unsigned int i=0; i<sizeY; i++) {
|
|
// newCoefficients.push_back(deriveCoeffs(tmpCoefficients[i]));
|
|
// }
|
|
// return transpose(newCoefficients);
|
|
// } else if (axis==1){
|
|
// for(unsigned int i=0; i<sizeX; i++) {
|
|
// newCoefficients.push_back(deriveCoeffs(coefficients[i]));
|
|
// }
|
|
// return newCoefficients;
|
|
// } else {
|
|
// throw ValueError(format("You can only use x-axis (0) and y-axis (1) for derivation. %d is not a valid input. ",axis));
|
|
// }
|
|
// return newCoefficients;
|
|
//}
|
|
//
|
|
//
|
|
///** The core of the polynomial wrappers are the different
|
|
// * implementations that follow below. In case there are
|
|
// * new calculation schemes available, please do not delete
|
|
// * the implementations, but mark them as deprecated.
|
|
// * The old functions are good for debugging since the
|
|
// * structure is easier to read than the backward Horner-scheme
|
|
// * or the recursive Horner-scheme.
|
|
// */
|
|
//
|
|
///// Simple polynomial function generator. <- Deprecated due to poor performance, use Horner-scheme instead
|
|
///** Base function to produce n-th order polynomials
|
|
// * based on the length of the coefficient vector.
|
|
// * Starts with only the first coefficient at x^0. */
|
|
//double BasePolynomial::simplePolynomial(std::vector<double> const& coefficients, double x){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running simplePolynomial(std::vector, " << x << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// double result = 0.;
|
|
// for(unsigned int i=0; i<coefficients.size();i++) {
|
|
// result += coefficients[i] * pow(x,(int)i);
|
|
// }
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//double BasePolynomial::simplePolynomial(std::vector<std::vector<double> > const& coefficients, double x, double y){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running simplePolynomial(std::vector, " << x << ", " << y << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// double result = 0;
|
|
// for(unsigned int i=0; i<coefficients.size();i++) {
|
|
// result += pow(x,(int)i) * simplePolynomial(coefficients[i], y);
|
|
// }
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
//
|
|
///// Simple integrated polynomial function generator.
|
|
///** Base function to produce integrals of n-th order
|
|
// * polynomials based on the length of the coefficient
|
|
// * vector.
|
|
// * Starts with only the first coefficient at x^0 */
|
|
/////Indefinite integral in x-direction
|
|
//double BasePolynomial::simplePolynomialInt(std::vector<double> const& coefficients, double x){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running simplePolynomialInt(std::vector, " << x << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// double result = 0.;
|
|
// for(unsigned int i=0; i<coefficients.size();i++) {
|
|
// result += 1./(i+1.) * coefficients[i] * pow(x,(int)(i+1.));
|
|
// }
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
/////Indefinite integral in y-direction only
|
|
//double BasePolynomial::simplePolynomialInt(std::vector<std::vector<double> > const& coefficients, double x, double y){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running simplePolynomialInt(std::vector, " << x << ", " << y << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// double result = 0.;
|
|
// for(unsigned int i=0; i<coefficients.size();i++) {
|
|
// result += pow(x,(int)i) * simplePolynomialInt(coefficients[i], y);
|
|
// }
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
//
|
|
///// Simple integrated polynomial function generator divided by independent variable.
|
|
///** Base function to produce integrals of n-th order
|
|
// * polynomials based on the length of the coefficient
|
|
// * vector.
|
|
// * Starts with only the first coefficient at x^0 */
|
|
//double BasePolynomial::simpleFracInt(std::vector<double> const& coefficients, double x){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running simpleFracInt(std::vector, " << x << "): ";
|
|
// }
|
|
// double result = coefficients[0] * log(x);
|
|
// if (coefficients.size() > 1) {
|
|
// for (unsigned int i=1; i<coefficients.size(); i++){
|
|
// result += 1./(i) * coefficients[i] * pow(x,(int)(i));
|
|
// }
|
|
// }
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
//double BasePolynomial::simpleFracInt(std::vector< std::vector<double> > const& coefficients, double x, double y){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running simpleFracInt(std::vector, " << x << ", " << y << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// double result = 0;
|
|
// for (unsigned int i=0; i<coefficients.size(); i++){
|
|
// result += pow(x,(int)i) * polyfracint(coefficients[i],y);
|
|
// }
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
//
|
|
///** Simple integrated centred(!) polynomial function generator divided by independent variable.
|
|
// * We need to rewrite some of the functions in order to
|
|
// * use central fit. Having a central temperature xbase
|
|
// * allows for a better fit, but requires a different
|
|
// * formulation of the fracInt function group. Other
|
|
// * functions are not affected.
|
|
// * Starts with only the first coefficient at x^0 */
|
|
//
|
|
/////Helper functions to calculate binomial coefficients: http://rosettacode.org/wiki/Evaluate_binomial_coefficients#C.2B.2B
|
|
////double BasePolynomial::factorial(double nValue){
|
|
//// double result = nValue;
|
|
//// double result_next;
|
|
//// double pc = nValue;
|
|
//// do {
|
|
//// result_next = result*(pc-1);
|
|
//// result = result_next;
|
|
//// pc--;
|
|
//// } while(pc>2);
|
|
//// nValue = result;
|
|
//// return nValue;
|
|
////}
|
|
////double BasePolynomial::factorial(double nValue){
|
|
//// if (nValue == 0) return (1);
|
|
//// else return (nValue * factorial(nValue - 1));
|
|
////}
|
|
//double BasePolynomial::factorial(double nValue){
|
|
// double value = 1;
|
|
// for(int i = 2; i <= nValue; i++){
|
|
// value = value * i;
|
|
// }
|
|
// return value;
|
|
//}
|
|
//
|
|
//double BasePolynomial::binom(double nValue, double nValue2){
|
|
// double result;
|
|
// if(nValue2 == 1) return nValue;
|
|
// result = (factorial(nValue)) / (factorial(nValue2)*factorial((nValue - nValue2)));
|
|
// nValue2 = result;
|
|
// return nValue2;
|
|
//}
|
|
//
|
|
/////Helper functions to calculate the D vector:
|
|
//std::vector<double> BasePolynomial::fracIntCentralDvector(int m, double x, double xbase){
|
|
// std::vector<double> D;
|
|
// double tmp;
|
|
// if (m<1) throw ValueError(format("You have to provide coefficients, a vector length of %d is not a valid. ",m));
|
|
// for (int j=0; j<m; j++){ // loop through row
|
|
// tmp = pow(-1.0,j) * log(x) * pow(xbase,(int)j);
|
|
// for(int k=0; k<j; k++) { // internal loop for every entry
|
|
// tmp += binom(j,k) * pow(-1.0,k) / (j-k) * pow(x,j-k) * pow(xbase,k);
|
|
// }
|
|
// D.push_back(tmp);
|
|
// }
|
|
// return D;
|
|
//}
|
|
//
|
|
/////Indefinite integral of a centred polynomial divided by its independent variable
|
|
//double BasePolynomial::fracIntCentral(std::vector<double> const& coefficients, double x, double xbase){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running fracIntCentral(std::vector, " << x << ", " << xbase << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// int m = coefficients.size();
|
|
// std::vector<double> D = fracIntCentralDvector(m, x, xbase);
|
|
// double result = 0;
|
|
// for(int j=0; j<m; j++) {
|
|
// result += coefficients[j] * D[j];
|
|
// }
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
//
|
|
///// Horner function generator implementations
|
|
///** Represent polynomials according to Horner's scheme.
|
|
// * This avoids unnecessary multiplication and thus
|
|
// * speeds up calculation.
|
|
// */
|
|
//double BasePolynomial::baseHorner(std::vector<double> const& coefficients, double x){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running baseHorner(std::vector, " << x << "): ";
|
|
// }
|
|
// double result = 0;
|
|
// for(int i=coefficients.size()-1; i>=0; i--) {
|
|
// result *= x;
|
|
// result += coefficients[i];
|
|
// }
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
//double BasePolynomial::baseHorner(std::vector< std::vector<double> > const& coefficients, double x, double y){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running baseHorner(std::vector, " << x << ", " << y << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// double result = 0;
|
|
// for(int i=coefficients.size()-1; i>=0; i--) {
|
|
// result *= x;
|
|
// result += baseHorner(coefficients[i], y);
|
|
// }
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
/////Indefinite integral in x-direction
|
|
//double BasePolynomial::baseHornerInt(std::vector<double> const& coefficients, double x){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running baseHornerInt(std::vector, " << x << "): ";
|
|
// }
|
|
// double result = 0;
|
|
// for(int i=coefficients.size()-1; i>=0; i--) {
|
|
// result *= x;
|
|
// result += coefficients[i]/(i+1.);
|
|
// }
|
|
// result = result * x;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
/////Indefinite integral in y-direction only
|
|
//double BasePolynomial::baseHornerInt(std::vector<std::vector<double> > const& coefficients, double x, double y){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running baseHornerInt(std::vector, " << x << ", " << y << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// double result = 0;
|
|
// for(int i=coefficients.size()-1; i>=0; i--) {
|
|
// result *= x;
|
|
// result += baseHornerInt(coefficients[i], y);
|
|
// }
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
/////Indefinite integral in x-direction of a polynomial divided by its independent variable
|
|
//double BasePolynomial::baseHornerFracInt(std::vector<double> const& coefficients, double x){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running baseHornerFra(std::vector, " << x << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// double result = 0;
|
|
// if (coefficients.size() > 1) {
|
|
// for(int i=coefficients.size()-1; i>=1; i--) {
|
|
// result *= x;
|
|
// result += coefficients[i]/(i);
|
|
// }
|
|
// result *= x;
|
|
// }
|
|
// result += coefficients[0] * log(x);
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
/////Indefinite integral in y-direction of a polynomial divided by its 2nd independent variable
|
|
//double BasePolynomial::baseHornerFracInt(std::vector<std::vector<double> > const& coefficients, double x, double y){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running baseHornerFra(std::vector, " << x << ", " << y << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
//
|
|
// double result = 0;
|
|
// for(int i=coefficients.size()-1; i>=0; i--) {
|
|
// result *= x;
|
|
// result += baseHornerFracInt(coefficients[i], y);
|
|
// }
|
|
//
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
//
|
|
///** Alternatives
|
|
// * Simple functions that heavily rely on other parts of this file.
|
|
// * We still need to check which combinations yield the best
|
|
// * performance.
|
|
// */
|
|
/////Derivative in x-direction
|
|
//double BasePolynomial::deriveIn2Steps(std::vector<double> const& coefficients, double x){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running deriveIn2Steps(std::vector, " << x << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// double result = polyval(deriveCoeffs(coefficients),x);
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
/////Derivative in terms of x(axis=true) or y(axis=false).
|
|
//double BasePolynomial::deriveIn2Steps(std::vector< std::vector<double> > const& coefficients, double x, double y, bool axis){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running deriveIn2Steps(std::vector, " << x << ", " << y << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// double result = polyval(deriveCoeffs(coefficients,axis),x,y);
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
/////Indefinite integral in x-direction
|
|
//double BasePolynomial::integrateIn2Steps(std::vector<double> const& coefficients, double x){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running integrateIn2Steps(std::vector, " << x << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// double result = polyval(integrateCoeffs(coefficients),x);
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
/////Indefinite integral in terms of x(axis=true) or y(axis=false).
|
|
//double BasePolynomial::integrateIn2Steps(std::vector< std::vector<double> > const& coefficients, double x, double y, bool axis){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running integrateIn2Steps(std::vector, " << x << ", " << y << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// double result = polyval(integrateCoeffs(coefficients,axis),x,y);
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
/////Indefinite integral in x-direction of a polynomial divided by its independent variable
|
|
//double BasePolynomial::fracIntIn2Steps(std::vector<double> const& coefficients, double x){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running fracIntIn2Steps(std::vector, " << x << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// double result = coefficients[0] * log(x);
|
|
// if (coefficients.size() > 1) {
|
|
// std::vector<double> newCoeffs(coefficients.begin() + 1, coefficients.end());
|
|
// result += polyint(newCoeffs,x);
|
|
// }
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
/////Indefinite integral in y-direction of a polynomial divided by its 2nd independent variable
|
|
//double BasePolynomial::fracIntIn2Steps(std::vector<std::vector<double> > const& coefficients, double x, double y){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running fracIntIn2Steps(std::vector, " << x << ", " << y << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// std::vector<double> newCoeffs;
|
|
// for (unsigned int i=0; i<coefficients.size(); i++){
|
|
// newCoeffs.push_back(polyfracint(coefficients[i],y));
|
|
// }
|
|
// double result = polyval(newCoeffs,x);
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
/////Indefinite integral in y-direction of a centred polynomial divided by its 2nd independent variable
|
|
//double BasePolynomial::fracIntCentral2Steps(std::vector<std::vector<double> > const& coefficients, double x, double y, double ybase){
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << "Running fracIntCentral2Steps(std::vector, " << x << ", " << y << ", " << ybase << "): ";
|
|
// }
|
|
// bool db = this->POLYMATH_DEBUG;
|
|
// this->POLYMATH_DEBUG = false;
|
|
// std::vector<double> newCoeffs;
|
|
// for (unsigned int i=0; i<coefficients.size(); i++){
|
|
// newCoeffs.push_back(fracIntCentral(coefficients[i], y, ybase));
|
|
// }
|
|
// double result = polyval(newCoeffs,x);
|
|
// this->POLYMATH_DEBUG = db;
|
|
// if (this->POLYMATH_DEBUG) {
|
|
// std::cout << result << std::endl;
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
//
|
|
//
|
|
//
|
|
///** Implements the function wrapper interface and can be
|
|
// * used by the solvers. This is only an example and you should
|
|
// * use local redefinitions of the class.
|
|
// * TODO: Make multidimensional
|
|
// */
|
|
//PolyResidual::PolyResidual(){
|
|
// this->dim = -1;
|
|
//}
|
|
//
|
|
//PolyResidual::PolyResidual(const std::vector<double> &coefficients, double y){
|
|
// this->output = y;
|
|
// this->firstDim = 0;
|
|
// this->coefficients.clear();
|
|
// this->coefficients.push_back(coefficients);
|
|
// this->dim = i1D;
|
|
//}
|
|
//
|
|
//PolyResidual::PolyResidual(const std::vector< std::vector<double> > &coefficients, double x, double z){
|
|
// this->output = z;
|
|
// this->firstDim = x;
|
|
// this->coefficients = coefficients;
|
|
// this->dim = i2D;
|
|
//}
|
|
//
|
|
//double PolyResidual::call(double x){
|
|
// double polyRes = -1;
|
|
// switch (this->dim) {
|
|
// case i1D:
|
|
// polyRes = this->poly.polyval(this->coefficients[0], x);
|
|
// break;
|
|
// case i2D:
|
|
// polyRes = this->poly.polyval(this->coefficients, this->firstDim, x);
|
|
// break;
|
|
// default:
|
|
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
|
|
// }
|
|
// return polyRes - this->output;
|
|
//}
|
|
//
|
|
//double PolyResidual::deriv(double x){
|
|
// double polyRes = -1;
|
|
// switch (this->dim) {
|
|
// case i1D:
|
|
// polyRes = this->poly.polyder(this->coefficients[0], x);
|
|
// break;
|
|
// case i2D:
|
|
// polyRes = this->poly.polyder(this->coefficients, this->firstDim, x);
|
|
// break;
|
|
// default:
|
|
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
|
|
// }
|
|
// return polyRes;
|
|
//}
|
|
//
|
|
//double PolyIntResidual::call(double x){
|
|
// double polyRes = -1;
|
|
// switch (this->dim) {
|
|
// case i1D:
|
|
// polyRes = this->poly.polyint(this->coefficients[0], x);
|
|
// break;
|
|
// case i2D:
|
|
// polyRes = this->poly.polyint(this->coefficients, this->firstDim, x);
|
|
// break;
|
|
// default:
|
|
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
|
|
// }
|
|
// return polyRes - this->output;
|
|
//}
|
|
//
|
|
//double PolyIntResidual::deriv(double x){
|
|
// double polyRes = -1;
|
|
// switch (this->dim) {
|
|
// case i1D:
|
|
// polyRes = this->poly.polyval(this->coefficients[0], x);
|
|
// break;
|
|
// case i2D:
|
|
// polyRes = this->poly.polyval(this->coefficients, this->firstDim, x);
|
|
// break;
|
|
// default:
|
|
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
|
|
// }
|
|
// return polyRes;
|
|
//}
|
|
//
|
|
//double PolyFracIntResidual::call(double x){
|
|
// double polyRes = -1;
|
|
// switch (this->dim) {
|
|
// case i1D:
|
|
// polyRes = this->poly.polyfracint(this->coefficients[0], x);
|
|
// break;
|
|
// case i2D:
|
|
// polyRes = this->poly.polyfracint(this->coefficients, this->firstDim, x);
|
|
// break;
|
|
// default:
|
|
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
|
|
// }
|
|
// return polyRes - this->output;
|
|
//}
|
|
//
|
|
//double PolyFracIntResidual::deriv(double x){
|
|
// double polyRes = -1;
|
|
// switch (this->dim) {
|
|
// case i1D:
|
|
// polyRes = this->poly.polyfracval(this->coefficients[0], x);
|
|
// break;
|
|
// case i2D:
|
|
// polyRes = this->poly.polyfracval(this->coefficients, this->firstDim, x);
|
|
// break;
|
|
// default:
|
|
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
|
|
// }
|
|
// return polyRes;
|
|
//}
|
|
//
|
|
//double PolyFracIntCentralResidual::call(double x){
|
|
// double polyRes = -1;
|
|
// switch (this->dim) {
|
|
// case i1D:
|
|
// polyRes = this->poly.polyfracintcentral(this->coefficients[0], x, this->baseVal);
|
|
// break;
|
|
// case i2D:
|
|
// polyRes = this->poly.polyfracintcentral(this->coefficients, this->firstDim, x, this->baseVal);
|
|
// break;
|
|
// default:
|
|
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
|
|
// }
|
|
// return polyRes - this->output;
|
|
//}
|
|
//
|
|
//double PolyFracIntCentralResidual::deriv(double x){
|
|
// throw CoolProp::NotImplementedError("Derivative of a polynomial frac int is not defined.");
|
|
//}
|
|
//
|
|
//double PolyDerResidual::call(double x){
|
|
// double polyRes = -1;
|
|
// switch (this->dim) {
|
|
// case i1D:
|
|
// polyRes = this->poly.polyder(this->coefficients[0], x);
|
|
// break;
|
|
// case i2D:
|
|
// polyRes = this->poly.polyder(this->coefficients, this->firstDim, x);
|
|
// break;
|
|
// default:
|
|
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
|
|
// }
|
|
// return polyRes - this->output;
|
|
//}
|
|
//
|
|
//double PolyDerResidual::deriv(double x){
|
|
// throw CoolProp::NotImplementedError("2nd derivative of a polynomial is not defined.");
|
|
//}
|
|
//
|
|
//
|
|
//
|
|
//
|
|
///** Implements the same public functions as the BasePolynomial
|
|
// * but solves the polynomial for the given value
|
|
// * instead of evaluating it.
|
|
// * TODO: This class does not check for bijective
|
|
// * polynomials and is therefore a little
|
|
// * fragile.
|
|
// */
|
|
//PolynomialSolver::PolynomialSolver(){
|
|
// this->POLYMATH_DEBUG = false;
|
|
// this->macheps = DBL_EPSILON;
|
|
// this->tol = DBL_EPSILON*1e3;
|
|
// this->maxiter = 50;
|
|
//}
|
|
//
|
|
///** Everything related to the normal polynomials goes in this
|
|
// * section, holds all the functions for solving polynomials.
|
|
// */
|
|
///// Solves a one-dimensional polynomial for the given coefficients
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param y double value that represents the current input
|
|
//double PolynomialSolver::polyval(const std::vector<double> &coefficients, double y) {
|
|
// PolyResidual residual = PolyResidual(coefficients, y);
|
|
// return this->solve(residual);
|
|
//}
|
|
//
|
|
///// Solves a two-dimensional polynomial for the given coefficients
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param x double value that represents the current input in the 1st dimension
|
|
///// @param z double value that represents the current output
|
|
//double PolynomialSolver::polyval(const std::vector< std::vector<double> > &coefficients, double x, double z){
|
|
// PolyResidual residual = PolyResidual(coefficients, x, z);
|
|
// return this->solve(residual);
|
|
//}
|
|
//
|
|
//
|
|
///** Everything related to the integrated polynomials goes in this
|
|
// * section, holds all the functions for solving polynomials.
|
|
// */
|
|
///// Solves the indefinite integral of a one-dimensional polynomial
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param y double value that represents the current output
|
|
//double PolynomialSolver::polyint(const std::vector<double> &coefficients, double y){
|
|
// PolyIntResidual residual = PolyIntResidual(coefficients, y);
|
|
// return this->solve(residual);
|
|
//}
|
|
//
|
|
///// Solves the indefinite integral of a two-dimensional polynomial along the 2nd axis (y)
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param x double value that represents the current input in the 1st dimension
|
|
///// @param z double value that represents the current output
|
|
//double PolynomialSolver::polyint(const std::vector< std::vector<double> > &coefficients, double x, double z){
|
|
// PolyIntResidual residual = PolyIntResidual(coefficients, x, z);
|
|
// return this->solve(residual);
|
|
//}
|
|
//
|
|
//
|
|
///** Everything related to the derived polynomials goes in this
|
|
// * section, holds all the functions for solving polynomials.
|
|
// */
|
|
///// Solves the derivative of a one-dimensional polynomial
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param y double value that represents the current output
|
|
//double PolynomialSolver::polyder(const std::vector<double> &coefficients, double y){
|
|
// PolyDerResidual residual = PolyDerResidual(coefficients, y);
|
|
// return this->solve(residual);
|
|
//}
|
|
//
|
|
///// Solves the derivative of a two-dimensional polynomial along the 2nd axis (y)
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param x double value that represents the current input in the 1st dimension
|
|
///// @param z double value that represents the current output
|
|
//double PolynomialSolver::polyder(const std::vector< std::vector<double> > &coefficients, double x, double z){
|
|
// PolyDerResidual residual = PolyDerResidual(coefficients, x, z);
|
|
// return this->solve(residual);
|
|
//}
|
|
//
|
|
//
|
|
///** Everything related to the polynomials divided by one variable goes in this
|
|
// * section, holds all the functions for solving polynomials.
|
|
// */
|
|
///// Solves the indefinite integral of a one-dimensional polynomial divided by its independent variable
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param y double value that represents the current output
|
|
//double PolynomialSolver::polyfracval(const std::vector<double> &coefficients, double y){
|
|
// throw CoolProp::NotImplementedError("This solver has not been implemented, yet."); // TODO: Implement function
|
|
//}
|
|
//
|
|
///// Solves the indefinite integral of a two-dimensional polynomial divided by its 2nd independent variable
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param x double value that represents the current input in the 1st dimension
|
|
///// @param z double value that represents the current output
|
|
//double PolynomialSolver::polyfracval(const std::vector< std::vector<double> > &coefficients, double x, double z){
|
|
// throw CoolProp::NotImplementedError("This solver has not been implemented, yet."); // TODO: Implement function
|
|
//}
|
|
//
|
|
//
|
|
///** Everything related to the integrated polynomials divided by one variable goes in this
|
|
// * section, holds all the functions for solving polynomials.
|
|
// */
|
|
///// Solves the indefinite integral of a one-dimensional polynomial divided by its independent variable
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param y double value that represents the current output
|
|
//double PolynomialSolver::polyfracint(const std::vector<double> &coefficients, double y){
|
|
// PolyFracIntResidual residual = PolyFracIntResidual(coefficients, y);
|
|
// return this->solve(residual);
|
|
//}
|
|
//
|
|
///// Solves the indefinite integral of a two-dimensional polynomial divided by its 2nd independent variable
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param x double value that represents the current input in the 1st dimension
|
|
///// @param z double value that represents the current output
|
|
//double PolynomialSolver::polyfracint(const std::vector< std::vector<double> > &coefficients, double x, double z){
|
|
// PolyFracIntResidual residual = PolyFracIntResidual(coefficients, x, z);
|
|
// return this->solve(residual);
|
|
//}
|
|
//
|
|
///// Solves the indefinite integral of a centred one-dimensional polynomial divided by its independent variable
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param y double value that represents the current output
|
|
///// @param xbase central x-value for fitted function
|
|
//double PolynomialSolver::polyfracintcentral(const std::vector<double> &coefficients, double y, double xbase){
|
|
// PolyFracIntCentralResidual residual = PolyFracIntCentralResidual(coefficients, y, xbase);
|
|
// return this->solve(residual);
|
|
//}
|
|
//
|
|
///// Solves the indefinite integral of a centred two-dimensional polynomial divided by its 2nd independent variable
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param x double value that represents the current input in the 1st dimension
|
|
///// @param z double value that represents the current output
|
|
///// @param ybase central y-value for fitted function
|
|
//double PolynomialSolver::polyfracintcentral(const std::vector< std::vector<double> > &coefficients, double x, double z, double ybase){
|
|
// PolyFracIntCentralResidual residual = PolyFracIntCentralResidual(coefficients, x, z, ybase);
|
|
// return this->solve(residual);
|
|
//}
|
|
//
|
|
//
|
|
///** Everything related to the derived polynomials divided by one variable goes in this
|
|
// * section, holds all the functions for solving polynomials.
|
|
// */
|
|
///// Solves the derivative of a one-dimensional polynomial divided by its independent variable
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param y double value that represents the current output
|
|
//double PolynomialSolver::polyfracder(const std::vector<double> &coefficients, double y){
|
|
// throw CoolProp::NotImplementedError("This solver has not been implemented, yet."); // TODO: Implement function
|
|
//}
|
|
//
|
|
///// Solves the derivative of a two-dimensional polynomial divided by its 2nd independent variable
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param x double value that represents the current input in the 1st dimension
|
|
///// @param z double value that represents the current output
|
|
//double PolynomialSolver::polyfracder(const std::vector< std::vector<double> > &coefficients, double x, double z){
|
|
// throw CoolProp::NotImplementedError("This solver has not been implemented, yet."); // TODO: Implement function
|
|
//}
|
|
//
|
|
///// Solves the derivative of a centred one-dimensional polynomial divided by its independent variable
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param y double value that represents the current output
|
|
///// @param xbase central x-value for fitted function
|
|
//double PolynomialSolver::polyfracdercentral(const std::vector<double> &coefficients, double y, double xbase){
|
|
// throw CoolProp::NotImplementedError("This solver has not been implemented, yet."); // TODO: Implement function
|
|
//}
|
|
//
|
|
///// Solves the derivative of a centred two-dimensional polynomial divided by its 2nd independent variable
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param x double value that represents the current input in the 1st dimension
|
|
///// @param z double value that represents the current output
|
|
///// @param ybase central y-value for fitted function
|
|
//double PolynomialSolver::polyfracdercentral(const std::vector< std::vector<double> > &coefficients, double x, double z, double ybase){
|
|
// throw CoolProp::NotImplementedError("This solver has not been implemented, yet."); // TODO: Implement function
|
|
//}
|
|
//
|
|
//
|
|
///** Set the solvers and updates either the guess values or the
|
|
// * boundaries for the variable to solve for.
|
|
// */
|
|
///// Sets the guess value for the Newton solver and enables it.
|
|
///// @param guess double value that represents the guess value
|
|
//void PolynomialSolver::setGuess(double guess){
|
|
// this->uses = iNewton;
|
|
// this->guess = guess;
|
|
// this->min = -1;
|
|
// this->max = -1;
|
|
//}
|
|
///// Sets the limits for the Brent solver and enables it.
|
|
///// @param min double value that represents the lower boundary
|
|
///// @param max double value that represents the upper boundary
|
|
//void PolynomialSolver::setLimits(double min, double max){
|
|
// this->uses = iBrent;
|
|
// this->guess = -1;
|
|
// this->min = min;
|
|
// this->max = max;
|
|
//}
|
|
//
|
|
///// Solves the equations based on previously defined parameters.
|
|
///// @param min double value that represents the lower boundary
|
|
///// @param max double value that represents the upper boundary
|
|
//double PolynomialSolver::solve(PolyResidual &res){
|
|
// std::string errstring;
|
|
// double result = -1.0;
|
|
// switch (this->uses) {
|
|
// case iNewton: ///< Newton solver with derivative and guess value
|
|
// if (res.is2D()) {
|
|
// throw CoolProp::NotImplementedError("The Newton solver is not suitable for 2D polynomials, yet.");
|
|
// }
|
|
// result = Newton(res, this->guess, this->tol, this->maxiter, errstring);
|
|
// break;
|
|
//
|
|
// case iBrent: ///< Brent solver with bounds
|
|
// result = Brent(res, this->min, this->max, this->macheps, this->tol, this->maxiter, errstring);
|
|
// break;
|
|
//
|
|
// default:
|
|
// throw CoolProp::NotImplementedError("This solver has not been implemented or you forgot to select a solver...");
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
//
|
|
///** Here we define the functions that should be to evaluate exponential
|
|
// * functions. Not really polynomials, I know...
|
|
// */
|
|
//
|
|
//BaseExponential::BaseExponential(){
|
|
// this->POLYMATH_DEBUG = false;
|
|
//// this->poly = new BaseExponential();
|
|
//}
|
|
////
|
|
////BaseExponential::~BaseExponential(){
|
|
//// delete this->poly;
|
|
////}
|
|
//
|
|
///// Evaluates an exponential function for the given coefficients
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param x double value that represents the current input
|
|
///// @param n int value that determines the kind of exponential function
|
|
//double BaseExponential::expval(const std::vector<double> &coefficients, double x, int n){
|
|
// double result = 0.;
|
|
// if (n==1) {
|
|
// this->poly.checkCoefficients(coefficients,3);
|
|
// result = exp(coefficients[0]/(x+coefficients[1]) - coefficients[2]);
|
|
// } else if (n==2) {
|
|
// result = exp(this->poly.polyval(coefficients, x));
|
|
// } else {
|
|
// throw ValueError(format("There is no function defined for this input (%d). ",n));
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
///// Evaluates an exponential function for the given coefficients
|
|
///// @param coefficients vector containing the ordered coefficients
|
|
///// @param x double value that represents the current input in the 1st dimension
|
|
///// @param y double value that represents the current input in the 2nd dimension
|
|
///// @param n int value that determines the kind of exponential function
|
|
//double BaseExponential::expval(const std::vector< std::vector<double> > &coefficients, double x, double y, int n){
|
|
// double result = 0.;
|
|
// if (n==2) {
|
|
// result = exp(this->poly.polyval(coefficients, x, y));
|
|
// } else {
|
|
// throw ValueError(format("There is no function defined for this input (%d). ",n));
|
|
// }
|
|
// return result;
|
|
//}
|
|
//
|
|
//
|
|
//}
|
|
//
|
|
//
|
|
//#ifdef ENABLE_CATCH
|
|
//#include <math.h>
|
|
//#include "catch.hpp"
|
|
//
|
|
//class PolynomialConsistencyFixture {
|
|
//public:
|
|
// CoolProp::BasePolynomial poly;
|
|
// CoolProp::PolynomialSolver solver;
|
|
//// enum dims {i1D, i2D};
|
|
//// double firstDim;
|
|
//// int dim;
|
|
//// std::vector< std::vector<double> > coefficients;
|
|
////
|
|
//// void setInputs(const std::vector<double> &coefficients){
|
|
//// this->firstDim = 0;
|
|
//// this->coefficients.clear();
|
|
//// this->coefficients.push_back(coefficients);
|
|
//// this->dim = i1D;
|
|
//// }
|
|
////
|
|
//// void setInputs(const std::vector< std::vector<double> > &coefficients, double x){
|
|
//// this->firstDim = x;
|
|
//// this->coefficients = coefficients;
|
|
//// this->dim = i2D;
|
|
//// }
|
|
//};
|
|
//
|
|
//
|
|
//TEST_CASE("Internal consistency checks with PolyMath objects","[PolyMath]")
|
|
//{
|
|
// CoolProp::BasePolynomial poly;
|
|
// CoolProp::PolynomialSolver solver;
|
|
//
|
|
// /// Test case for "SylthermXLT" by "Dow Chemicals"
|
|
// std::vector<double> cHeat;
|
|
// cHeat.clear();
|
|
// cHeat.push_back(+1.1562261074E+03);
|
|
// cHeat.push_back(+2.0994549103E+00);
|
|
// cHeat.push_back(+7.7175381057E-07);
|
|
// cHeat.push_back(-3.7008444051E-20);
|
|
//
|
|
// double deltaT = 0.1;
|
|
// double Tmin = 273.15- 50;
|
|
// double Tmax = 273.15+250;
|
|
// double Tinc = 15;
|
|
//
|
|
// double val1,val2,val3,val4;
|
|
//
|
|
// SECTION("DerFromVal1D") {
|
|
// for (double T = Tmin; T<Tmax; T+=Tinc) {
|
|
// val1 = poly.polyval(cHeat, T-deltaT);
|
|
// val2 = poly.polyval(cHeat, T+deltaT);
|
|
// val3 = (val2-val1)/2/deltaT;
|
|
// val4 = poly.polyder(cHeat, T);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val3);
|
|
// CAPTURE(val4);
|
|
// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
|
|
// }
|
|
// }
|
|
// SECTION("ValFromInt1D") {
|
|
// for (double T = Tmin; T<Tmax; T+=Tinc) {
|
|
// val1 = poly.polyint(cHeat, T-deltaT);
|
|
// val2 = poly.polyint(cHeat, T+deltaT);
|
|
// val3 = (val2-val1)/2/deltaT;
|
|
// val4 = poly.polyval(cHeat, T);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val3);
|
|
// CAPTURE(val4);
|
|
// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
|
|
// }
|
|
// }
|
|
//
|
|
// SECTION("Solve1DNewton") {
|
|
// for (double T = Tmin; T<Tmax; T+=Tinc) {
|
|
// val1 = poly.polyval(cHeat, T);
|
|
// solver.setGuess(T+100);
|
|
// val2 = solver.polyval(cHeat, val1);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val1);
|
|
// CAPTURE(val2);
|
|
// CHECK(fabs(T-val2) < 1e-1);
|
|
//
|
|
// val1 = poly.polyint(cHeat, T);
|
|
// solver.setGuess(T+100);
|
|
// val2 = solver.polyint(cHeat, val1);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val1);
|
|
// CAPTURE(val2);
|
|
// CHECK(fabs(T-val2) < 1e-1);
|
|
//
|
|
//// val1 = poly.polyder(cHeat, T);
|
|
//// solver.setGuess(T+100);
|
|
//// val2 = solver.polyder(cHeat, val1);
|
|
//// CAPTURE(T);
|
|
//// CAPTURE(val1);
|
|
//// CAPTURE(val2);
|
|
//// CHECK(fabs(T-val2) < 1e-1);
|
|
////
|
|
//// val1 = poly.polyfracint(cHeat, T);
|
|
//// solver.setGuess(T+100);
|
|
//// val2 = solver.polyfracint(cHeat, val1);
|
|
//// CAPTURE(T);
|
|
//// CAPTURE(val1);
|
|
//// CAPTURE(val2);
|
|
//// CHECK(fabs(T-val2) < 1e-1);
|
|
// }
|
|
// }
|
|
// SECTION("Solve1DBrent") {
|
|
// for (double T = Tmin; T<Tmax; T+=Tinc) {
|
|
// val1 = poly.polyval(cHeat, T);
|
|
// solver.setLimits(T-300,T+300);
|
|
// val2 = solver.polyval(cHeat, val1);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val1);
|
|
// CAPTURE(val2);
|
|
// CHECK(fabs(T-val2) < 1e-1);
|
|
//
|
|
// val1 = poly.polyint(cHeat, T);
|
|
// solver.setLimits(T-300,T+300);
|
|
// val2 = solver.polyint(cHeat, val1);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val1);
|
|
// CAPTURE(val2);
|
|
// CHECK(fabs(T-val2) < 1e-1);
|
|
//
|
|
// val1 = poly.polyder(cHeat, T);
|
|
// solver.setLimits(T-300,T+300);
|
|
// val2 = solver.polyder(cHeat, val1);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val1);
|
|
// CAPTURE(val2);
|
|
// CHECK(fabs(T-val2) < 1e-1);
|
|
//
|
|
// val1 = poly.polyfracint(cHeat, T);
|
|
// solver.setLimits(T-100,T+100);
|
|
// val2 = solver.polyfracint(cHeat, val1);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val1);
|
|
// CAPTURE(val2);
|
|
// CHECK(fabs(T-val2) < 1e-1);
|
|
//
|
|
// val1 = poly.polyfracintcentral(cHeat, T, 250.0);
|
|
// solver.setLimits(T-100,T+100);
|
|
// val2 = solver.polyfracintcentral(cHeat, val1, 250.0);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val1);
|
|
// CAPTURE(val2);
|
|
// CHECK(fabs(T-val2) < 1e-1);
|
|
//
|
|
// }
|
|
// }
|
|
//
|
|
// /// Test case for 2D
|
|
// double xDim1 = 0.3;
|
|
// std::vector< std::vector<double> > cHeat2D;
|
|
// cHeat2D.clear();
|
|
// cHeat2D.push_back(cHeat);
|
|
// cHeat2D.push_back(cHeat);
|
|
// cHeat2D.push_back(cHeat);
|
|
//
|
|
// //setInputs(cHeat2D, 0.3);
|
|
//
|
|
// SECTION("DerFromVal2D") {
|
|
// for (double T = Tmin; T<Tmax; T+=Tinc) {
|
|
// val1 = poly.polyval(cHeat2D, xDim1, T-deltaT);
|
|
// val2 = poly.polyval(cHeat2D, xDim1, T+deltaT);
|
|
// val3 = (val2-val1)/2/deltaT;
|
|
// val4 = poly.polyder(cHeat2D, xDim1, T);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val3);
|
|
// CAPTURE(val4);
|
|
// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
|
|
// }
|
|
// }
|
|
//
|
|
// SECTION("ValFromInt2D") {
|
|
// for (double T = Tmin; T<Tmax; T+=Tinc) {
|
|
// val1 = poly.polyint(cHeat2D, xDim1, T-deltaT);
|
|
// val2 = poly.polyint(cHeat2D, xDim1, T+deltaT);
|
|
// val3 = (val2-val1)/2/deltaT;
|
|
// val4 = poly.polyval(cHeat2D, xDim1, T);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val3);
|
|
// CAPTURE(val4);
|
|
// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
|
|
// }
|
|
// }
|
|
//
|
|
//// SECTION("Solve2DNewton") {
|
|
//// for (double T = Tmin; T<Tmax; T+=Tinc) {
|
|
//// val1 = poly.polyval(cHeat2D, xDim1, T);
|
|
//// solver.setGuess(T+100);
|
|
//// val2 = solver.polyval(cHeat2D, xDim1, val1);
|
|
//// CAPTURE(T);
|
|
//// CAPTURE(val1);
|
|
//// CAPTURE(val2);
|
|
//// CHECK(fabs(T-val2) < 1e-1);
|
|
//// }
|
|
//// }
|
|
// SECTION("Solve2DBrent") {
|
|
// for (double T = Tmin; T<Tmax; T+=Tinc) {
|
|
// val1 = poly.polyval(cHeat2D, xDim1, T);
|
|
// solver.setLimits(T-300,T+300);
|
|
// val2 = solver.polyval(cHeat2D, xDim1, val1);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val1);
|
|
// CAPTURE(val2);
|
|
// CHECK(fabs(T-val2) < 1e-1);
|
|
//
|
|
// val1 = poly.polyint(cHeat2D, xDim1, T);
|
|
// solver.setLimits(T-300,T+300);
|
|
// val2 = solver.polyint(cHeat2D, xDim1, val1);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val1);
|
|
// CAPTURE(val2);
|
|
// CHECK(fabs(T-val2) < 1e-1);
|
|
//
|
|
// val1 = poly.polyder(cHeat2D, xDim1, T);
|
|
// solver.setLimits(T-300,T+300);
|
|
// val2 = solver.polyder(cHeat2D, xDim1, val1);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val1);
|
|
// CAPTURE(val2);
|
|
// CHECK(fabs(T-val2) < 1e-1);
|
|
//
|
|
// val1 = poly.polyfracint(cHeat2D, xDim1, T);
|
|
// solver.setLimits(T-100,T+100);
|
|
// val2 = solver.polyfracint(cHeat2D, xDim1, val1);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val1);
|
|
// CAPTURE(val2);
|
|
// CHECK(fabs(T-val2) < 1e-1);
|
|
//
|
|
// val1 = poly.polyfracintcentral(cHeat2D, xDim1, T, 250);
|
|
// solver.setLimits(T-100,T+100);
|
|
// val2 = solver.polyfracintcentral(cHeat2D, xDim1, val1, 250);
|
|
// CAPTURE(T);
|
|
// CAPTURE(val1);
|
|
// CAPTURE(val2);
|
|
// CHECK(fabs(T-val2) < 1e-1);
|
|
// }
|
|
// }
|
|
//
|
|
//}
|
|
//
|
|
////TEST_CASE_METHOD(PolynomialConsistencyFixture,"Internal consistency checks","[PolyMath]")
|
|
////{
|
|
//// /// Test case for "SylthermXLT" by "Dow Chemicals"
|
|
//// std::vector<double> cHeat;
|
|
//// cHeat.clear();
|
|
//// cHeat.push_back(+1.1562261074E+03);
|
|
//// cHeat.push_back(+2.0994549103E+00);
|
|
//// cHeat.push_back(+7.7175381057E-07);
|
|
//// cHeat.push_back(-3.7008444051E-20);
|
|
////
|
|
//// //setInputs(cHeat);
|
|
//// double deltaT = 0.1;
|
|
//// double val1,val2,val3,val4;
|
|
////
|
|
//// SECTION("DerFromVal1D") {
|
|
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
|
|
//// val1 = this->poly.polyval(cHeat, T-deltaT);
|
|
//// val2 = this->poly.polyval(cHeat, T+deltaT);
|
|
//// val3 = (val2-val1)/2/deltaT;
|
|
//// val4 = this->poly.polyder(cHeat, T);
|
|
//// CAPTURE(T);
|
|
//// CAPTURE(val3);
|
|
//// CAPTURE(val4);
|
|
//// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
|
|
//// }
|
|
//// }
|
|
////
|
|
//// SECTION("ValFromInt1D") {
|
|
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
|
|
//// val1 = this->poly.polyint(cHeat, T-deltaT);
|
|
//// val2 = this->poly.polyint(cHeat, T+deltaT);
|
|
//// val3 = (val2-val1)/2/deltaT;
|
|
//// val4 = this->poly.polyval(cHeat, T);
|
|
//// CAPTURE(T);
|
|
//// CAPTURE(val3);
|
|
//// CAPTURE(val4);
|
|
//// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
|
|
//// }
|
|
//// }
|
|
////
|
|
//// SECTION("Solve1DNewton") {
|
|
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
|
|
//// val1 = this->poly.polyval(cHeat, T);
|
|
//// this->solver.setGuess(T+100);
|
|
//// val2 = this->solver.polyval(cHeat, val1);
|
|
//// CAPTURE(T);
|
|
//// CAPTURE(val1);
|
|
//// CAPTURE(val2);
|
|
//// CHECK(fabs(T-val2) < 1e-1);
|
|
//// }
|
|
//// }
|
|
//// SECTION("Solve1DBrent") {
|
|
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
|
|
//// val1 = this->poly.polyval(cHeat, T);
|
|
//// this->solver.setLimits(T-300,T+300);
|
|
//// val2 = this->solver.polyval(cHeat, val1);
|
|
//// CAPTURE(T);
|
|
//// CAPTURE(val1);
|
|
//// CAPTURE(val2);
|
|
//// CHECK(fabs(T-val2) < 1e-1);
|
|
//// }
|
|
//// }
|
|
////
|
|
//// /// Test case for 2D
|
|
//// std::vector< std::vector<double> > cHeat2D;
|
|
//// cHeat2D.clear();
|
|
//// cHeat2D.push_back(cHeat);
|
|
//// cHeat2D.push_back(cHeat);
|
|
//// cHeat2D.push_back(cHeat);
|
|
////
|
|
//// //setInputs(cHeat2D, 0.3);
|
|
////
|
|
//// SECTION("DerFromVal2D") {
|
|
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
|
|
//// val1 = this->poly.polyval(cHeat, T-deltaT);
|
|
//// val2 = this->poly.polyval(cHeat, T+deltaT);
|
|
//// val3 = (val2-val1)/2/deltaT;
|
|
//// val4 = this->poly.polyder(cHeat, T);
|
|
//// CAPTURE(T);
|
|
//// CAPTURE(val3);
|
|
//// CAPTURE(val4);
|
|
//// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
|
|
//// }
|
|
//// }
|
|
////
|
|
//// SECTION("ValFromInt2D") {
|
|
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
|
|
//// val1 = this->poly.polyint(cHeat, T-deltaT);
|
|
//// val2 = this->poly.polyint(cHeat, T+deltaT);
|
|
//// val3 = (val2-val1)/2/deltaT;
|
|
//// val4 = this->poly.polyval(cHeat, T);
|
|
//// CAPTURE(T);
|
|
//// CAPTURE(val3);
|
|
//// CAPTURE(val4);
|
|
//// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
|
|
//// }
|
|
//// }
|
|
////
|
|
//// SECTION("Solve2DNewton") {
|
|
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
|
|
//// val1 = this->poly.polyval(cHeat, T);
|
|
//// this->solver.setGuess(T+100);
|
|
//// val2 = this->solver.polyval(cHeat, val1);
|
|
//// CAPTURE(T);
|
|
//// CAPTURE(val1);
|
|
//// CAPTURE(val2);
|
|
//// CHECK(fabs(T-val2) < 1e-1);
|
|
//// }
|
|
//// }
|
|
//// SECTION("Solve2DBrent") {
|
|
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
|
|
//// val1 = this->poly.polyval(cHeat, T);
|
|
//// this->solver.setLimits(T-300,T+300);
|
|
//// val2 = this->solver.polyval(cHeat, val1);
|
|
//// CAPTURE(T);
|
|
//// CAPTURE(val1);
|
|
//// CAPTURE(val2);
|
|
//// CHECK(fabs(T-val2) < 1e-1);
|
|
//// }
|
|
//// }
|
|
////
|
|
////}
|
|
////
|
|
////TEST_CASE("Check against hard coded data","[PolyMath]")
|
|
////{
|
|
//// CHECK(fabs(HumidAir::f_factor(-60+273.15,101325)/(1.00708)-1) < 1e-3);
|
|
//// CHECK(fabs(HumidAir::f_factor( 80+273.15,101325)/(1.00573)-1) < 1e-3);
|
|
//// CHECK(fabs(HumidAir::f_factor(-60+273.15,10000e3)/(2.23918)-1) < 1e-3);
|
|
//// CHECK(fabs(HumidAir::f_factor(300+273.15,10000e3)/(1.04804)-1) < 1e-3);
|
|
////}
|
|
//
|
|
//
|
|
//
|
|
////int main() {
|
|
////
|
|
//// Catch::ConfigData &config = session.configData();
|
|
//// config.testsOrTags.clear();
|
|
//// config.testsOrTags.push_back("[fast]");
|
|
//// session.useConfigData(config);
|
|
//// return session.run();
|
|
////
|
|
////}
|
|
//
|
|
//#endif /* CATCH_ENABLED */
|
|
//
|
|
//
|
|
////int main() {
|
|
////
|
|
//// std::vector<double> cHeat;
|
|
//// cHeat.clear();
|
|
//// cHeat.push_back(+1.1562261074E+03);
|
|
//// cHeat.push_back(+2.0994549103E+00);
|
|
//// cHeat.push_back(+7.7175381057E-07);
|
|
//// cHeat.push_back(-3.7008444051E-20);
|
|
////
|
|
//// CoolProp::BasePolynomial base = CoolProp::BasePolynomial();
|
|
//// CoolProp::PolynomialSolver solve = CoolProp::PolynomialSolver();
|
|
////
|
|
//// double T = 273.15+50;
|
|
////
|
|
//// double c = base.polyval(cHeat,T);
|
|
//// printf("Should be : c = %3.3f \t J/kg/K \n",1834.746);
|
|
//// printf("From object: c = %3.3f \t J/kg/K \n",c);
|
|
////
|
|
//// T = 0.0;
|
|
//// solve.setGuess(75+273.15);
|
|
//// T = solve.polyval(cHeat,c);
|
|
//// printf("Should be : T = %3.3f \t K \n",273.15+50.0);
|
|
//// printf("From object: T = %3.3f \t K \n",T);
|
|
////
|
|
//// T = 0.0;
|
|
//// solve.setLimits(273.15+10,273.15+100);
|
|
//// T = solve.polyval(cHeat,c);
|
|
//// printf("Should be : T = %3.3f \t K \n",273.15+50.0);
|
|
//// printf("From object: T = %3.3f \t K \n",T);
|
|
////
|
|
////}
|