Files
CoolProp/include/IncompressibleFluid.h

219 lines
7.7 KiB
C++

/*
* CoolPropFluid.h
*
* Created on: 20 Dec 2013
* Author: jowr
*/
#ifndef INCOMPRESSIBLEFLUID_H_
#define INCOMPRESSIBLEFLUID_H_
#include "DataStructures.h"
#include "Helmholtz.h"
#include "Solvers.h"
#include <numeric>
#include <string>
#include <vector>
#include <map>
#include <assert.h>
#include <iterator>
#include <Eigen/Core>
#include "PolyMath.h"
#include "MatrixMath.h"
namespace CoolProp {
struct IncompressibleData {
int type;
enum IncompressibleTypeEnum {
INCOMPRESSIBLE_NOT_SET,
INCOMPRESSIBLE_POLYNOMIAL,
INCOMPRESSIBLE_EXPONENTIAL,
INCOMPRESSIBLE_EXPPOLYNOMIAL
};
Eigen::MatrixXd coeffs; //TODO: Can we store the Eigen::Matrix objects more efficiently?
//std::vector<std::vector<double> > coeffs;
IncompressibleData() {
type = INCOMPRESSIBLE_NOT_SET;
};
};
/// A thermophysical property provider for critical and reducing values as well as derivatives of Helmholtz energy
/**
This fluid instance is populated using an entry from a JSON file
*/
class IncompressibleFluid{
protected:
std::string name;
std::string description;
std::string reference;
double Tmin, Tmax;
double xmin, xmax;
double TminPsat;
double xref, Tref, pref;
double href, sref;
double uref, rhoref;
double xbase, Tbase;
IncompressibleData density;
IncompressibleData specific_heat;
IncompressibleData viscosity;
IncompressibleData conductivity;
IncompressibleData p_sat;
IncompressibleData T_freeze;
IncompressibleData volToMass;
IncompressibleData massToMole;
Polynomial2DFrac poly;
// Forward declaration of the some internal functions
//double h_u(double T, double p, double x);
//double u_h(double T, double p, double x);
public:
IncompressibleFluid(){};
virtual ~IncompressibleFluid(){};
std::string getName() const {return name;}
std::string get_name() const {return getName();}// For backwards-compatibility.
std::string getDescription() const {return description;}
std::string getReference() const {return reference;}
double getTmax() const {return Tmax;}
double getTmin() const {return Tmin;}
double getxmax() const {return xmax;}
double getxmin() const {return xmin;}
double getTminPsat() const {return TminPsat;}
double getTref() const {return Tref;}
double getpref() const {return pref;}
double getxref() const {return xref;}
double gethref() const {return href;}
double getsref() const {return sref;}
double getTbase() const {return Tbase;}
double getxbase() const {return xbase;}
void setName(std::string name) {this->name = name;}
void setDescription(std::string description) {this->description = description;}
void setReference(std::string reference) {this->reference = reference;}
void setTmax(double Tmax) {this->Tmax = Tmax;}
void setTmin(double Tmin) {this->Tmin = Tmin;}
void setxmax(double xmax) {this->xmax = xmax;}
void setxmin(double xmin) {this->xmin = xmin;}
void setTminPsat(double TminPsat) {this->TminPsat = TminPsat;}
//void setTref(double Tref) {this->Tref = Tref;}
//void setpref(double pref) {this->pref = pref;}
//void setxref(double xref) {this->xref = xref;}
void set_reference_state(double T0, double p0, double x0, double h0, double s0);
void setTbase(double Tbase) {this->Tbase = Tbase;}
void setxbase(double xbase) {this->xbase = xbase;}
/// Setters for the coefficients
void setDensity(IncompressibleData density){this->density = density;}
void setSpecificHeat(IncompressibleData specific_heat){this->specific_heat = specific_heat;}
void setViscosity(IncompressibleData viscosity){this->viscosity = viscosity;}
void setConductivity(IncompressibleData conductivity){this->conductivity = conductivity;}
void setPsat(IncompressibleData p_sat){this->p_sat = p_sat;}
void setTfreeze(IncompressibleData T_freeze){this->T_freeze = T_freeze;}
void setVolToMass(IncompressibleData volToMass){this->volToMass = volToMass;}
void setMassToMole(IncompressibleData massToMole){this->massToMole = massToMole;}
/// A function to check coefficients and equation types.
void validate();
protected:
/// Base function that handles the custom data type, just a place holder to show the structure.
double baseFunction(IncompressibleData data, double x_in, double y_in);
public:
/* All functions need T and p as input. Might not
* be necessary, but gives a clearer structure.
*/
/// Density as a function of temperature, pressure and composition.
double rho (double T, double p, double x=0.0){return baseFunction(density, T, x);};
/// Heat capacities as a function of temperature, pressure and composition.
double c (double T, double p, double x=0.0){return baseFunction(specific_heat, T, x);};
double cp (double T, double p, double x=0.0){return c(T,p,x);};
double cv (double T, double p, double x=0.0){return c(T,p,x);};
/// Entropy as a function of temperature, pressure and composition.
double s (double T, double p, double x);
/// Internal energy as a function of temperature, pressure and composition.
double u (double T, double p, double x);
/// Enthalpy as a function of temperature, pressure and composition.
double h (double T, double p, double x=0.0){return h_u(T,p,x);};
/// Viscosity as a function of temperature, pressure and composition.
double visc(double T, double p, double x=0.0){return baseFunction(viscosity, T, x);};
/// Thermal conductivity as a function of temperature, pressure and composition.
double cond(double T, double p, double x=0.0){return baseFunction(conductivity, T, x);};
/// Saturation pressure as a function of temperature and composition.
double psat(double T, double x=0.0){return baseFunction(p_sat, T, x);};
/// Freezing temperature as a function of pressure and composition.
double Tfreeze( double p, double x);
/// Conversion from volume-based to mass-based composition.
double V2M (double T, double y);
/// Conversion from mass-based to mole-based composition.
double M2M (double T, double x);
protected:
/* Define internal energy and enthalpy as functions of the
* other properties to provide data in case there are no
* coefficients.
*/
/// Enthalpy from u, p and rho.
/** Calculate enthalpy as a function of temperature and
* pressure employing functions for internal energy and
* density. Provides consistent formulations. */
double h_u(double T, double p, double x) {
return u(T,p,x)+p/rho(T,p,x)-href;
};
/// Internal energy from h, p and rho.
/** Calculate internal energy as a function of temperature
* and pressure employing functions for enthalpy and
* density. Provides consistent formulations. */
double u_h(double T, double p, double x) {
return h(T,p,x)-p/rho(T,p,x)+href;
};
/*
* Some more functions to provide a single implementation
* of important routines.
* We start with the check functions that can validate input
* in terms of pressure p, temperature T and composition x.
*/
/// Check validity of temperature input.
/** Compares the given temperature T to the result of a
* freezing point calculation. This is not necessarily
* defined for all fluids, default values do not cause errors. */
bool checkT(double T, double p, double x);
/// Check validity of pressure input.
/** Compares the given pressure p to the saturation pressure at
* temperature T and throws and exception if p is lower than
* the saturation conditions.
* The default value for psat is -1 yielding true if psat
* is not redefined in the subclass.
* */
bool checkP(double T, double p, double x);
/// Check validity of composition input.
/** Compares the given composition x to a stored minimum and
* maximum value. Enforces the redefinition of xmin and
* xmax since the default values cause an error. */
bool checkX(double x);
/// Check validity of temperature, pressure and composition input.
bool checkTPX(double T, double p, double x);
};
} /* namespace CoolProp */
#endif /* INCOMPRESSIBLEFLUID_H_ */