mirror of
https://github.com/CoolProp/CoolProp.git
synced 2026-01-23 12:58:03 -05:00
221 lines
5.3 KiB
C++
221 lines
5.3 KiB
C++
#include "CPnumerics.h"
|
|
#include "MatrixMath.h"
|
|
#include <unsupported/Eigen/Polynomials>
|
|
|
|
double root_sum_square(const std::vector<double> &x)
|
|
{
|
|
double sum = 0;
|
|
for (unsigned int i=0; i<x.size(); i++)
|
|
{
|
|
sum += pow(x[i],2);
|
|
}
|
|
return sqrt(sum);
|
|
}
|
|
double interp1d(const std::vector<double> *x, const std::vector<double> *y, double x0)
|
|
{
|
|
std::size_t i,L,R,M;
|
|
L=0;
|
|
R=(*x).size()-1;
|
|
M=(L+R)/2;
|
|
// Use interval halving to find the indices which bracket the density of interest
|
|
while (R-L>1)
|
|
{
|
|
if (x0 >= (*x)[M])
|
|
{ L=M; M=(L+R)/2; continue;}
|
|
if (x0 < (*x)[M])
|
|
{ R=M; M=(L+R)/2; continue;}
|
|
}
|
|
i=L;
|
|
if (i<(*x).size()-2)
|
|
{
|
|
// Go "forwards" with the interpolation range
|
|
return QuadInterp((*x)[i],(*x)[i+1],(*x)[i+2],(*y)[i],(*y)[i+1],(*y)[i+2],x0);
|
|
}
|
|
else
|
|
{
|
|
// Go "backwards" with the interpolation range
|
|
return QuadInterp((*x)[i],(*x)[i-1],(*x)[i-2],(*y)[i],(*y)[i-1],(*y)[i-2],x0);
|
|
}
|
|
}
|
|
double powInt(double x, int y)
|
|
{
|
|
// Raise a double to an integer power
|
|
// Overload not provided in math.h
|
|
int i;
|
|
double product=1.0;
|
|
double x_in;
|
|
int y_in;
|
|
|
|
if (y==0)
|
|
{
|
|
return 1.0;
|
|
}
|
|
|
|
if (y<0)
|
|
{
|
|
x_in=1/x;
|
|
y_in=-y;
|
|
}
|
|
else
|
|
{
|
|
x_in=x;
|
|
y_in=y;
|
|
}
|
|
|
|
if (y_in==1)
|
|
{
|
|
return x_in;
|
|
}
|
|
|
|
product=x_in;
|
|
for (i=1;i<y_in;i++)
|
|
{
|
|
product=product*x_in;
|
|
}
|
|
return product;
|
|
}
|
|
|
|
void MatInv_2(double A[2][2] , double B[2][2])
|
|
{
|
|
double Det;
|
|
//Using Cramer's Rule to solve
|
|
|
|
Det=A[0][0]*A[1][1]-A[1][0]*A[0][1];
|
|
B[0][0]=1.0/Det*A[1][1];
|
|
B[1][1]=1.0/Det*A[0][0];
|
|
B[1][0]=-1.0/Det*A[1][0];
|
|
B[0][1]=-1.0/Det*A[0][1];
|
|
}
|
|
|
|
void solve_cubic(double a, double b, double c, double d, int &N, double &x0, double &x1, double &x2)
|
|
{
|
|
// 0 = ax^3 + b*x^2 + c*x + d
|
|
|
|
// First check if the "cubic" is actually a second order or first order curve
|
|
if (std::abs(a) < 10*DBL_EPSILON){
|
|
if (std::abs(b) < 10*DBL_EPSILON){
|
|
// Linear solution if a = 0 and b = 0
|
|
x0 = -d/c;
|
|
N = 1;
|
|
return;
|
|
}
|
|
else{
|
|
// Quadratic solution(s) if a = 0 and b != 0
|
|
x0 = (-c+sqrt(c*c-4*b*d))/(2*b);
|
|
x1 = (-c-sqrt(c*c-4*b*d))/(2*b);
|
|
N = 2;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Ok, it is really a cubic
|
|
|
|
// Discriminant
|
|
double DELTA = 18*a*b*c*d-4*b*b*b*d+b*b*c*c-4*a*c*c*c-27*a*a*d*d;
|
|
// Coefficients for the depressed cubic t^3+p*t+q = 0
|
|
double p = (3*a*c-b*b)/(3*a*a);
|
|
double q = (2*b*b*b-9*a*b*c+27*a*a*d)/(27*a*a*a);
|
|
|
|
if (DELTA<0)
|
|
{
|
|
// One real root
|
|
double t0;
|
|
if (4*p*p*p+27*q*q>0 && p<0)
|
|
{
|
|
t0 = -2.0*std::abs(q)/q*sqrt(-p/3.0)*cosh(1.0/3.0*acosh(-3.0*std::abs(q)/(2.0*p)*sqrt(-3.0/p)));
|
|
}
|
|
else
|
|
{
|
|
t0 = -2.0*sqrt(p/3.0)*sinh(1.0/3.0*asinh(3.0*q/(2.0*p)*sqrt(3.0/p)));
|
|
}
|
|
N = 1;
|
|
x0 = t0-b/(3*a);
|
|
x1 = t0-b/(3*a);
|
|
x2 = t0-b/(3*a);
|
|
}
|
|
else //(DELTA>0)
|
|
{
|
|
// Three real roots
|
|
double t0 = 2.0*sqrt(-p/3.0)*cos(1.0/3.0*acos(3.0*q/(2.0*p)*sqrt(-3.0/p))-0*2.0*M_PI/3.0);
|
|
double t1 = 2.0*sqrt(-p/3.0)*cos(1.0/3.0*acos(3.0*q/(2.0*p)*sqrt(-3.0/p))-1*2.0*M_PI/3.0);
|
|
double t2 = 2.0*sqrt(-p/3.0)*cos(1.0/3.0*acos(3.0*q/(2.0*p)*sqrt(-3.0/p))-2*2.0*M_PI/3.0);
|
|
|
|
N = 3;
|
|
x0 = t0-b/(3*a);
|
|
x1 = t1-b/(3*a);
|
|
x2 = t2-b/(3*a);
|
|
}
|
|
}
|
|
void solve_quartic(double a, double b, double c, double d, double e, int &N, double &x0, double &x1, double &x2, double &x3){
|
|
|
|
// 0 = ax^4 + b*x^3 + c*x^2 + d*x + e
|
|
|
|
Eigen::PolynomialSolver<double, Eigen::Dynamic> solver;
|
|
Eigen::VectorXd coeff(5);
|
|
coeff << e,d,c,b,a;
|
|
solver.compute(coeff);
|
|
|
|
std::vector<double> realRoots;
|
|
solver.realRoots(realRoots);
|
|
N = static_cast<int>(realRoots.size());
|
|
|
|
if (N>0){ x0 = realRoots[0]; }
|
|
if (N>1){ x1 = realRoots[1]; }
|
|
if (N>2){ x2 = realRoots[2]; }
|
|
if (N>3){ x3 = realRoots[3]; }
|
|
}
|
|
|
|
bool SplineClass::build()
|
|
{
|
|
if (Nconstraints == 4)
|
|
{
|
|
std::vector<double> abcd = CoolProp::linsolve(A,B);
|
|
a = abcd[0];
|
|
b = abcd[1];
|
|
c = abcd[2];
|
|
d = abcd[3];
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
throw CoolProp::ValueError(format("Number of constraints[%d] is not equal to 4", Nconstraints));
|
|
}
|
|
}
|
|
bool SplineClass::add_value_constraint(double x, double y)
|
|
{
|
|
int i = Nconstraints;
|
|
if (i == 4)
|
|
return false;
|
|
A[i][0] = x*x*x;
|
|
A[i][1] = x*x;
|
|
A[i][2] = x;
|
|
A[i][3] = 1;
|
|
B[i] = y;
|
|
Nconstraints++;
|
|
return true;
|
|
}
|
|
void SplineClass::add_4value_constraints(double x1, double x2, double x3, double x4, double y1, double y2, double y3, double y4)
|
|
{
|
|
add_value_constraint(x1, y1);
|
|
add_value_constraint(x2, y2);
|
|
add_value_constraint(x3, y3);
|
|
add_value_constraint(x4, y4);
|
|
}
|
|
bool SplineClass::add_derivative_constraint(double x, double dydx)
|
|
{
|
|
int i = Nconstraints;
|
|
if (i == 4)
|
|
return false;
|
|
A[i][0] = 3*x*x;
|
|
A[i][1] = 2*x;
|
|
A[i][2] = 1;
|
|
A[i][3] = 0;
|
|
B[i] = dydx;
|
|
Nconstraints++;
|
|
return true;
|
|
}
|
|
double SplineClass::evaluate(double x)
|
|
{
|
|
return a*x*x*x+b*x*x+c*x+d;
|
|
}
|