Files
CoolProp/src/HumidAirProp.cpp
Ian Bell 95e5b6f796 Removed unused variables
Signed-off-by: Ian Bell <ian.h.bell@gmail.com>
2014-08-01 10:01:58 +02:00

1858 lines
64 KiB
C++

#if defined(_MSC_VER)
#define _CRT_SECURE_NO_WARNINGS
#endif
#include <memory>
#include "HumidAirProp.h"
#include "AbstractState.h"
#include "Solvers.h"
#include "CoolPropTools.h"
#include "Ice.h"
#include "CoolProp.h"
#include "crossplatform_shared_ptr.h"
#include <stdlib.h>
#include "math.h"
#include "time.h"
#include "stdio.h"
#include <string.h>
#include <iostream>
shared_ptr<CoolProp::AbstractState> Water, Air;
namespace HumidAir
{
void check_fluid_instantiation()
{
if (!Water.get()){
Water.reset(CoolProp::AbstractState::factory("HEOS", "Water"));
}
if (!Air.get()){
Air.reset(CoolProp::AbstractState::factory("HEOS", "Air"));
}
};
enum givens{GIVEN_TDP,GIVEN_HUMRAT,GIVEN_V,GIVEN_TWB,GIVEN_RH,GIVEN_ENTHALPY,GIVEN_T,GIVEN_P,GIVEN_VISC,GIVEN_COND};
static double epsilon=0.621945,R_bar=8.314472;
static int FlagUseVirialCorrelations=0,FlagUseIsothermCompressCorrelation=0,FlagUseIdealGasEnthalpyCorrelations=0;
double f_factor(double T, double p);
// A couple of convenience functions that are needed quite a lot
static double MM_Air(void)
{
check_fluid_instantiation();
return Air->keyed_output(CoolProp::imolar_mass);
}
static double MM_Water(void)
{
check_fluid_instantiation();
return Water->keyed_output(CoolProp::imolar_mass);
}
static double B_Air(double T)
{
check_fluid_instantiation();
Air->update(CoolProp::DmolarT_INPUTS,1e-12,T);
return Air->keyed_output(CoolProp::iBvirial);
}
static double dBdT_Air(double T)
{
check_fluid_instantiation();
Air->update(CoolProp::DmolarT_INPUTS,1e-12,T);
return Air->keyed_output(CoolProp::idBvirial_dT);
}
static double B_Water(double T)
{
check_fluid_instantiation();
Water->update(CoolProp::DmolarT_INPUTS,1e-12,T);
return Water->keyed_output(CoolProp::iBvirial);
}
static double dBdT_Water(double T)
{
check_fluid_instantiation();
Water->update(CoolProp::DmolarT_INPUTS,1e-12,T);
return Water->keyed_output(CoolProp::idBvirial_dT);
}
static double C_Air(double T)
{
check_fluid_instantiation();
Air->update(CoolProp::DmolarT_INPUTS,1e-12,T);
return Air->keyed_output(CoolProp::iCvirial);
}
static double dCdT_Air(double T)
{
check_fluid_instantiation();
Air->update(CoolProp::DmolarT_INPUTS,1e-12,T);
return Air->keyed_output(CoolProp::idCvirial_dT);
}
static double C_Water(double T)
{
check_fluid_instantiation();
Water->update(CoolProp::DmolarT_INPUTS,1e-20,T);
return Water->keyed_output(CoolProp::iCvirial);
}
static double dCdT_Water(double T)
{
check_fluid_instantiation();
Water->update(CoolProp::DmolarT_INPUTS,1e-12,T);
return Water->keyed_output(CoolProp::idCvirial_dT);
}
void UseVirialCorrelations(int flag)
{
if (flag==0 || flag==1)
{
FlagUseVirialCorrelations=flag;
}
else
{
printf("UseVirialCorrelations takes an integer, either 0 (no) or 1 (yes)\n");
}
}
void UseIsothermCompressCorrelation(int flag)
{
if (flag==0 || flag==1)
{
FlagUseIsothermCompressCorrelation=flag;
}
else
{
printf("UseIsothermCompressCorrelation takes an integer, either 0 (no) or 1 (yes)\n");
}
}
void UseIdealGasEnthalpyCorrelations(int flag)
{
if (flag==0 || flag==1)
{
FlagUseIdealGasEnthalpyCorrelations=flag;
}
else
{
printf("UseIdealGasEnthalpyCorrelations takes an integer, either 0 (no) or 1 (yes)\n");
}
}
static double Brent_HAProps_T(char *OutputName, char *Input1Name, double Input1, char *Input2Name, double Input2, double TargetVal, double T_min, double T_max)
{
double T;
class BrentSolverResids : public CoolProp::FuncWrapper1D
{
private:
double Input1,Input2,TargetVal;
char *OutputName,*Input1Name,*Input2Name;
public:
BrentSolverResids(char *OutputName, char *Input1Name, double Input1, char *Input2Name, double Input2, double TargetVal)
{
this->OutputName = OutputName;
this->Input1Name = Input1Name;
this->Input2Name = Input2Name;
this->Input1 = Input1;
this->Input2 = Input2;
this->TargetVal = TargetVal;
};
~BrentSolverResids(){};
double call(double T){
return HAPropsSI(OutputName,(char *)"T",T,Input1Name,Input1,Input2Name,Input2)-TargetVal;
}
};
BrentSolverResids BSR = BrentSolverResids(OutputName, Input1Name, Input1, Input2Name, Input2, TargetVal);
std::string errstr;
T = CoolProp::Brent(BSR,T_min,T_max,1e-7,1e-4,50,errstr);
return T;
}
static double Secant_HAProps_T(char *OutputName, char *Input1Name, double Input1, char *Input2Name, double Input2, double TargetVal, double T_guess)
{
// Use a secant solve in order to yield a target output value for HAProps by altering T
double x1=0,x2=0,x3=0,y1=0,y2=0,eps=5e-7,f=999,T=300,change;
int iter=1;
while ((iter<=3 || (fabs(f)>eps && fabs(change)>1e-10)) && iter<100)
{
if (iter==1){x1=T_guess; T=x1;}
if (iter==2){x2=T_guess+0.001; T=x2;}
if (iter>2) {T=x2;}
f=HAPropsSI(OutputName,(char *)"T",T,Input1Name,Input1,Input2Name,Input2)-TargetVal;
if (iter==1){y1=f;}
if (iter>1)
{
y2=f;
x3=x2-y2/(y2-y1)*(x2-x1);
change = y2/(y2-y1)*(x2-x1);
y1=y2; x1=x2; x2=x3;
}
iter=iter+1;
}
return T;
}
static double Secant_HAProps_W(const char *OutputName, const char *Input1Name, double Input1, const char *Input2Name, double Input2, double TargetVal, double W_guess)
{
// Use a secant solve in order to yield a target output value for HAProps by altering humidity ratio
double x1=0,x2=0,x3=0,y1=0,y2=0,eps=1e-8,f=999,W=0.0001;
int iter=1;
while ((iter<=3 || fabs(f)>eps) && iter<100)
{
if (iter == 1){x1 = W_guess; W = x1;}
if (iter == 2){x2 = W_guess+0.001; W = x2;}
if (iter > 2) {W = x2;}
f = HAPropsSI(OutputName,(char *)"W",W,Input1Name,Input1,Input2Name,Input2)-TargetVal;
if (iter == 1){y1 = f;}
if (iter > 1)
{
y2=f;
x3=x2-y2/(y2-y1)*(x2-x1);
y1=y2; x1=x2; x2=x3;
}
iter=iter+1;
}
return W;
}
// Mixed virial components
static double _B_aw(double T)
{
check_fluid_instantiation();
// Returns value in m^3/mol
double a[]={0,0.665687e2,-0.238834e3,-0.176755e3};
double b[]={0,-0.237,-1.048,-3.183};
double rhobarstar=1000,Tstar=100;
return 1/rhobarstar*(a[1]*pow(T/Tstar,b[1])+a[2]*pow(T/Tstar,b[2])+a[3]*pow(T/Tstar,b[3]))/1000; // Correlation has units of dm^3/mol, to convert to m^3/mol, divide by 1000
}
static double _dB_aw_dT(double T)
{
check_fluid_instantiation();
// Returns value in m^3/mol
double a[]={0,0.665687e2,-0.238834e3,-0.176755e3};
double b[]={0,-0.237,-1.048,-3.183};
double rhobarstar=1000,Tstar=100;
return 1/rhobarstar/Tstar*(a[1]*b[1]*pow(T/Tstar,b[1]-1)+a[2]*b[2]*pow(T/Tstar,b[2]-1)+a[3]*b[3]*pow(T/Tstar,b[3]-1))/1000; // Correlation has units of dm^3/mol/K, to convert to m^3/mol/K, divide by 1000
}
static double _C_aaw(double T)
{
check_fluid_instantiation();
// Function return has units of m^6/mol^2
double c[]={0,0.482737e3,0.105678e6,-0.656394e8,0.294442e11,-0.319317e13};
double rhobarstar=1000,Tstar=1,summer=0; int i;
for (i=1;i<=5;i++)
{
summer+=c[i]*pow(T/Tstar,1-i);
}
return 1.0/rhobarstar/rhobarstar*summer/1e6; // Correlation has units of dm^6/mol^2, to convert to m^6/mol^2 divide by 1e6
}
static double _dC_aaw_dT(double T)
{
check_fluid_instantiation();
// Function return in units of m^6/mol^2/K
double c[]={0,0.482737e3,0.105678e6,-0.656394e8,0.294442e11,-0.319317e13};
double rhobarstar=1000,Tstar=1,summer=0; int i;
for (i=2;i<=5;i++)
{
summer+=c[i]*(1-i)*pow(T/Tstar,-i);
}
return 1.0/rhobarstar/rhobarstar/Tstar*summer/1e6; // Correlation has units of dm^6/mol^2/K, to convert to m^6/mol^2/K divide by 1e6
}
static double _C_aww(double T)
{
check_fluid_instantiation();
// Function return has units of m^6/mol^2
double d[]={0,-0.1072887e2,0.347804e4,-0.383383e6,0.334060e8};
double rhobarstar=1,Tstar=1,summer=0; int i;
for (i=1;i<=4;i++)
{
summer+=d[i]*pow(T/Tstar,1-i);
}
return -1.0/rhobarstar/rhobarstar*exp(summer)/1e6; // Correlation has units of dm^6/mol^2, to convert to m^6/mol^2 divide by 1e6
}
static double _dC_aww_dT(double T)
{
check_fluid_instantiation();
// Function return in units of m^6/mol^2/K
double d[]={0,-0.1072887e2,0.347804e4,-0.383383e6,0.334060e8};
double rhobarstar=1,Tstar=1,summer1=0,summer2=0; int i;
for (i=1;i<=4;i++)
{
summer1+=d[i]*pow(T/Tstar,1-i);
}
for (i=2;i<=4;i++)
{
summer2+=d[i]*(1-i)*pow(T/Tstar,-i);
}
return -1.0/rhobarstar/rhobarstar/Tstar*exp(summer1)*summer2/1e6; // Correlation has units of dm^6/mol^2/K, to convert to m^6/mol^2/K divide by 1e6
}
static double B_m(double T, double psi_w)
{
// Bm has units of m^3/mol
double B_aa,B_ww,B_aw;
if (FlagUseVirialCorrelations==1)
{
B_aa=-0.000721183853646 +1.142682674467e-05*T -8.838228412173e-08*pow(T,2)
+4.104150642775e-10*pow(T,3) -1.192780880645e-12*pow(T,4) +2.134201312070e-15*pow(T,5)
-2.157430412913e-18*pow(T,6) +9.453830907795e-22*pow(T,7);
B_ww=-10.8963128394 +2.439761625859e-01*T -2.353884845100e-03*pow(T,2)
+1.265864734412e-05*pow(T,3) -4.092175700300e-08*pow(T,4) +7.943925411344e-11*pow(T,5)
-8.567808759123e-14*pow(T,6) +3.958203548563e-17*pow(T,7);
}
else
{
B_aa = B_Air(T); // [m^3/mol]
B_ww = B_Water(T); // [m^3/mol]
}
B_aw=_B_aw(T); // [m^3/mol]
return pow(1-psi_w,2)*B_aa+2*(1-psi_w)*psi_w*B_aw+psi_w*psi_w*B_ww;
}
static double dB_m_dT(double T, double psi_w)
{
//dBm_dT has units of m^3/mol/K
double dB_dT_aa,dB_dT_ww,dB_dT_aw;
if (FlagUseVirialCorrelations)
{
dB_dT_aa=1.65159324353e-05 -3.026130954749e-07*T +2.558323847166e-09*pow(T,2) -1.250695660784e-11*pow(T,3) +3.759401946106e-14*pow(T,4) -6.889086380822e-17*pow(T,5) +7.089457032972e-20*pow(T,6) -3.149942145971e-23*pow(T,7);
dB_dT_ww=0.65615868848 -1.487953162679e-02*T +1.450134660689e-04*pow(T,2) -7.863187630094e-07*pow(T,3) +2.559556607010e-09*pow(T,4) -4.997942221914e-12*pow(T,5) +5.417678681513e-15*pow(T,6) -2.513856275241e-18*pow(T,7);
}
else
{
dB_dT_aa=dBdT_Air(T); // [m^3/mol]
dB_dT_ww=dBdT_Water(T); // [m^3/mol]
}
dB_dT_aw=_dB_aw_dT(T); // [m^3/mol]
return pow(1-psi_w,2)*dB_dT_aa+2*(1-psi_w)*psi_w*dB_dT_aw+psi_w*psi_w*dB_dT_ww;
}
static double C_m(double T, double psi_w)
{
// Cm has units of m^6/mol^2
double C_aaa,C_www,C_aww,C_aaw;
if (FlagUseVirialCorrelations)
{
C_aaa=1.29192158975e-08 -1.776054020409e-10*T +1.359641176409e-12*pow(T,2)
-6.234878717893e-15*pow(T,3) +1.791668730770e-17*pow(T,4) -3.175283581294e-20*pow(T,5)
+3.184306136120e-23*pow(T,6) -1.386043640106e-26*pow(T,7);
C_www=-0.580595811134 +1.365952762696e-02*T -1.375986293288e-04*pow(T,2)
+7.687692259692e-07*pow(T,3) -2.571440816920e-09*pow(T,4) +5.147432221082e-12*pow(T,5)
-5.708156494894e-15*pow(T,6) +2.704605721778e-18*pow(T,7);
}
else
{
C_aaa=C_Air(T); //[m^6/mol^2]
C_www=C_Water(T); //[m^6/mol^2]
}
C_aaw=_C_aaw(T); //[m^6/mol^2]
C_aww=_C_aww(T); //[m^6/mol^2]
return pow(1-psi_w,3)*C_aaa+3*pow(1-psi_w,2)*psi_w*C_aaw+3*(1-psi_w)*psi_w*psi_w*C_aww+pow(psi_w,3)*C_www;
}
static double dC_m_dT(double T, double psi_w)
{
// dCm_dT has units of m^6/mol^2/K
double Tj,tau_Air,tau_Water,dC_dT_aaa,dC_dT_www,dC_dT_aww,dC_dT_aaw;
// NDG for fluid EOS for virial terms
Tj=132.6312;
tau_Air=Tj/T;
tau_Water=Water->keyed_output(CoolProp::iT_reducing)/T;
if (FlagUseVirialCorrelations)
{
dC_dT_aaa=-2.46582342273e-10 +4.425401935447e-12*T -3.669987371644e-14*pow(T,2) +1.765891183964e-16*pow(T,3) -5.240097805744e-19*pow(T,4) +9.502177003614e-22*pow(T,5) -9.694252610339e-25*pow(T,6) +4.276261986741e-28*pow(T,7);
dC_dT_www=0.0984601196142 -2.356713397262e-03*T +2.409113323685e-05*pow(T,2) -1.363083778715e-07*pow(T,3) +4.609623799524e-10*pow(T,4) -9.316416405390e-13*pow(T,5) +1.041909136255e-15*pow(T,6) -4.973918480607e-19*pow(T,7);
}
else
{
dC_dT_aaa=dCdT_Air(T); // [m^6/mol^2]
dC_dT_www=dCdT_Water(T); // [m^6/mol^2]
}
dC_dT_aaw=_dC_aaw_dT(T); // [m^6/mol^2]
dC_dT_aww=_dC_aww_dT(T); // [m^6/mol^2]
return pow(1-psi_w,3)*dC_dT_aaa+3*pow(1-psi_w,2)*psi_w*dC_dT_aaw+3*(1-psi_w)*psi_w*psi_w*dC_dT_aww+pow(psi_w,3)*dC_dT_www;
}
double HumidityRatio(double psi_w)
{
return psi_w*epsilon/(1-psi_w);
}
static double HenryConstant(double T)
{
// Result has units of 1/Pa
double p_ws,beta_N2,beta_O2,beta_Ar,beta_a,tau,Tr,Tc=647.096;
Tr=T/Tc;
tau=1-Tr;
Water->update(CoolProp::QT_INPUTS, 1.0, T);
p_ws = Water->keyed_output(CoolProp::iP); //[Pa]
beta_N2=p_ws*exp(-9.67578/Tr+4.72162*pow(tau,0.355)/Tr+11.70585*pow(Tr,-0.41)*exp(tau));
beta_O2=p_ws*exp(-9.44833/Tr+4.43822*pow(tau,0.355)/Tr+11.42005*pow(Tr,-0.41)*exp(tau));
beta_Ar=p_ws*exp(-8.40954/Tr+4.29587*pow(tau,0.355)/Tr+10.52779*pow(Tr,-0.41)*exp(tau));
beta_a=1/(0.7812/beta_N2+0.2095/beta_O2+0.0093/beta_Ar);
return 1/(1.01325*beta_a);
}
double isothermal_compressibility(double T, double p)
{
double k_T;
if (T> 273.16)
{
if (FlagUseIsothermCompressCorrelation)
{
k_T = 1.6261876614E-22*pow(T,6) - 3.3016385196E-19*pow(T,5) + 2.7978984577E-16*pow(T,4)
- 1.2672392901E-13*pow(T,3) + 3.2382864853E-11*pow(T,2) - 4.4318979503E-09*T + 2.5455947289E-07;
}
else
{
Water->update(CoolProp::PT_INPUTS, p, T);
k_T = Water->keyed_output(CoolProp::iisothermal_compressibility);
}
}
else
{
k_T = IsothermCompress_Ice(T,p); //[1/Pa]
}
return k_T;
}
double f_factor(double T, double p)
{
double f=0,Rbar=8.314371,eps=1e-8,Tj;
double x1=0,x2=0,x3,y1=0,y2,change=_HUGE;
int iter=1;
double p_ws,tau_Air,tau_Water,B_aa,B_aw,B_ww,C_aaa,C_aaw,C_aww,C_www,
line1,line2,line3,line4,line5,line6,line7,line8,k_T,beta_H,LHS,RHS,psi_ws,
vbar_ws;
// Saturation pressure [Pa]
if (T>273.16)
{
// It is liquid water
p_ws=CoolProp::PropsSI("P","T",T,"Q",0,"Water");
beta_H = HenryConstant(T); //[1/Pa]
Water->update(CoolProp::PT_INPUTS, p, T);
vbar_ws = 1.0/Water->keyed_output(CoolProp::iDmolar); //[m^3/mol]
}
else
{
// It is ice
p_ws = psub_Ice(T); // [Pa]
beta_H = 0;
vbar_ws = dg_dp_Ice(T,p)*MM_Water(); //[m^3/mol]
}
k_T = isothermal_compressibility(T,p); //[1/Pa]
// Hermann: In the iteration process of the enhancement factor in Eq. (3.25), k_T is set to zero for pw,s (T) > p.
if (p_ws>p)
{
k_T=0;
beta_H=0;
}
// NDG for fluid EOS for virial terms
Tj=132.6312;
tau_Air=Tj/T;
tau_Water=Water->keyed_output(CoolProp::iT_reducing)/T;
if (FlagUseVirialCorrelations)
{
B_aa=-0.000721183853646 +1.142682674467e-05*T -8.838228412173e-08*pow(T,2)
+4.104150642775e-10*pow(T,3) -1.192780880645e-12*pow(T,4) +2.134201312070e-15*pow(T,5)
-2.157430412913e-18*pow(T,6) +9.453830907795e-22*pow(T,7);
B_ww=-10.8963128394 +2.439761625859e-01*T -2.353884845100e-03*pow(T,2)
+1.265864734412e-05*pow(T,3) -4.092175700300e-08*pow(T,4) +7.943925411344e-11*pow(T,5)
-8.567808759123e-14*pow(T,6) +3.958203548563e-17*pow(T,7);
C_aaa=1.29192158975e-08 -1.776054020409e-10*T +1.359641176409e-12*pow(T,2)
-6.234878717893e-15*pow(T,3) +1.791668730770e-17*pow(T,4) -3.175283581294e-20*pow(T,5)
+3.184306136120e-23*pow(T,6) -1.386043640106e-26*pow(T,7);
C_www=-0.580595811134 +1.365952762696e-02*T -1.375986293288e-04*pow(T,2)
+7.687692259692e-07*pow(T,3) -2.571440816920e-09*pow(T,4) +5.147432221082e-12*pow(T,5)
-5.708156494894e-15*pow(T,6) +2.704605721778e-18*pow(T,7);
}
else
{
B_aa = B_Air(T); // [m^3/mol]
C_aaa = C_Air(T); // [m^6/mol^2]
B_ww = B_Water(T); // [m^3/mol]
C_www = C_Water(T); // [m^6/mol^2]
}
B_aw = _B_aw(T); //[m^3/mol]
C_aaw = _C_aaw(T); //[m^6/mol^2]
C_aww = _C_aww(T); //[m^6/mol^2]
// Use a little secant loop to find f iteratively
// Start out with a guess value of 1 for f
while ((iter<=3 || change>eps) && iter<100)
{
if (iter==1){x1=1.00; f=x1;}
if (iter==2){x2=1.00+0.000001; f=x2;}
if (iter>2) {f=x2;}
// Left-hand-side of Equation 3.25
LHS=log(f);
// Eqn 3.24
psi_ws=f*p_ws/p;
// All the terms forming the RHS of Eqn 3.25
line1=((1+k_T*p_ws)*(p-p_ws)-k_T*(p*p-p_ws*p_ws)/2.0)/(Rbar*T)*vbar_ws+log(1-beta_H*(1-psi_ws)*p);
line2=pow(1-psi_ws,2)*p/(Rbar*T)*B_aa-2*pow(1-psi_ws,2)*p/(Rbar*T)*B_aw-(p-p_ws-pow(1-psi_ws,2)*p)/(Rbar*T)*B_ww;
line3=pow(1-psi_ws,3)*p*p/pow(Rbar*T,2)*C_aaa+(3*pow(1-psi_ws,2)*(1-2*(1-psi_ws))*p*p)/(2*pow(Rbar*T,2))*C_aaw;
line4=-3*pow(1-psi_ws,2)*psi_ws*p*p/pow(Rbar*T,2)*C_aww-((3-2*psi_ws)*psi_ws*psi_ws*p*p-p_ws*p_ws)/(2*pow(Rbar*T,2))*C_www;
line5=-(pow(1-psi_ws,2)*(-2+3*psi_ws)*psi_ws*p*p)/pow(Rbar*T,2)*B_aa*B_ww;
line6=-(2*pow(1-psi_ws,3)*(-1+3*psi_ws)*p*p)/pow(Rbar*T,2)*B_aa*B_aw;
line7=(6*pow(1-psi_ws,2)*psi_ws*psi_ws*p*p)/pow(Rbar*T,2)*B_ww*B_aw-(3*pow(1-psi_ws,4)*p*p)/(2*pow(Rbar*T,2))*B_aa*B_aa;
line8=-(2*pow(1-psi_ws,2)*psi_ws*(-2+3*psi_ws)*p*p)/pow(Rbar*T,2)*B_aw*B_aw-(p_ws*p_ws-(4-3*psi_ws)*pow(psi_ws,3)*p*p)/(2*pow(Rbar*T,2))*B_ww*B_ww;
RHS=line1+line2+line3+line4+line5+line6+line7+line8;
if (iter==1){y1=LHS-RHS;}
if (iter>1)
{
y2=LHS-RHS;
x3=x2-y2/(y2-y1)*(x2-x1);
change=fabs(y2/(y2-y1)*(x2-x1));
y1=y2; x1=x2; x2=x3;
}
iter=iter+1;
}
if (f>=1.0)
return f;
else
return 1.0;
}
void HAHelp(void)
{
printf("Sorry, Need to update!");
}
int returnHumAirCode(const char * Code)
{
if (!strcmp(Code,"GIVEN_TDP"))
return GIVEN_TDP;
else if (!strcmp(Code,"GIVEN_HUMRAT"))
return GIVEN_HUMRAT;
else if (!strcmp(Code,"GIVEN_TWB"))
return GIVEN_TWB;
else if (!strcmp(Code,"GIVEN_RH"))
return GIVEN_RH;
else if (!strcmp(Code,"GIVEN_ENTHALPY"))
return GIVEN_ENTHALPY;
else
{
fprintf(stderr,"Code to returnHumAirCode in HumAir.c [%s] not understood",Code);
return -1;
}
}
double Viscosity(double T, double p, double psi_w)
{
/*
Using the method of:
P.T. Tsilingiris, 2009, Thermophysical and transport properties of humid air at temperature range between 0 and 100 oC, Energy Conversion and Management, 49, 1098-1010
but using the detailed measurements for pure fluid from IAPWS formulations
*/
double mu_a,mu_w,Phi_av,Phi_va,Ma,Mw;
Mw=MM_Water();
Ma=MM_Air();
// Viscosity of dry air at dry-bulb temp and total pressure
Air->update(CoolProp::PT_INPUTS,p,T);
mu_a=Air->keyed_output(CoolProp::iviscosity);
// Viscosity of pure saturated water at dry-bulb temperature
Water->update(CoolProp::PQ_INPUTS,p,1);
mu_w=Water->keyed_output(CoolProp::iviscosity);
Phi_av=sqrt(2.0)/4.0*pow(1+Ma/Mw,-0.5)*pow(1+sqrt(mu_a/mu_w)*pow(Mw/Ma,0.25),2); //[-]
Phi_va=sqrt(2.0)/4.0*pow(1+Mw/Ma,-0.5)*pow(1+sqrt(mu_w/mu_a)*pow(Ma/Mw,0.25),2); //[-]
return (1-psi_w)*mu_a/((1-psi_w)+psi_w*Phi_av)+psi_w*mu_w/(psi_w+(1-psi_w)*Phi_va);
}
double Conductivity(double T, double p, double psi_w)
{
/*
Using the method of:
P.T. Tsilingiris, 2009, Thermophysical and transport properties of humid air at temperature range between 0 and 100 oC, Energy Conversion and Management, 49, 1098-1010
but using the detailed measurements for pure fluid from IAPWS formulations
*/
double mu_a,mu_w,k_a,k_w,Phi_av,Phi_va,Ma,Mw;
Mw=MM_Water();
Ma=MM_Air();
// Viscosity of dry air at dry-bulb temp and total pressure
Air->update(CoolProp::PT_INPUTS,p,T);
mu_a=Air->keyed_output(CoolProp::iviscosity);
k_a=Air->keyed_output(CoolProp::iconductivity);
// Viscosity of pure saturated water at dry-bulb temperature
Water->update(CoolProp::PQ_INPUTS,p,1);
mu_w=Water->keyed_output(CoolProp::iviscosity);
k_w=Water->keyed_output(CoolProp::iconductivity);
Phi_av=sqrt(2.0)/4.0*pow(1+Ma/Mw,-0.5)*pow(1+sqrt(mu_a/mu_w)*pow(Mw/Ma,0.25),2); //[-]
Phi_va=sqrt(2.0)/4.0*pow(1+Mw/Ma,-0.5)*pow(1+sqrt(mu_w/mu_a)*pow(Ma/Mw,0.25),2); //[-]
return (1-psi_w)*k_a/((1-psi_w)+psi_w*Phi_av)+psi_w*k_w/(psi_w+(1-psi_w)*Phi_va);
}
double MolarVolume(double T, double p, double psi_w)
{
// Output in m^3/mol
int iter;
double v_bar0, v_bar=0, R_bar=8.314472,x1=0,x2=0,x3,y1=0,y2,resid,eps,Bm,Cm;
// -----------------------------
// Iteratively find molar volume
// -----------------------------
// Start by assuming it is an ideal gas to get initial guess
v_bar0=R_bar*T/p;
//Bring outside the loop since not a function of v_bar
Bm=B_m(T,psi_w);
Cm=C_m(T,psi_w);
iter=1; eps=1e-11; resid=999;
while ((iter<=3 || fabs(resid)>eps) && iter<100)
{
if (iter==1){x1=v_bar0; v_bar=x1;}
if (iter==2){x2=v_bar0+0.000001; v_bar=x2;}
if (iter>2) {v_bar=x2;}
// want v_bar in m^3/mol and R_bar in J/mol-K
resid = (p-(R_bar)*T/v_bar*(1+Bm/v_bar+Cm/(v_bar*v_bar)))/p;
if (iter==1){y1=resid;}
if (iter>1)
{
y2=resid;
x3=x2-y2/(y2-y1)*(x2-x1);
y1=y2; x1=x2; x2=x3;
}
iter=iter+1;
}
return v_bar;
}
double IdealGasMolarEnthalpy_Water(double T, double vmolar)
{
double hbar_w_0, tau, rhomolar, hbar_w;
// Ideal-Gas contribution to enthalpy of water
hbar_w_0 = -0.01102303806; //[J/mol]
// Calculate the offset in the water enthalpy from a given state with a known (desired) enthalpy
double Tref = 473.15, vmolarref = 0.038837428192186184, href = 51885.582451893446;
Water->update(CoolProp::DmolarT_INPUTS,1/vmolarref,Tref);
double tauref = Water->keyed_output(CoolProp::iT_reducing)/Tref; //[no units]
double href_EOS = R_bar*Tref*(1+tauref*Water->keyed_output(CoolProp::idalpha0_dtau_constdelta));
double hoffset = href - href_EOS;
tau = Water->keyed_output(CoolProp::iT_reducing)/T;
rhomolar = 1/vmolar; //[mol/m^3]
Water->update(CoolProp::DmolarT_INPUTS, rhomolar, T);
hbar_w = hbar_w_0 + hoffset + R_bar*T*(1+tau*Water->keyed_output(CoolProp::idalpha0_dtau_constdelta));
return hbar_w;
}
double IdealGasMolarEntropy_Water(double T, double p)
{
double sbar_w, tau, R_bar;
R_bar = 8.314371; //[J/mol/K]
// Calculate the offset in the water entropy from a given state with a known (desired) entropy
double Tref = 473.15, pref = 101325, sref = 141.18297895840303;
Water->update(CoolProp::DmolarT_INPUTS,pref/(R_bar*Tref),Tref);
double tauref = Water->keyed_output(CoolProp::iT_reducing)/Tref; //[no units]
double sref_EOS = R_bar*(tauref*Water->keyed_output(CoolProp::idalpha0_dtau_constdelta)-Water->keyed_output(CoolProp::ialpha0));
double soffset = sref - sref_EOS;
tau = Water->keyed_output(CoolProp::iT_reducing)/T;
Water->update(CoolProp::DmolarT_INPUTS,p/(R_bar*T),T);
sbar_w = soffset + R_bar*(tau*Water->keyed_output(CoolProp::idalpha0_dtau_constdelta)-Water->keyed_output(CoolProp::ialpha0)); //[kJ/kmol/K]
return sbar_w;
}
double IdealGasMolarEnthalpy_Air(double T, double vmolar)
{
double hbar_a_0, tau, rhomolar, hbar_a, R_bar_Lemmon;
// Ideal-Gas contribution to enthalpy of air
hbar_a_0 = -7914.149298; //[J/mol]
R_bar_Lemmon = 8.314510; //[J/mol/K]
// Calculate the offset in the air enthalpy from a given state with a known (desired) enthalpy
double Tref = 473.15, vmolarref = 0.038837428192186184, href = 13782.240592933371;
Air->update(CoolProp::DmolarT_INPUTS, 1/vmolarref, Tref);
double tauref = 132.6312/Tref; //[no units]
double href_EOS = R_bar_Lemmon*Tref*(1+tauref*Air->keyed_output(CoolProp::idalpha0_dtau_constdelta));
double hoffset = href - href_EOS;
// Tj is given by 132.6312 K
tau = 132.6312/T;
rhomolar = 1/vmolar; //[mol/m^3]
// Now calculate it based on the given inputs
Air->update(CoolProp::DmolarT_INPUTS, rhomolar, T);
hbar_a = hbar_a_0 + hoffset + R_bar_Lemmon*T*(1+tau*Air->keyed_output(CoolProp::idalpha0_dtau_constdelta)); //[J/mol]
return hbar_a;
}
double IdealGasMolarEntropy_Air(double T, double vmolar_a)
{
double sbar_0_Lem, tau, sbar_a, R_bar_Lemmon = 8.314510, T0=273.15, p0=101325, vmolar_a_0;
// Ideal-Gas contribution to entropy of air
sbar_0_Lem = -196.1375815; //[J/mol/K]
vmolar_a_0 = R_bar_Lemmon*T0/p0; //[m^3/mol]
// Calculate the offset in the air entropy from a given state with a known (desired) entropy
double Tref = 473.15, vmolarref = 0.038837605637863169, sref = 212.22365283759311;
Air->update(CoolProp::DmolarT_INPUTS, 1/vmolar_a_0, Tref);
double tauref = 132.6312/Tref; //[no units]
double sref_EOS = R_bar_Lemmon*(tauref*Air->keyed_output(CoolProp::idalpha0_dtau_constdelta)-Air->keyed_output(CoolProp::ialpha0))+R_bar_Lemmon*log(vmolarref/vmolar_a_0);
double soffset = sref - sref_EOS;
// Tj and rhoj are given by 132.6312 and 302.5507652 respectively
tau = 132.6312/T; //[no units]
Air->update(CoolProp::DmolarT_INPUTS,1/vmolar_a_0,T);
sbar_a=sbar_0_Lem + soffset + R_bar_Lemmon*(tau*Air->keyed_output(CoolProp::idalpha0_dtau_constdelta)-Air->keyed_output(CoolProp::ialpha0))+R_bar_Lemmon*log(vmolar_a/vmolar_a_0); //[J/mol/K]
return sbar_a; //[J/mol/K]
}
double MolarEnthalpy(double T, double p, double psi_w, double vmolar)
{
// In units of kJ/kmol
// vbar (molar volume) in m^3/kg
double hbar_0, hbar_a, hbar_w, hbar, R_bar=8.314472;
// ----------------------------------------
// Enthalpy
// ----------------------------------------
// Constant for enthalpy
// Not clear why getting rid of this term yields the correct values in the table, but enthalpies are equal to an additive constant, so not a big deal
hbar_0=0.0;//2.924425468; //[kJ/kmol]
if (FlagUseIdealGasEnthalpyCorrelations){
hbar_w = 2.7030251618E-03*T*T + 3.1994361015E+01*T + 3.6123174929E+04;
hbar_a = 9.2486716590E-04*T*T + 2.8557221776E+01*T - 7.8616129429E+03;
}
else{
hbar_w = IdealGasMolarEnthalpy_Water(T, vmolar);
hbar_a = IdealGasMolarEnthalpy_Air(T, vmolar);
}
// If the user changes the reference state for water or Air, we need to ensure that the values returned from this
// function are always the same as the formulation expects. Therefore we can use a state point for which we know what the
// enthalpy should be and then correct the calculated values for the enthalpy.
hbar = hbar_0+(1-psi_w)*hbar_a+psi_w*hbar_w+R_bar*T*((B_m(T,psi_w)-T*dB_m_dT(T,psi_w))/vmolar+(C_m(T,psi_w)-T/2.0*dC_m_dT(T,psi_w))/(vmolar*vmolar));
return hbar; //[J/mol]
}
double MassEnthalpy(double T, double p, double psi_w)
{
double vmolar = MolarVolume(T, p, psi_w); //[m^3/mol_ha]
double h_bar = MolarEnthalpy(T, p, psi_w, vmolar); //[J/mol_ha]
double W = HumidityRatio(psi_w); //[kg_w/kg_da]
double M_ha = MM_Water()*psi_w+(1-psi_w)*0.028966; // [kg_ha/mol_ha]
// (1+W) is kg_ha/kg_da
return h_bar*(1+W)/M_ha; //[J/kg_da]
}
double MolarEntropy(double T, double p, double psi_w, double v_bar)
{
// In units of J/mol/K
// Serious typo in RP-1485 - should use total pressure rather than
// reference pressure in density calculation for water vapor molar entropy
// vbar (molar volume) in m^3/mol
double x1=0,x2=0,x3=0,y1=0,y2=0,eps=1e-8,f=999,R_bar_Lem=8.314510;
int iter=1;
double sbar_0,sbar_a=0,sbar_w=0,sbar,R_bar=8.314472,vbar_a_guess, Baa, Caaa,vbar_a=0;
double B,dBdT,C,dCdT;
// Constant for entropy
sbar_0=0.02366427495; //[J/mol/K]
// Calculate vbar_a, the molar volume of dry air
// B_m, C_m, etc. functions take care of the units
Baa = B_m(T,0);
B = B_m(T,psi_w);
dBdT = dB_m_dT(T,psi_w);
Caaa = C_m(T,0);
C = C_m(T,psi_w);
dCdT = dC_m_dT(T,psi_w);
vbar_a_guess = R_bar_Lem*T/p; //[m^3/mol] since p in [Pa]
while ((iter<=3 || fabs(f)>eps) && iter<100)
{
if (iter==1){x1=vbar_a_guess; vbar_a=x1;}
if (iter==2){x2=vbar_a_guess+0.001; vbar_a=x2;}
if (iter>2) {vbar_a=x2;}
f=R_bar_Lem*T/vbar_a*(1+Baa/vbar_a+Caaa/pow(vbar_a,2))-p;
if (iter==1){y1=f;}
if (iter>1)
{
y2=f;
x3=x2-y2/(y2-y1)*(x2-x1);
y1=y2; x1=x2; x2=x3;
}
iter=iter+1;
if (iter>100){ return _HUGE; }
}
if (FlagUseIdealGasEnthalpyCorrelations){
std::cout << "Not implemented" << std::endl;
}
else{
sbar_w=IdealGasMolarEntropy_Water(T,p);
sbar_a=IdealGasMolarEntropy_Air(T,vbar_a);
}
if (psi_w!=0){
sbar = sbar_0+(1-psi_w)*sbar_a+psi_w*sbar_w-R_bar*( (B+T*dBdT)/v_bar+(C+T*dCdT)/(2*pow(v_bar,2))+(1-psi_w)*log(1-psi_w)+psi_w*log(psi_w));
}
else{
sbar = sbar_0+sbar_a;
}
return sbar; //[kJ/kmol/K]
}
double DewpointTemperature(double T, double p, double psi_w)
{
int iter;
double p_w,eps,resid,Tdp=0,x1=0,x2=0,x3,y1=0,y2,T0;
double p_ws_dp,f_dp;
// Make sure it isn't dry air, return an impossible temperature otherwise
if ((1-psi_w)<1e-16)
{
return -1;
}
// ------------------------------------------
// Iteratively find the dewpoint temperature
// ------------------------------------------
// The highest dewpoint temperature possible is the dry-bulb temperature.
// When they are equal, the air is saturated (R=1)
p_w = psi_w*p;
// 0.61165... is the triple point pressure of water in kPa
if (p_w > 0.6116547241637944){
Water->update(CoolProp::PQ_INPUTS, p, 1.0);
T0 = Water->keyed_output(CoolProp::iT);
}
else{
T0 = 268;
}
// A good guess for Tdp is that enhancement factor is unity, which yields
// p_w_s = p_w, and get guess for T from saturation temperature
iter=1; eps=1e-8; resid=999;
while ((iter<=3 || fabs(resid)>eps) && iter<100)
{
if (iter==1){x1 = T0; Tdp=x1;}
if (iter==2){x2 = x1 + 0.1; Tdp=x2;}
if (iter>2) {Tdp=x2;}
if (Tdp >= 273.16)
{
// Saturation pressure at dewpoint [kPa]
Water->update(CoolProp::QT_INPUTS, 0.0, Tdp);
p_ws_dp = Water->keyed_output(CoolProp::iP);
}
else
{
// Sublimation pressure at icepoint [kPa]
p_ws_dp=psub_Ice(Tdp);
}
// Enhancement Factor at dewpoint temperature [-]
f_dp=f_factor(Tdp,p);
// Error between target and actual pressure [kPa]
resid=p_w-p_ws_dp*f_dp;
if (iter==1){y1=resid;}
if (iter>1)
{
y2=resid;
x3=x2-y2/(y2-y1)*(x2-x1);
y1=y2; x1=x2; x2=x3;
}
iter=iter+1;
}
return Tdp;
}
class WetBulbSolver : public CoolProp::FuncWrapper1D
{
private:
double _T,_p,_W,LHS,RHS,v_bar_w,M_ha;
public:
WetBulbSolver(double T, double p, double psi_w){
_T = T;
_p = p;
_W = epsilon*psi_w/(1-psi_w);
//These things are all not a function of Twb
v_bar_w = MolarVolume(T,p,psi_w);
M_ha = MM_Water()*psi_w+(1-psi_w)*0.028966;
LHS = MolarEnthalpy(T,p,psi_w,v_bar_w)*(1+_W)/M_ha;
};
~WetBulbSolver(){};
double call(double Twb)
{
double epsilon=0.621945;
double f_wb,p_ws_wb,p_s_wb,W_s_wb,h_w,M_ha_wb,psi_wb,v_bar_wb;
// Enhancement Factor at wetbulb temperature [-]
f_wb=f_factor(Twb,_p);
if (Twb > 273.16)
{
// Saturation pressure at wetbulb temperature [Pa]
Water->update(CoolProp::QT_INPUTS,0,Twb);
p_ws_wb= Water->keyed_output(CoolProp::iP);
}
else
{
// Sublimation pressure at wetbulb temperature [kPa]
p_ws_wb=psub_Ice(Twb);
}
// Vapor pressure
p_s_wb = f_wb*p_ws_wb;
// wetbulb humidity ratio
W_s_wb = epsilon*p_s_wb/(_p-p_s_wb);
// wetbulb water mole fraction
psi_wb = W_s_wb/(epsilon+W_s_wb);
if (Twb > 273.16)
{
// Enthalpy of water [J/kg_water]
Water->update(CoolProp::PT_INPUTS, _p, Twb);
h_w = Water->keyed_output(CoolProp::iHmass); //[J/kg_water]
}
else
{
// Enthalpy of ice [J/kg_water]
h_w=h_Ice(Twb,_p);
}
// Mole masses of wetbulb and humid air
M_ha_wb = MM_Water()*psi_wb+(1-psi_wb)*0.028966;
v_bar_wb=MolarVolume(Twb,_p,psi_wb);
RHS = (MolarEnthalpy(Twb,_p,psi_wb,v_bar_wb)*(1+W_s_wb)/M_ha_wb+(_W-W_s_wb)*h_w);
if (!ValidNumber(LHS-RHS)){throw CoolProp::ValueError();}
return LHS - RHS;
}
};
class WetBulbTminSolver : public CoolProp::FuncWrapper1D
{
public:
double p,hair_dry,r, RHS;
WetBulbTminSolver(double p, double hair_dry){
this->p = p;
this->hair_dry = hair_dry;
};
~WetBulbTminSolver(){};
double call(double Ts)
{
RHS = HAPropsSI("H","T",Ts,"P",p,"R",1);
if (!ValidNumber(RHS)){throw CoolProp::ValueError();}
r = RHS - this->hair_dry;
return r;
}
};
double WetbulbTemperature(double T, double p, double psi_w)
{
// ------------------------------------------
// Iteratively find the wetbulb temperature
// ------------------------------------------
//
// If the temperature is less than the saturation temperature of water
// for the given atmospheric pressure, the highest wetbulb temperature that is possible is the dry bulb
// temperature
//
// If the temperature is above the saturation temperature corresponding to the atmospheric pressure,
// then the maximum value for the wetbulb temperature is the saturation temperature
double Tmax = T;
Water->update(CoolProp::PQ_INPUTS,p,1.0);
double Tsat = Water->keyed_output(CoolProp::iT);
if (T >= Tsat)
{
Tmax = Tsat;
}
// Instantiate the solver container class
WetBulbSolver WBS(T, p, psi_w);
std::string errstr;
double return_val;
try{
return_val = Secant(WBS,Tmax-1,-0.0001,1e-8,50,errstr);
// Solution obtained is out of range (T>Tmax)
if (return_val > Tmax) {throw CoolProp::ValueError();}
}
catch(std::exception &)
{
// The lowest wetbulb temperature that is possible for a given dry bulb temperature
// is the saturated air temperature which yields the enthalpy of dry air at dry bulb temperature
try{
double hair_dry = MassEnthalpy(T,p,0);
// Directly solve for the saturated temperature that yields the enthalpy desired
WetBulbTminSolver WBTS(p,hair_dry);
double Tmin = Brent(WBTS,210,Tsat-1,1e-12,1e-12,50,errstr);
return_val = Brent(WBS,Tmin-30,Tmax-1,1e-12,1e-12,50,errstr);
}
catch(std::exception)
{
return_val = _HUGE;
}
}
return return_val;
}
static int Name2Type(const char *Name)
{
if (!strcmp(Name,"Omega") || !strcmp(Name,"HumRat") || !strcmp(Name,"W"))
return GIVEN_HUMRAT;
else if (!strcmp(Name,"Tdp") || !strcmp(Name,"T_dp") || !strcmp(Name,"DewPoint") || !strcmp(Name,"D"))
return GIVEN_TDP;
else if (!strcmp(Name,"Twb") || !strcmp(Name,"T_wb") || !strcmp(Name,"WetBulb") || !strcmp(Name,"B"))
return GIVEN_TWB;
else if (!strcmp(Name,"Enthalpy") || !strcmp(Name,"H"))
return GIVEN_ENTHALPY;
else if (!strcmp(Name,"RH") || !strcmp(Name,"RelHum") || !strcmp(Name,"R"))
return GIVEN_RH;
else if (!strcmp(Name,"Tdb") || !strcmp(Name,"T_db") || !strcmp(Name,"T"))
return GIVEN_T;
else if (!strcmp(Name,"P"))
return GIVEN_P;
else if (!strcmp(Name,"V") || !strcmp(Name,"Vda"))
return GIVEN_V;
else if (!strcmp(Name,"mu") || !strcmp(Name,"Visc") || !strcmp(Name,"M"))
return GIVEN_VISC;
else if (!strcmp(Name,"k") || !strcmp(Name,"Conductivity") || !strcmp(Name,"K"))
return GIVEN_COND;
else
printf("Sorry, your input [%s] was not understood to Name2Type in HumAir.c. Acceptable values are T,P,R,W,D,B,H,M,K and aliases thereof\n",Name);
return -1;
}
int TypeMatch(int TypeCode, const char *Input1Name, const char *Input2Name, const char *Input3Name)
{
// Return the index of the input variable that matches the input, otherwise return -1 for failure
if (TypeCode==Name2Type(Input1Name))
return 1;
if (TypeCode==Name2Type(Input2Name))
return 2;
if (TypeCode==Name2Type(Input3Name))
return 3;
else
return -1;
}
double MoleFractionWater(double T, double p, int HumInput, double InVal)
{
double p_ws,f,W,epsilon=0.621945,Tdp,p_ws_dp,f_dp,p_w_dp,p_s,RH;
if (HumInput==GIVEN_HUMRAT) //(2)
{
W=InVal;
return W/(epsilon+W);
}
else if (HumInput==GIVEN_RH)
{
if (T>=273.16)
{
// Saturation pressure [Pa]
Water->update(CoolProp::QT_INPUTS,0,T);
p_ws= Water->keyed_output(CoolProp::iP);;
}
else
{
// Sublimation pressure [Pa]
p_ws=psub_Ice(T);
}
// Enhancement Factor [-]
f=f_factor(T,p);
// Saturation pressure [Pa]
p_s=f*p_ws;
RH=InVal;
W=epsilon*RH*p_s/(p-RH*p_s);
return W/(epsilon+W);
}
else if (HumInput==GIVEN_TDP)
{
Tdp=InVal;
// Saturation pressure at dewpoint [Pa]
if (Tdp>=273.16)
{
Water->update(CoolProp::QT_INPUTS,0,Tdp);
p_ws_dp = Water->keyed_output(CoolProp::iP); //[Pa]
}
else{
// Sublimation pressure [Pa]
p_ws_dp=psub_Ice(Tdp);
}
// Enhancement Factor at dewpoint temperature [-]
f_dp=f_factor(Tdp,p);
// Water vapor pressure at dewpoint [Pa]
p_w_dp=f_dp*p_ws_dp;
// Water mole fraction [-]
return p_w_dp/p;
}
else
{
return -1000000;
}
}
double RelativeHumidity(double T, double p, double psi_w)
{
double p_ws, f, p_s, W;
if (T >= 273.16){
// Saturation pressure [Pa]
Water->update(CoolProp::QT_INPUTS, 0, T);
p_ws = Water->keyed_output(CoolProp::iP); //[Pa]
}
else{
// sublimation pressure [Pa]
p_ws = psub_Ice(T);
}
// Enhancement Factor [-]
f = f_factor(T,p);
// Saturation pressure [Pa]
p_s = f*p_ws;
// Find humidity ratio
W = HumidityRatio(psi_w);
// Find relative humidity using W/e=phi*p_s/(p-phi*p_s)
return W/epsilon*p/(p_s*(1+W/epsilon));
}
double HAPropsSI(const char *OutputName, const char *Input1Name, double Input1, const char *Input2Name, double Input2, const char *Input3Name, double Input3)
{
try
{
// Add a check to make sure that Air and Water fluid states have been properly instantiated
check_fluid_instantiation();
int In1Type, In2Type, In3Type,iT,iW,iTdp,iRH,ip,Type1,Type2;
double vals[3],p,T,RH,W,Tdp,psi_w,M_ha,v_bar,h_bar,s_bar,MainInputValue,SecondaryInputValue,T_guess;
double Value1,Value2,W_guess;
char MainInputName[100], SecondaryInputName[100],Name1[100],Name2[100];
vals[0]=Input1;
vals[1]=Input2;
vals[2]=Input3;
// First figure out what kind of inputs you have, convert names to Macro expansions
In1Type=Name2Type(Input1Name);
In2Type=Name2Type(Input2Name);
In3Type=Name2Type(Input3Name);
// Pressure must be included
ip=TypeMatch(GIVEN_P,Input1Name,Input2Name,Input3Name);
if (ip>0)
p=vals[ip-1];
else
return -1000;
// -----------------------------------------------------------------------------------------------------
// Check whether the remaining values give explicit solution for mole fraction of water - nice and fast
// -----------------------------------------------------------------------------------------------------
// Find the codes if they are there
iT= TypeMatch(GIVEN_T,Input1Name,Input2Name,Input3Name);
iRH= TypeMatch(GIVEN_RH,Input1Name,Input2Name,Input3Name);
iW= TypeMatch(GIVEN_HUMRAT,Input1Name,Input2Name,Input3Name);
iTdp= TypeMatch(GIVEN_TDP,Input1Name,Input2Name,Input3Name);
if (iT>0) // Found T (or alias) as an input
{
T=vals[iT-1];
if (iRH>0) //Relative Humidity is provided
{
RH=vals[iRH-1];
psi_w=MoleFractionWater(T,p,GIVEN_RH,RH);
}
else if (iW>0)
{
W=vals[iW-1];
psi_w=MoleFractionWater(T,p,GIVEN_HUMRAT,W);
}
else if (iTdp>0)
{
Tdp=vals[iTdp-1];
psi_w=MoleFractionWater(T,p,GIVEN_TDP,Tdp);
}
else
{
// Temperature and pressure are known, figure out which variable holds the other value
if (In1Type!=GIVEN_T && In1Type!=GIVEN_P)
{
strcpy(SecondaryInputName,Input1Name);
SecondaryInputValue=Input1;
}
else if (In2Type!=GIVEN_T && In2Type!=GIVEN_P)
{
strcpy(SecondaryInputName,Input2Name);
SecondaryInputValue=Input2;
}
else if (In3Type!=GIVEN_T && In3Type!=GIVEN_P)
{
strcpy(SecondaryInputName,Input3Name);
SecondaryInputValue=Input3;
}
else{
return _HUGE;
}
// Find the value for W
W_guess=0.0001;
W=Secant_HAProps_W(SecondaryInputName,"P",p,"T",T,SecondaryInputValue,W_guess);
// Mole fraction of water
psi_w=MoleFractionWater(T,p,GIVEN_HUMRAT,W);
// And on to output...
}
}
else
{
// Need to iterate to find dry bulb temperature since temperature is not provided
// Pick one input, and alter T to match the other input
// Get the variables and their values that are NOT pressure for simplicity
// because you know you need pressure as an input and you already have
// its value in variable p
if (ip==1) // Pressure is in slot 1
{
strcpy(Name1,Input2Name);
Value1=Input2;
strcpy(Name2,Input3Name);
Value2=Input3;
}
else if (ip==2) // Pressure is in slot 2
{
strcpy(Name1,Input1Name);
Value1=Input1;
strcpy(Name2,Input3Name);
Value2=Input3;
}
else if (ip==3) // Pressure is in slot 3
{
strcpy(Name1,Input1Name);
Value1=Input1;
strcpy(Name2,Input2Name);
Value2=Input2;
}
else{
return _HUGE;
}
// Get the integer type codes
Type1=Name2Type(Name1);
Type2=Name2Type(Name2);
// First, if one of the inputs is something that can potentially yield
// an explicit solution at a given iteration of the solver, use it
if (Type1==GIVEN_RH || Type1==GIVEN_HUMRAT || Type1==GIVEN_TDP)
{
// First input variable is a "nice" one
// MainInput is the one that you are using in the call to HAProps
MainInputValue=Value1;
strcpy(MainInputName,Name1);
// SecondaryInput is the one that you are trying to match
SecondaryInputValue=Value2;
strcpy(SecondaryInputName,Name2);
}
else if (Type2==GIVEN_RH || Type2==GIVEN_HUMRAT || Type2==GIVEN_TDP)
{
// Second input variable is a "nice" one
// MainInput is the one that you are using in the call to HAProps
MainInputValue=Value2;
strcpy(MainInputName,Name2);
// SecondaryInput is the one that you are trying to match
SecondaryInputValue=Value1;
strcpy(SecondaryInputName,Name1);
}
else
{
printf("Sorry, but currently at least one of the variables as an input to HAProps() must be temperature, relative humidity, humidity ratio, or dewpoint\n Eventually will add a 2-D NR solver to find T and psi_w simultaneously, but not included now\n");
return -1000;
}
double T_min = 210;
double T_max = 450;
T = -1;
// First try to use the secant solver to find T at a few different temperatures
for (T_guess = 210; T_guess < 450; T_guess += 60)
{
try{
T = Secant_HAProps_T(SecondaryInputName,(char *)"P",p,MainInputName,MainInputValue,SecondaryInputValue,T_guess);
double val = HAPropsSI(SecondaryInputName,(char *)"T",T,(char *)"P",p,MainInputName,MainInputValue);
if (!ValidNumber(T) || !ValidNumber(val) || !(T_min < T && T < T_max) || fabs(val-SecondaryInputValue)>1e-6)
{
throw CoolProp::ValueError();
}
else
{
break;
}
}
catch (std::exception &){};
}
if (T < 0) // No solution found using secant
{
// Use the Brent's method solver to find T
T = Brent_HAProps_T(SecondaryInputName,(char *)"P",p,MainInputName,MainInputValue,SecondaryInputValue,T_min,T_max);
}
// If you want the temperature, return it
if (Name2Type(OutputName)==GIVEN_T)
return T;
else
{
// Otherwise, find psi_w for further calculations in the following section
W=HAPropsSI((char *)"W",(char *)"T",T,(char *)"P",p,MainInputName,MainInputValue);
psi_w=MoleFractionWater(T,p,GIVEN_HUMRAT,W);
}
}
M_ha=(1-psi_w)*0.028966+MM_Water()*psi_w; //[kg_ha/mol_ha]
// -----------------------------------------------------------------
// Calculate and return the desired value for known set of T,p,psi_w
// -----------------------------------------------------------------
if (!strcmp(OutputName,"Vda") || !strcmp(OutputName,"V"))
{
v_bar = MolarVolume(T,p,psi_w); //[m^3/mol_ha]
W = HumidityRatio(psi_w); //[kg_w/kg_a]
return v_bar*(1+W)/M_ha; //[m^3/kg_da]
}
else if (!strcmp(OutputName,"Vha"))
{
v_bar = MolarVolume(T,p,psi_w); //[m^3/mol_ha]
return v_bar/M_ha; //[m^3/kg_ha]
}
else if (!strcmp(OutputName,"Y"))
{
return psi_w; //[mol_w/mol]
}
else if (!strcmp(OutputName,"Hda") || !strcmp(OutputName,"H"))
{
return MassEnthalpy(T,p,psi_w);
}
else if (!strcmp(OutputName,"Hha"))
{
v_bar = MolarVolume(T, p, psi_w); //[m^3/mol_ha]
h_bar = MolarEnthalpy(T, p, psi_w,v_bar); //[J/mol_ha]
return h_bar/M_ha; //[kJ/kg_ha]
}
else if (!strcmp(OutputName,"S") || !strcmp(OutputName,"Entropy"))
{
v_bar = MolarVolume(T, p, psi_w); //[m^3/mol_ha]
s_bar = MolarEntropy(T, p, psi_w, v_bar); //[kJ/kmol_ha]
W = HumidityRatio(psi_w); //[kg_w/kg_da]
return s_bar*(1+W)/M_ha; //[kJ/kg_da]
}
else if (!strcmp(OutputName,"C") || !strcmp(OutputName,"cp"))
{
double v_bar1,v_bar2,h_bar1,h_bar2, cp_bar, dT = 1e-3;
v_bar1=MolarVolume(T-dT,p,psi_w); //[m^3/mol_ha]
h_bar1=MolarEnthalpy(T-dT,p,psi_w,v_bar1); //[kJ/kmol_ha]
v_bar2=MolarVolume(T+dT,p,psi_w); //[m^3/mol_ha]
h_bar2=MolarEnthalpy(T+dT,p,psi_w,v_bar2); //[kJ/kmol_ha]
W=HumidityRatio(psi_w); //[kg_w/kg_da]
cp_bar = (h_bar2-h_bar1)/(2*dT);
return cp_bar*(1+W)/M_ha; //[kJ/kg_da]
}
else if (!strcmp(OutputName,"Cha") || !strcmp(OutputName,"cp_ha"))
{
double v_bar1,v_bar2,h_bar1,h_bar2, cp_bar, dT = 1e-3;
v_bar1=MolarVolume(T-dT,p,psi_w); //[m^3/mol_ha]
h_bar1=MolarEnthalpy(T-dT,p,psi_w,v_bar1); //[kJ/kmol_ha]
v_bar2=MolarVolume(T+dT,p,psi_w); //[m^3/mol_ha]
h_bar2=MolarEnthalpy(T+dT,p,psi_w,v_bar2); //[kJ/kmol_ha]
W=HumidityRatio(psi_w); //[kg_w/kg_da]
cp_bar = (h_bar2-h_bar1)/(2*dT);
return cp_bar/M_ha; //[kJ/kg_da]
}
else if (!strcmp(OutputName,"Tdp") || !strcmp(OutputName,"D"))
{
return DewpointTemperature(T,p,psi_w); //[K]
}
else if (!strcmp(OutputName,"Twb") || !strcmp(OutputName,"T_wb") || !strcmp(OutputName,"WetBulb") || !strcmp(OutputName,"B"))
{
return WetbulbTemperature(T,p,psi_w); //[K]
}
else if (!strcmp(OutputName,"Omega") || !strcmp(OutputName,"HumRat") || !strcmp(OutputName,"W"))
{
return HumidityRatio(psi_w);
}
else if (!strcmp(OutputName,"RH") || !strcmp(OutputName,"RelHum") || !strcmp(OutputName,"R"))
{
return RelativeHumidity(T,p,psi_w);
}
else if (!strcmp(OutputName,"mu") || !strcmp(OutputName,"Visc") || !strcmp(OutputName,"M"))
{
return Viscosity(T,p,psi_w);
}
else if (!strcmp(OutputName,"k") || !strcmp(OutputName,"Conductivity") || !strcmp(OutputName,"K"))
{
return Conductivity(T,p,psi_w);
}
else
{
return -1000;
}
}
catch (std::exception &e)
{
CoolProp::set_error_string(e.what());
return _HUGE;
}
catch (...)
{
return _HUGE;
}
}
double HAProps_Aux(const char* Name,double T, double p, double W, char *units)
{
// This function provides some things that are not usually needed, but could be interesting for debug purposes.
// Requires W since it is nice and fast and always defined. Put a dummy value if you want something that doesn't use humidity
// Takes temperature, pressure, and humidity ratio W as inputs;
double psi_w,Tj,tau_Water,tau_Air,B_aa,C_aaa,B_ww,C_www,B_aw,C_aaw,C_aww,v_bar;
Tj=132.6312;
tau_Air=Tj/T;
tau_Water=Water->keyed_output(CoolProp::iT_critical)/T;
try{
if (!strcmp(Name,"Baa"))
{
B_aa=B_Air(T); // [m^3/mol]
strcpy(units,"m^3/mol");
return B_aa;
}
else if (!strcmp(Name,"Caaa"))
{
C_aaa=C_Air(T); // [m^6/mol^2]
strcpy(units,"m^6/mol^2");
return C_aaa;
}
else if (!strcmp(Name,"Bww"))
{
B_ww=B_Water(T); // [m^3/mol]
strcpy(units,"m^3/mol");
return B_ww;
}
else if (!strcmp(Name,"Cwww"))
{
C_www=C_Water(T); // [m^6/mol^2]
strcpy(units,"m^6/mol^2");
return C_www;
}
else if (!strcmp(Name,"dBaa"))
{
B_aa=dBdT_Air(T); // [m^3/mol]
strcpy(units,"m^3/mol");
return B_aa;
}
else if (!strcmp(Name,"dCaaa"))
{
C_aaa=dCdT_Air(T); // [m^6/mol^2]
strcpy(units,"m^6/mol^2");
return C_aaa;
}
else if (!strcmp(Name,"dBww"))
{
B_ww=dBdT_Water(T); // [m^3/mol]
strcpy(units,"m^3/mol");
return B_ww;
}
else if (!strcmp(Name,"dCwww"))
{
C_www=dCdT_Water(T); // [m^6/mol^2]
strcpy(units,"m^6/mol^2");
return C_www;
}
else if (!strcmp(Name,"Baw"))
{
B_aw=_B_aw(T); // [m^3/mol]
strcpy(units,"m^3/mol");
return B_aw;
}
else if (!strcmp(Name,"Caww"))
{
C_aww=_C_aww(T); // [m^6/mol^2]
strcpy(units,"m^6/mol^2");
return C_aww;
}
else if (!strcmp(Name,"Caaw"))
{
C_aaw=_C_aaw(T); // [m^6/mol^2]
strcpy(units,"m^6/mol^2");
return C_aaw;
}
else if (!strcmp(Name,"dBaw"))
{
double dB_aw=_dB_aw_dT(T); // [m^3/mol]
strcpy(units,"m^3/mol");
return dB_aw;
}
else if (!strcmp(Name,"dCaww"))
{
double dC_aww=_dC_aww_dT(T); // [m^6/mol^2]
strcpy(units,"m^6/mol^2");
return dC_aww;
}
else if (!strcmp(Name,"dCaaw"))
{
double dC_aaw=_dC_aaw_dT(T); // [m^6/mol^2]
strcpy(units,"m^6/mol^2");
return dC_aaw;
}
else if (!strcmp(Name,"beta_H"))
{
strcpy(units,"1/Pa");
return HenryConstant(T);
}
else if (!strcmp(Name,"kT"))
{
strcpy(units,"1/Pa");
if (T>273.16)
{
Water->update(CoolProp::PT_INPUTS, p, T);
return Water->keyed_output(CoolProp::iisothermal_compressibility);
}
else
return IsothermCompress_Ice(T,p); //[1/Pa]
}
else if (!strcmp(Name,"p_ws"))
{
strcpy(units,"Pa");
if (T>273.16)
{
Water->update(CoolProp::QT_INPUTS, 0, T);
return Water->keyed_output(CoolProp::iP);
}
else
return psub_Ice(T);
}
else if (!strcmp(Name,"vbar_ws"))
{
strcpy(units,"m^3/mol");
if (T>273.16)
{
Water->update(CoolProp::QT_INPUTS, 0, T);
return 1.0/Water->keyed_output(CoolProp::iDmolar);
}
else
{
// It is ice
return dg_dp_Ice(T,p)*MM_Water()/1000/1000; //[m^3/mol]
}
}
else if (!strcmp(Name,"f"))
{
strcpy(units,"-");
return f_factor(T,p);
}
// Get psi_w since everything else wants it
psi_w=MoleFractionWater(T,p,GIVEN_HUMRAT,W);
if (!strcmp(Name,"Bm"))
{
strcpy(units,"m^3/mol");
return B_m(T,psi_w);
}
else if (!strcmp(Name,"Cm"))
{
strcpy(units,"m^6/mol^2");
return C_m(T,psi_w);
}
else if (!strcmp(Name,"hvirial"))
{
v_bar=MolarVolume(T,p,psi_w);
return 8.3145*T*((B_m(T,psi_w)-T*dB_m_dT(T,psi_w))/v_bar+(C_m(T,psi_w)-T/2.0*dC_m_dT(T,psi_w))/(v_bar*v_bar));
}
//else if (!strcmp(Name,"ha"))
//{
// delta=1.1/322; tau=132/T;
// return 1+tau*DerivTerms("dphi0_dTau",tau,delta,"Water");
//}
//else if (!strcmp(Name,"hw"))
//{
// //~ return Props('D','T',T,'P',p,"Water")/322; tau=647/T;
// delta=1000/322; tau=647/T;
// //~ delta=rho_Water(T,p,TYPE_TP);tau=647/T;
// return 1+tau*DerivTerms("dphi0_dTau",tau,delta,"Water");
//}
else if (!strcmp(Name,"hbaro_w"))
{
v_bar=MolarVolume(T,p,psi_w);
return IdealGasMolarEnthalpy_Water(T,v_bar);
}
else if (!strcmp(Name,"hbaro_a"))
{
v_bar=MolarVolume(T,p,psi_w);
return IdealGasMolarEnthalpy_Air(T,v_bar);
}
else
{
printf("Sorry I didn't understand your input [%s] to HAProps_Aux\n",Name);
return -1;
}
}
catch(std::exception &)
{
return _HUGE;
}
return _HUGE;
}
double cair_sat(double T)
{
// Air saturation specific heat
// Based on a correlation from EES, good from 250K to 300K.
// No error bound checking is carried out
// T: [K]
// cair_s: [kJ/kg-K]
return 2.14627073E+03-3.28917768E+01*T+1.89471075E-01*T*T-4.86290986E-04*T*T*T+4.69540143E-07*T*T*T*T;
}
double IceProps(const char* Name, double T, double p)
{
if (!strcmp(Name,"s"))
{
return s_Ice(T,p*1000.0);
}
else if (!strcmp(Name,"rho"))
{
return rho_Ice(T,p*1000.0);
}
else if (!strcmp(Name,"h"))
{
return h_Ice(T,p*1000.0);
}
else
{
return 1e99;
}
}
} /* namespace HumidAir */
#ifdef ENABLE_CATCH
#include <math.h>
#include "catch.hpp"
TEST_CASE("Check HA Virials from Table A.2.1","[RP1485]")
{
SECTION("B_aa")
{
CHECK(fabs(HumidAir::B_Air(-60+273.15)/(-33.065/1e6)-1) < 1e-3);
CHECK(fabs(HumidAir::B_Air(0+273.15)/(-13.562/1e6)-1) < 1e-3);
CHECK(fabs(HumidAir::B_Air(200+273.15)/(11.905/1e6)-1) < 1e-3);
CHECK(fabs(HumidAir::B_Air(350+273.15)/(18.949/1e6)-1) < 1e-3);
}
SECTION("B_ww")
{
CHECK(fabs(HumidAir::B_Water(-60+273.15)/(-11174/1e6)-1) < 1e-3);
CHECK(fabs(HumidAir::B_Water(0+273.15)/(-2025.6/1e6)-1) < 1e-3);
CHECK(fabs(HumidAir::B_Water(200+273.15)/(-200.52/1e6)-1) < 1e-3);
CHECK(fabs(HumidAir::B_Water(350+273.15)/(-89.888/1e6)-1) < 1e-3);
}
SECTION("B_aw")
{
CHECK(fabs(HumidAir::_B_aw(-60+273.15)/(-68.306/1e6)-1) < 1e-3);
CHECK(fabs(HumidAir::_B_aw(0+273.15)/(-38.074/1e6)-1) < 1e-3);
CHECK(fabs(HumidAir::_B_aw(200+273.15)/(-2.0472/1e6)-1) < 1e-3);
CHECK(fabs(HumidAir::_B_aw(350+273.15)/(7.5200/1e6)-1) < 1e-3);
}
SECTION("C_aaa")
{
CHECK(fabs(HumidAir::C_Air(-60+273.15)/(2177.9/1e12)-1) < 1e-3);
CHECK(fabs(HumidAir::C_Air(0+273.15)/(1893.1/1e12)-1) < 1e-3);
CHECK(fabs(HumidAir::C_Air(200+273.15)/(1551.2/1e12)-1) < 1e-3);
CHECK(fabs(HumidAir::C_Air(350+273.15)/(1464.7/1e12)-1) < 1e-3);
}
SECTION("C_www")
{
CHECK(fabs(HumidAir::C_Water(-60+273.15)/(-1.5162999202e-04)-1) < 1e-3); // Relaxed criterion for this parameter
CHECK(fabs(HumidAir::C_Water(0+273.15)/(-10981960/1e12)-1) < 1e-3);
CHECK(fabs(HumidAir::C_Water(200+273.15)/(-0.00000003713759442)-1) < 1e-3);
CHECK(fabs(HumidAir::C_Water(350+273.15)/(-0.000000001198914198)-1) < 1e-3);
}
SECTION("C_aaw")
{
CHECK(fabs(HumidAir::_C_aaw(-60+273.15)/(1027.3/1e12)-1) < 1e-3);
CHECK(fabs(HumidAir::_C_aaw(0+273.15)/(861.02/1e12)-1) < 1e-3);
CHECK(fabs(HumidAir::_C_aaw(200+273.15)/(627.15/1e12)-1) < 1e-3);
CHECK(fabs(HumidAir::_C_aaw(350+273.15)/(583.79/1e12)-1) < 1e-3);
}
SECTION("C_aww")
{
CHECK(fabs(HumidAir::_C_aww(-60+273.15)/(-1821432/1e12)-1) < 1e-3);
CHECK(fabs(HumidAir::_C_aww(0+273.15)/(-224234/1e12)-1) < 1e-3);
CHECK(fabs(HumidAir::_C_aww(200+273.15)/(-8436.5/1e12)-1) < 1e-3);
CHECK(fabs(HumidAir::_C_aww(350+273.15)/(-2486.9/1e12)-1) < 1e-3);
}
}
TEST_CASE("Enhancement factor from Table A.3","[RP1485]")
{
CHECK(fabs(HumidAir::f_factor(-60+273.15,101325)/(1.00708)-1) < 1e-3);
CHECK(fabs(HumidAir::f_factor( 80+273.15,101325)/(1.00573)-1) < 1e-3);
CHECK(fabs(HumidAir::f_factor(-60+273.15,10000e3)/(2.23918)-1) < 1e-3);
CHECK(fabs(HumidAir::f_factor(300+273.15,10000e3)/(1.04804)-1) < 1e-3);
}
TEST_CASE("Isothermal compressibility from Table A.5","[RP1485]")
{
CHECK(fabs(HumidAir::isothermal_compressibility(-60+273.15,101325)/(0.10771e-9)-1) < 1e-3);
CHECK(fabs(HumidAir::isothermal_compressibility( 80+273.15,101325)/(0.46009e-9)-1) < 1e-2); // Relaxed criterion for this parameter
CHECK(fabs(HumidAir::isothermal_compressibility(-60+273.15,10000e3)/(0.10701e-9)-1) < 1e-3);
CHECK(fabs(HumidAir::isothermal_compressibility(300+273.15,10000e3)/(3.05896e-9)-1) < 1e-3);
}
TEST_CASE("Henry constant from Table A.6","[RP1485]")
{
CHECK(fabs(HumidAir::HenryConstant(0+273.15)/(0.22600e-9)-1) < 1e-3);
CHECK(fabs(HumidAir::HenryConstant(300+273.15)/(0.58389e-9)-1) < 1e-3);
}
// A structure to hold the values for one call to HAProps
struct hel
{
public:
std::string in1,in2,in3,out;
double v1, v2, v3, expected;
hel(std::string in1, double v1, std::string in2, double v2, std::string in3, double v3, std::string out, double expected)
{
this->in1 = in1; this->in2 = in2; this->in3 = in3;
this->v1 = v1; this->v2 = v2; this->v3 = v3;
this->expected = expected; this->out = out;
};
};
hel table_A11[] ={hel("T",473.15,"W",0.00,"P",101325,"B",45.07+273.15),
hel("T",473.15,"W",0.00,"P",101325,"V",1.341),
hel("T",473.15,"W",0.00,"P",101325,"H",202520),
hel("T",473.15,"W",0.00,"P",101325,"S",555.8),
hel("T",473.15,"W",0.50,"P",101325,"B",81.12+273.15),
hel("T",473.15,"W",0.50,"P",101325,"V",2.416),
hel("T",473.15,"W",0.50,"P",101325,"H",1641400),
hel("T",473.15,"W",0.50,"P",101325,"S",4829.5),
hel("T",473.15,"W",1.00,"P",101325,"B",88.15+273.15),
hel("T",473.15,"W",1.00,"P",101325,"V",3.489),
hel("T",473.15,"W",1.00,"P",101325,"H",3079550),
hel("T",473.15,"W",1.00,"P",101325,"S",8889.0)};
hel table_A12[] ={hel("T",473.15,"W",0.00,"P",1e6,"B",90.47+273.15),
hel("T",473.15,"W",0.00,"P",1e6,"V",0.136),
hel("T",473.15,"W",0.00,"P",1e6,"H",201940),
hel("T",473.15,"W",0.00,"P",1e6,"S",-101.1), // Using CoolProp 4.2, this value seems incorrect from report
hel("T",473.15,"W",0.50,"P",1e6,"B",148.49+273.15),
hel("T",473.15,"W",0.50,"P",1e6,"V",0.243),
hel("T",473.15,"W",0.50,"P",1e6,"H",1630140),
hel("T",473.15,"W",0.50,"P",1e6,"S",3630.2),
hel("T",473.15,"W",1.00,"P",1e6,"B",159.92+273.15),
hel("T",473.15,"W",1.00,"P",1e6,"V",0.347),
hel("T",473.15,"W",1.00,"P",1e6,"H",3050210),
hel("T",473.15,"W",1.00,"P",1e6,"S",7141.3)};
hel table_A15[] ={hel("T",473.15,"W",0.10,"P",1e7,"B",188.92+273.15),
hel("T",473.15,"W",0.10,"P",1e7,"V",0.016),
hel("T",473.15,"W",0.10,"P",1e7,"H",473920),
hel("T",473.15,"W",0.10,"P",1e7,"S",-90.1),
hel("T",473.15,"W",0.10,"P",1e7,"R",0.734594),
};
class HAPropsConsistencyFixture
{
public:
std::vector<hel> inputs;
std::string in1,in2,in3,out;
double v1, v2, v3, expected, actual;
void set_table(hel h[], int nrow){
int h1 = sizeof(h), h2 = sizeof(h[0]);
inputs = std::vector<hel>(h, h + nrow);
};
void set_values(hel &h){
this->in1 = h.in1; this->in2 = h.in2; this->in3 = h.in3;
this->v1 = h.v1; this->v2 = h.v2; this->v3 = h.v3;
this->expected = h.expected; this->out = h.out;
};
void call(){
actual = HumidAir::HAPropsSI(out.c_str(), in1.c_str(), v1, in2.c_str(), v2, in3.c_str(), v3);
}
};
TEST_CASE_METHOD(HAPropsConsistencyFixture, "ASHRAE RP1485 Tables", "[RP1485]")
{
SECTION("Table A.15")
{
set_table(table_A15, 5);
for (std::size_t i = 0; i < inputs.size(); ++i){
set_values(inputs[i]);
call();
CAPTURE(inputs[i].in1);
CAPTURE(inputs[i].v1);
CAPTURE(inputs[i].in2);
CAPTURE(inputs[i].v2);
CAPTURE(inputs[i].in3);
CAPTURE(inputs[i].v3);
CAPTURE(out);
CAPTURE(actual);
CAPTURE(expected);
CHECK(fabs(actual/expected-1) < 0.01);
}
}
SECTION("Table A.11")
{
set_table(table_A11, 12);
for (std::size_t i = 0; i < inputs.size(); ++i){
set_values(inputs[i]);
call();
CAPTURE(inputs[i].in1);
CAPTURE(inputs[i].v1);
CAPTURE(inputs[i].in2);
CAPTURE(inputs[i].v2);
CAPTURE(inputs[i].in3);
CAPTURE(inputs[i].v3);
CAPTURE(out);
CAPTURE(actual);
CAPTURE(expected);
CHECK(fabs(actual/expected-1) < 0.01);
}
}
SECTION("Table A.12")
{
set_table(table_A12, 12);
for (std::size_t i = 0; i < inputs.size(); ++i){
set_values(inputs[i]);
call();
CAPTURE(inputs[i].in1);
CAPTURE(inputs[i].v1);
CAPTURE(inputs[i].in2);
CAPTURE(inputs[i].v2);
CAPTURE(inputs[i].in3);
CAPTURE(inputs[i].v3);
CAPTURE(out);
CAPTURE(actual);
CAPTURE(expected);
CHECK(fabs(actual/expected-1) < 0.01);
}
}
}
#endif /* CATCH_ENABLED */