Files
CoolProp/include/IncompressibleFluid.h
Ian Bell 9eb3eb8db1 Run clang-format with claude code and fix VS warnings (#2629)
* Run clang-format with claude code and fix VS warnings

* More clang-format

* And the tests too

* Cleanup from clang-tidy

* More constness and modernization

* Cleanup and modernization
2025-10-05 11:02:51 -04:00

430 lines
16 KiB
C++

/*
* CoolPropFluid.h
*
* Created on: 20 Dec 2013
* Author: jowr
*/
#ifndef INCOMPRESSIBLEFLUID_H_
#define INCOMPRESSIBLEFLUID_H_
#include "DataStructures.h"
#include "Helmholtz.h"
#include "Solvers.h"
#include <numeric>
#include <string>
#include <vector>
#include <map>
#include <cassert>
#include <iterator>
#include <Eigen/Core>
#include "PolyMath.h"
#include "MatrixMath.h"
namespace CoolProp {
struct IncompressibleData
{
enum IncompressibleTypeEnum
{
INCOMPRESSIBLE_NOT_SET,
INCOMPRESSIBLE_POLYNOMIAL,
INCOMPRESSIBLE_EXPPOLYNOMIAL,
INCOMPRESSIBLE_EXPONENTIAL,
INCOMPRESSIBLE_LOGEXPONENTIAL,
INCOMPRESSIBLE_POLYOFFSET
};
IncompressibleTypeEnum type;
Eigen::MatrixXd coeffs; //TODO: Can we store the Eigen::Matrix objects more efficiently?
//std::vector<std::vector<double> > coeffs;
IncompressibleData() {
type = INCOMPRESSIBLE_NOT_SET;
};
};
#if !defined(NO_FMTLIB) && FMT_VERSION >= 90000
inline int format_as(IncompressibleData::IncompressibleTypeEnum type) {
return fmt::underlying(type);
}
#endif
/// A property provider for incompressible solutions and pure fluids
/**
This fluid instance is populated using an entry from a JSON file
*/
class IncompressibleFluid
{
protected:
bool strict;
std::string name;
std::string description;
std::string reference;
double Tmin, Tmax;
double xmin, xmax;
composition_types xid;
double TminPsat;
double xbase, Tbase;
/// These are the objects that hold the coefficients
/** Note that all polynomials require a 2-dimensional array
* of coefficients. This array may have only one row or
* column, but the structure should be 2D. This behaviour is
* hard-coded in the JSON file reader that resides inside
* the IncompressibleLibrary.cpp
* All other functions, also polyoffset, can only handle 1D
* input and throw an error if you feed them other coefficients.
*/
/// Density coefficients
/** If 2D, the rows are temperature and the columns are concentration.
* If 1D, should be a column vector of temperature coefficients
*/
IncompressibleData density;
/// Specific heat coefficients
/** If 2D, the rows are temperature and the columns are concentration.
* If 1D, should be a column vector of temperature coefficients
* Fails for all other forms than polynomial due to the automatic
* integration for internal energy and entropy.
*/
IncompressibleData specific_heat;
/// Viscosity coefficients
/** If 2D, the rows are temperature and the columns are concentration.
* If 1D, should be a column vector of temperature coefficients
*/
IncompressibleData viscosity;
/// Conductivity coefficients
/** If 2D, the rows are temperature and the columns are concentration.
* If 1D, should be a column vector of temperature coefficients
*/
IncompressibleData conductivity;
/// Saturation pressure coefficients
/** If 2D, the rows are temperature and the columns are concentration.
* If 1D, should be a column vector of temperature coefficients
*/
IncompressibleData p_sat;
/// Freezing temperature coefficients
/** If 2D, the rows are concentration and the columns are pressure.
* If 1D, should be a column vector of concentration coefficients
*/
IncompressibleData T_freeze;
/// Mass fraction conversion coefficients
/** If the fluid type is mass-based, it does not do anything. Otherwise,
* it converts the mass fraction to the required input.
*/
IncompressibleData mass2input;
/// Volume fraction conversion coefficients
/** If the fluid type is volume-based, it does not do anything. Otherwise,
* it converts the volume fraction to the required input.
*/
IncompressibleData volume2input;
/// Mole fraction conversion coefficients
/** If the fluid type is mole-based, it does not do anything. Otherwise,
* it converts the mole fraction to the required input.
*/
IncompressibleData mole2input;
Polynomial2DFrac poly;
// Forward declaration of the some internal functions
//double h_u(double T, double p, double x);
//double u_h(double T, double p, double x);
public:
IncompressibleFluid() : Tmin(_HUGE), Tmax(_HUGE), xmin(_HUGE), xmax(_HUGE), TminPsat(_HUGE), xbase(_HUGE), Tbase(_HUGE) {
strict = true;
xid = IFRAC_UNDEFINED;
};
virtual ~IncompressibleFluid() {};
std::string getName() const {
return name;
}
std::string get_name() const {
return getName();
} // For backwards-compatibility.
std::string getDescription() const {
return description;
}
std::string getReference() const {
return reference;
}
double getTmax() const {
return Tmax;
}
double getTmin() const {
return Tmin;
}
double getxmax() const {
return xmax;
}
double getxmin() const {
return xmin;
}
composition_types getxid() const {
return xid;
}
double getTminPsat() const {
return TminPsat;
}
double getTbase() const {
return Tbase;
}
double getxbase() const {
return xbase;
}
void setName(const std::string& name) {
this->name = name;
}
void setDescription(const std::string& description) {
this->description = description;
}
void setReference(const std::string& reference) {
this->reference = reference;
}
void setTmax(double Tmax) {
this->Tmax = Tmax;
}
void setTmin(double Tmin) {
this->Tmin = Tmin;
}
void setxmax(double xmax) {
this->xmax = xmax;
}
void setxmin(double xmin) {
this->xmin = xmin;
}
void setxid(composition_types xid) {
this->xid = xid;
}
void setTminPsat(double TminPsat) {
this->TminPsat = TminPsat;
}
void setTbase(double Tbase) {
this->Tbase = Tbase;
}
void setxbase(double xbase) {
this->xbase = xbase;
}
/// Setters for the coefficients
void setDensity(IncompressibleData density) {
this->density = density;
}
void setSpecificHeat(IncompressibleData specific_heat) {
this->specific_heat = specific_heat;
}
void setViscosity(IncompressibleData viscosity) {
this->viscosity = viscosity;
}
void setConductivity(IncompressibleData conductivity) {
this->conductivity = conductivity;
}
void setPsat(IncompressibleData p_sat) {
this->p_sat = p_sat;
}
void setTfreeze(IncompressibleData T_freeze) {
this->T_freeze = T_freeze;
}
/// Setters for the concentration conversion coefficients
void setMass2input(IncompressibleData mass2input) {
this->mass2input = mass2input;
}
void setVolume2input(IncompressibleData volume2input) {
this->volume2input = volume2input;
}
void setMole2input(IncompressibleData mole2input) {
this->mole2input = mole2input;
}
/// A function to check coefficients and equation types.
void validate();
/// A function to test the density coefficients for 1D or 2D
bool is_pure();
protected:
/// Base functions that handle the custom function types
double baseExponential(IncompressibleData data, double y, double ybase);
double baseLogexponential(IncompressibleData data, double y, double ybase);
double baseExponentialOffset(IncompressibleData data, double y);
double basePolyOffset(IncompressibleData data, double y, double z = 0.0);
public:
/* All functions need T and p as input. Might not
* be necessary, but gives a clearer structure.
*/
/// Density as a function of temperature, pressure and composition.
double rho(double T, double p, double x);
/// Heat capacities as a function of temperature, pressure and composition.
double c(double T, double p, double x);
double cp(double T, double p, double x) {
throw ValueError(format("%s (%d): Please use the c-function instead.", __FILE__, __LINE__));
}
double cv(double T, double p, double x) {
throw ValueError(format("%s (%d): Please use the c-function instead.", __FILE__, __LINE__));
}
/// Entropy as a function of temperature, pressure and composition.
double s(double T, double p, double x) {
throw ValueError(format("%s (%d): The internal calculations have changed, use the backend to calculate entropy from the partial derivatives.",
__FILE__, __LINE__));
}
/// Internal energy as a function of temperature, pressure and composition.
double u(double T, double p, double x) {
throw ValueError(
format("%s (%d): The internal calculations have changed, use the backend to calculate internal energy from enthalpy.", __FILE__, __LINE__));
}
/// Enthalpy as a function of temperature, pressure and composition.
double h(double T, double p, double x) {
throw ValueError(
format("%s (%d): The internal calculations have changed, use the backend to calculate enthalpy from the partial derivatives.", __FILE__,
__LINE__));
}
/// Viscosity as a function of temperature, pressure and composition.
double visc(double T, double p, double x);
/// Thermal conductivity as a function of temperature, pressure and composition.
double cond(double T, double p, double x);
/// Saturation pressure as a function of temperature and composition.
double psat(double T, double x);
/// Freezing temperature as a function of pressure and composition.
double Tfreeze(double p, double x);
/* Below are direct calculations of the derivatives. Nothing
* special is going on, we simply use the polynomial class to
* derive the different functions with respect to temperature.
*/
/// Partial derivative of density
// with respect to temperature at constant pressure and composition
double drhodTatPx(double T, double p, double x);
///// Partial derivative of entropy
//// with respect to temperature at constant pressure and composition
//double dsdTatPx (double T, double p, double x){return c(T,p,x)/T;};
///// Partial derivative of enthalpy
//// with respect to temperature at constant pressure and composition
//double dhdTatPx (double T, double p, double x){return c(T,p,x);};
/// Partial derivative of entropy
// with respect to temperature at constant pressure and composition
// integrated in temperature
double dsdTatPxdT(double T, double p, double x);
/// Partial derivative of enthalpy
// with respect to temperature at constant pressure and composition
// integrated in temperature
double dhdTatPxdT(double T, double p, double x);
/// Mass fraction conversion function
/** If the fluid type is mass-based, it does not do anything. Otherwise,
* it converts the mass fraction to the required input. */
double inputFromMass(double T, double x);
/// Volume fraction conversion function
/** If the fluid type is volume-based, it does not do anything. Otherwise,
* it converts the volume fraction to the required input. */
double inputFromVolume(double T, double x);
/// Mole fraction conversion function
/** If the fluid type is mole-based, it does not do anything. Otherwise,
* it converts the mole fraction to the required input. */
double inputFromMole(double T, double x);
/* Some functions can be inverted directly, those are listed
* here. It is also possible to solve for other quantities, but
* that involves some more sophisticated processing and is not
* done here, but in the backend, T(h,p) for example.
*/
/// Temperature as a function of density, pressure and composition.
double T_rho(double Dmass, double p, double x);
/// Temperature as a function of heat capacities as a function of temperature, pressure and composition.
double T_c(double Cmass, double p, double x);
/// Temperature as a function of entropy as a function of temperature, pressure and composition.
double T_s(double Smass, double p, double x) {
throw NotImplementedError(format("%s (%d): T from entropy is not implemented in the fluid, use the backend.", __FILE__, __LINE__));
}
/// Temperature as a function of internal energy as a function of temperature, pressure and composition.
double T_u(double Umass, double p, double x) {
throw NotImplementedError(format("%s (%d): T from internal energy is not implemented in the fluid, use the backend.", __FILE__, __LINE__));
}
/// Temperature as a function of enthalpy, pressure and composition.
double T_h(double Hmass, double p, double x) {
throw NotImplementedError(format("%s (%d): T from enthalpy is not implemented in the fluid, use the backend.", __FILE__, __LINE__));
}
/// Viscosity as a function of temperature, pressure and composition.
double T_visc(double visc, double p, double x) {
throw NotImplementedError(format("%s (%d): T from viscosity is not implemented.", __FILE__, __LINE__));
}
/// Thermal conductivity as a function of temperature, pressure and composition.
double T_cond(double cond, double p, double x) {
throw NotImplementedError(format("%s (%d): T from conductivity is not implemented.", __FILE__, __LINE__));
}
/// Saturation pressure as a function of temperature and composition.
double T_psat(double psat, double x) {
throw NotImplementedError(format("%s (%d): T from psat is not implemented.", __FILE__, __LINE__));
}
/// Composition as a function of freezing temperature and pressure.
double x_Tfreeze(double Tfreeze, double p) {
throw NotImplementedError(format("%s (%d): x from T_freeze is not implemented.", __FILE__, __LINE__));
}
protected:
/* Define internal energy and enthalpy as functions of the
* other properties to provide data in case there are no
* coefficients.
*/
/// Enthalpy from u, p and rho.
/** Calculate enthalpy as a function of temperature and
* pressure employing functions for internal energy and
* density. Provides consistent formulations. */
double h_u(double T, double p, double x) {
return u(T, p, x) + p / rho(T, p, x);
};
/// Internal energy from h, p and rho.
/** Calculate internal energy as a function of temperature
* and pressure employing functions for enthalpy and
* density. Provides consistent formulations. */
double u_h(double T, double p, double x) {
return h(T, p, x) - p / rho(T, p, x);
};
/*
* Some more functions to provide a single implementation
* of important routines.
* We start with the check functions that can validate input
* in terms of pressure p, temperature T and composition x.
*/
/// Check validity of temperature input.
/** Compares the given temperature T to the result of a
* freezing point calculation. This is not necessarily
* defined for all fluids, default values do not cause errors. */
bool checkT(double T, double p, double x);
/// Check validity of pressure input.
/** Compares the given pressure p to the saturation pressure at
* temperature T and throws and exception if p is lower than
* the saturation conditions.
* The default value for psat is -1 yielding true if psat
* is not redefined in the subclass.
* */
bool checkP(double T, double p, double x);
public:
/// Check validity of composition input.
/** Compares the given composition x to a stored minimum and
* maximum value. Enforces the redefinition of xmin and
* xmax since the default values cause an error. */
bool checkX(double x);
/// Check validity of temperature, pressure and composition input.
bool checkTPX(double T, double p, double x) {
return (checkT(T, p, x) && checkP(T, p, x) && checkX(x));
};
};
} /* namespace CoolProp */
#endif /* INCOMPRESSIBLEFLUID_H_ */