Files
CoolProp/include/Ancillaries.h
2014-11-19 12:16:14 -05:00

200 lines
6.4 KiB
C++

#ifndef ANCILLARIES_H
#define ANCILLARIES_H
#include "Exceptions.h"
#include <vector>
#include "rapidjson/rapidjson_include.h"
#include "Eigen/Core"
#include "PolyMath.h"
namespace CoolProp{
/**
The surface tension correlation class uses correlations for the surface tension that are all
of the form
\f[
\sigma = \sum_{i=0}^{k-1}a_i\left(1-\frac{T}{\tilde T_c}\right)^{n_i}
\f]
where \f$ \tilde T_c \f$ is the critical temperature used for the correlation which is
almost always equal to the critical temperature of the equation of state. Result for
surface tension is in N/m
*/
class SurfaceTensionCorrelation
{
public:
std::vector<long double> a, n, s;
long double Tc;
std::size_t N;
std::string BibTeX;
SurfaceTensionCorrelation(){};
SurfaceTensionCorrelation(rapidjson::Value &json_code)
{
a = cpjson::get_long_double_array(json_code["a"]);
n = cpjson::get_long_double_array(json_code["n"]);
Tc = cpjson::get_double(json_code,"Tc");
BibTeX = cpjson::get_string(json_code,"BibTeX");
this->N = n.size();
s = n;
};
long double evaluate(long double T)
{
if (a.empty()){ throw NotImplementedError(format("surface tension curve not provided"));}
long double THETA = 1-T/Tc;
for (std::size_t i = 0; i < N; ++i)
{
s[i] = a[i]*pow(THETA, n[i]);
}
return std::accumulate(s.begin(), s.end(), 0.0);
}
};
/**
*
* This is generalized class that can be used to manage an ancillary curve,
* here they are ancillary curves for saturation pressure, density, enthalpy, entropy.
*
* The form of the ancillary equation can take one of a number of forms:
*
* a) So-called "exponential" form (type = TYPE_EXPONENTIAL) that has a form like
*
* \f[ y = y_c\exp\left(\frac{T_c}{T}\sum(n_i \theta^{t_i})\right) \f]
* or
* \f[ y = y_c\exp\left(\sum(n_i \theta^{t_i})\right) \f]
*
* b) A non-exponential form (type = TYPE_NOT_EXPONENTIAL) that has a form of
*
* \f[ y = y_c\left(1+\sum_i(n_i\theta^t_i)\right) \f]
* with
* \f[ \theta = \left(1-\frac{T}{T_c}\right) \f]
* which is conveniently equal to zero at the critical point
*
* c) Rational polynomial form (type = TYPE_RATIONAL_POLYNOMIAL) that has a form of
* \f[ y = \frac{\sum_iA_iT^i}{\sum_iB_iT^i}\f]
* where i is an integer, and the coefficients are in increasing order in both numerator and denominator
*/
class SaturationAncillaryFunction
{
private:
Eigen::MatrixXd num_coeffs, ///< Coefficients for numerator in rational polynomial
den_coeffs; ///< Coefficients for denominator in rational polynomial
std::vector<double> n, t, s;
bool using_tau_r;
long double Tmax, Tmin, reducing_value, T_r, max_abs_error;
enum ancillaryfunctiontypes{TYPE_NOT_SET = 0,
TYPE_NOT_EXPONENTIAL,
TYPE_EXPONENTIAL,
TYPE_RATIONAL_POLYNOMIAL};
ancillaryfunctiontypes type;
std::size_t N;
public:
SaturationAncillaryFunction(){type = TYPE_NOT_SET;};
SaturationAncillaryFunction(rapidjson::Value &json_code);
/// Return true if the ancillary is enabled
bool enabled(void){return type != TYPE_NOT_SET;}
/// Get the maximum absolute error for this fit
/// @returns max_abs_error the maximum absolute error for ancillaries that are characterized by maximum absolute error
long double get_max_abs_error(){return max_abs_error;};
/// Evaluate this ancillary function, yielding for instance the saturated liquid density
/// @param T The temperature in K
/// @returns y the value of the ancillary function at temperature T
double evaluate(double T);
/// Invert this ancillary function, and calculate the temperature given the output the value of the function
/// @param value The value of the output
/// @param min_bound (optional) The minimum value for T; ignored if < 0
/// @param max_bound (optional) The maximum value for T; ignored if < 0
/// @returns T The temperature in K
double invert(double value, double min_bound = -1, double max_bound = -1);
/// Get the minimum temperature
/// @returns T The minimum temperature in K
double get_Tmin(void){return Tmin;};
/// Get the maximum temperature
/// @returns T The maximum temperature in K
double get_Tmax(void){return Tmax;};
};
struct MeltingLinePiecewiseSimonSegment
{
long double T_0, a, c, p_0, T_max, T_min, p_min, p_max;
};
struct MeltingLinePiecewiseSimonData
{
std::vector<MeltingLinePiecewiseSimonSegment> parts;
};
class MeltingLinePiecewisePolynomialInTrSegment
{
public:
std::vector<long double> a, t;
long double T_0, p_0, T_max, T_min, p_min, p_max;
long double evaluate(long double T)
{
long double summer = 0;
for (std::size_t i =0; i < a.size(); ++i){
summer += a[i]*(pow(T/T_0,t[i])-1);
}
return p_0*(1+summer);
}
};
struct MeltingLinePiecewisePolynomialInTrData
{
std::vector<MeltingLinePiecewisePolynomialInTrSegment> parts;
};
class MeltingLinePiecewisePolynomialInThetaSegment
{
public:
std::vector<long double> a, t;
long double T_0, p_0, T_max, T_min, p_min, p_max;
long double evaluate(long double T)
{
long double summer = 0;
for (std::size_t i =0; i < a.size(); ++i){
summer += a[i]*pow(T/T_0-1,t[i]);
}
return p_0*(1+summer);
}
};
struct MeltingLinePiecewisePolynomialInThetaData
{
std::vector<MeltingLinePiecewisePolynomialInThetaSegment> parts;
};
class MeltingLineVariables
{
public:
enum MeltingLineVariablesEnum{
MELTING_LINE_SIMON_TYPE,
MELTING_LINE_POLYNOMIAL_IN_TR_TYPE,
MELTING_LINE_POLYNOMIAL_IN_THETA_TYPE,
MELTING_LINE_NOT_SET
};
long double Tmin, Tmax, pmin, pmax;
long double evaluate(int OF, int GIVEN, long double value);
/// Evaluate the melting line to calculate the limits of the curve (Tmin/Tmax and pmin/pmax)
void set_limits();
bool enabled(){return type != MELTING_LINE_NOT_SET;};
std::string BibTeX;
long double T_m; ///< Melting temperature at 1 atmosphere
MeltingLinePiecewiseSimonData simon;
MeltingLinePiecewisePolynomialInTrData polynomial_in_Tr;
MeltingLinePiecewisePolynomialInThetaData polynomial_in_Theta;
int type;
MeltingLineVariables(){type = MELTING_LINE_NOT_SET;};
};
} /* namespace CoolProp */
#endif