mirror of
https://github.com/CoolProp/CoolProp.git
synced 2026-01-23 12:58:03 -05:00
693 lines
24 KiB
C++
693 lines
24 KiB
C++
/*
|
|
* AbstractState.cpp
|
|
*
|
|
* Created on: 21 Dec 2013
|
|
* Author: jowr
|
|
*/
|
|
|
|
#define _CRT_SECURE_NO_WARNINGS
|
|
|
|
#include <stdlib.h>
|
|
#include "math.h"
|
|
#include "AbstractState.h"
|
|
#include "Backends/REFPROP/REFPROPBackend.h"
|
|
#include "Backends/Helmholtz/HelmholtzEOSBackend.h"
|
|
#include "Backends/Incompressible/IncompressibleBackend.h"
|
|
#include "Backends/Helmholtz/Fluids/FluidLibrary.h"
|
|
#include "Backends/Tabular/TTSEBackend.h"
|
|
#include "Backends/Tabular/BicubicBackend.h"
|
|
|
|
namespace CoolProp {
|
|
|
|
AbstractState * AbstractState::factory(const std::string &backend, const std::vector<std::string> &fluid_names)
|
|
{
|
|
static const std::string HEOS_string = "HEOS";
|
|
if (!backend.compare(HEOS_string))
|
|
{
|
|
if (fluid_names.size() == 1){
|
|
return new HelmholtzEOSBackend(fluid_names[0]);
|
|
}
|
|
else{
|
|
return new HelmholtzEOSMixtureBackend(fluid_names);
|
|
}
|
|
}
|
|
else if (!backend.compare("REFPROP"))
|
|
{
|
|
if (fluid_names.size() == 1){
|
|
return new REFPROPBackend(fluid_names[0]);
|
|
}
|
|
else{
|
|
return new REFPROPMixtureBackend(fluid_names);
|
|
}
|
|
}
|
|
else if (!backend.compare("INCOMP"))
|
|
{
|
|
if (fluid_names.size() != 1){throw ValueError(format("For INCOMP backend, name vector must be one element long"));}
|
|
return new IncompressibleBackend(fluid_names[0]);
|
|
}
|
|
else if (backend.find("TTSE&") == 0)
|
|
{
|
|
if (fluid_names.size() != 1){throw ValueError(format("For backend [%s], name vector must be one element long", backend.c_str()));}
|
|
// Will throw if there is a problem with this backend
|
|
shared_ptr<AbstractState> AS(factory(backend.substr(5), fluid_names[0]));
|
|
return new TTSEBackend(AS);
|
|
}
|
|
else if (backend.find("BICUBIC&") == 0)
|
|
{
|
|
if (fluid_names.size() != 1){throw ValueError(format("For backend [%s], name vector must be one element long", backend.c_str()));}
|
|
// Will throw if there is a problem with this backend
|
|
shared_ptr<AbstractState> AS(factory(backend.substr(8), fluid_names[0]));
|
|
return new BicubicBackend(AS);
|
|
}
|
|
else if (!backend.compare("TREND"))
|
|
{
|
|
throw ValueError("TREND backend not yet implemented");
|
|
}
|
|
else if (!backend.compare("?"))
|
|
{
|
|
std::size_t idel = fluid_names[0].find("::");
|
|
// Backend has not been specified, and we have to figure out what the backend is by parsing the string
|
|
if (idel == std::string::npos) // No '::' found, no backend specified, try HEOS, otherwise a failure
|
|
{
|
|
// Figure out what backend to use
|
|
return factory(HEOS_string, fluid_names);
|
|
}
|
|
else
|
|
{
|
|
// Split string at the '::' into two std::string, call again
|
|
return factory(std::string(fluid_names[0].begin(), fluid_names[0].begin() + idel), std::string(fluid_names[0].begin()+(idel+2), fluid_names[0].end()));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
throw ValueError(format("Invalid backend name [%s] to factory function",backend.c_str()));
|
|
}
|
|
}
|
|
std::vector<std::string> AbstractState::fluid_names(void)
|
|
{
|
|
return calc_fluid_names();
|
|
}
|
|
|
|
bool AbstractState::clear() {
|
|
// Reset all instances of CachedElement and overwrite
|
|
// the internal double values with -_HUGE
|
|
this->_R = _HUGE;
|
|
|
|
/// Ancillary curve values
|
|
this->_rhoLanc.clear();
|
|
this->_rhoVanc.clear();
|
|
this->_pVanc.clear();
|
|
this->_pLanc.clear();
|
|
this->_TVanc.clear();
|
|
this->_TLanc.clear();
|
|
|
|
this->_critical.T = -_HUGE;
|
|
this->_critical.hmolar = -_HUGE;
|
|
this->_critical.p = -_HUGE;
|
|
this->_critical.rhomolar = -_HUGE;
|
|
this->_critical.smolar = -_HUGE;
|
|
|
|
this->_reducing.T = -_HUGE;
|
|
this->_reducing.hmolar = -_HUGE;
|
|
this->_reducing.p = -_HUGE;
|
|
this->_reducing.rhomolar = -_HUGE;
|
|
this->_reducing.smolar = -_HUGE;
|
|
|
|
/// Bulk values
|
|
this->_rhomolar = -_HUGE;
|
|
this->_T = -_HUGE;
|
|
this->_p = -_HUGE;
|
|
this->_Q = -_HUGE;
|
|
this->_tau.clear();
|
|
this->_delta.clear();
|
|
|
|
this->_umolar.clear();
|
|
this->_cpmolar.clear();
|
|
this->_cp0molar.clear();
|
|
this->_cvmolar.clear();
|
|
this->_speed_sound.clear();
|
|
this->_hmolar.clear();
|
|
this->_smolar.clear();
|
|
this->_gibbsmolar.clear();
|
|
this->_logp.clear();
|
|
this->_logrhomolar.clear();
|
|
|
|
///// Smoothing values
|
|
//this->rhospline = -_HUGE;
|
|
//this->dsplinedp = -_HUGE;
|
|
//this->dsplinedh = -_HUGE;
|
|
|
|
/// Cached low-level elements for in-place calculation of other properties
|
|
this->_alpha0.clear();
|
|
this->_dalpha0_dTau.clear();
|
|
this->_dalpha0_dDelta.clear();
|
|
this->_d2alpha0_dTau2.clear();
|
|
this->_d2alpha0_dDelta_dTau.clear();
|
|
this->_d2alpha0_dDelta2.clear();
|
|
this->_d3alpha0_dTau3.clear();
|
|
this->_d3alpha0_dDelta_dTau2.clear();
|
|
this->_d3alpha0_dDelta2_dTau.clear();
|
|
this->_d3alpha0_dDelta3.clear();
|
|
this->_alphar.clear();
|
|
this->_dalphar_dTau.clear();
|
|
this->_dalphar_dDelta.clear();
|
|
this->_d2alphar_dTau2.clear();
|
|
this->_d2alphar_dDelta_dTau.clear();
|
|
this->_d2alphar_dDelta2.clear();
|
|
this->_d3alphar_dTau3.clear();
|
|
this->_d3alphar_dDelta_dTau2.clear();
|
|
this->_d3alphar_dDelta2_dTau.clear();
|
|
this->_d3alphar_dDelta3.clear();
|
|
|
|
this->_dalphar_dDelta_lim.clear();
|
|
this->_d2alphar_dDelta2_lim.clear();
|
|
this->_d2alphar_dDelta_dTau_lim.clear();
|
|
this->_d3alphar_dDelta2_dTau_lim.clear();
|
|
|
|
/// Transport properties
|
|
this->_viscosity.clear();
|
|
this->_conductivity.clear();
|
|
this->_surface_tension.clear();
|
|
|
|
return true;
|
|
}
|
|
double AbstractState::trivial_keyed_output(int key)
|
|
{
|
|
if (get_debug_level()>=50) std::cout << format("AbstractState: keyed_output called for %s ",get_parameter_information(key,"short").c_str()) << std::endl;
|
|
switch (key)
|
|
{
|
|
case imolar_mass:
|
|
return molar_mass();
|
|
case iacentric_factor:
|
|
return acentric_factor();
|
|
case igas_constant:
|
|
return gas_constant();
|
|
case iT_min:
|
|
return Tmin();
|
|
case iT_triple:
|
|
return Ttriple();
|
|
case iT_max:
|
|
return Tmax();
|
|
case iP_max:
|
|
return pmax();
|
|
case iP_min:
|
|
case iP_triple:
|
|
return this->p_triple();
|
|
case iT_reducing:
|
|
return calc_T_reducing();
|
|
case irhomolar_reducing:
|
|
return calc_rhomolar_reducing();
|
|
case iP_reducing:
|
|
return calc_p_reducing();
|
|
case iP_critical:
|
|
return this->p_critical();
|
|
case iT_critical:
|
|
return this->T_critical();
|
|
case irhomolar_critical:
|
|
return this->rhomolar_critical();
|
|
case irhomass_critical:
|
|
return this->rhomass_critical();
|
|
case iODP:
|
|
return this->calc_ODP();
|
|
case iGWP100:
|
|
return this->calc_GWP100();
|
|
case iGWP20:
|
|
return this->calc_GWP20();
|
|
case iGWP500:
|
|
return this->calc_GWP500();
|
|
case ifraction_min:
|
|
return this->calc_fraction_min();
|
|
case ifraction_max:
|
|
return this->calc_fraction_max();
|
|
case iT_freeze:
|
|
return this->calc_T_freeze();
|
|
default:
|
|
throw ValueError(format("This input [%d: \"%s\"] is not valid for trivial_keyed_output",key,get_parameter_information(key,"short").c_str()));
|
|
}
|
|
}
|
|
double AbstractState::keyed_output(int key)
|
|
{
|
|
if (get_debug_level()>=50) std::cout << format("AbstractState: keyed_output called for %s ",get_parameter_information(key,"short").c_str()) << std::endl;
|
|
// Handle trivial inputs
|
|
if (is_trivial_parameter(key))
|
|
{
|
|
return trivial_keyed_output(key);
|
|
}
|
|
switch (key)
|
|
{
|
|
case iQ:
|
|
return Q();
|
|
case iT:
|
|
return T();
|
|
case iP:
|
|
return p();
|
|
case iDmolar:
|
|
return rhomolar();
|
|
case iDmass:
|
|
return rhomass();
|
|
case iHmolar:
|
|
return hmolar();
|
|
case iHmass:
|
|
return hmass();
|
|
case iSmolar:
|
|
return smolar();
|
|
case iSmass:
|
|
return smass();
|
|
case iUmolar:
|
|
return umolar();
|
|
case iUmass:
|
|
return umass();
|
|
case iCvmolar:
|
|
return cvmolar();
|
|
case iCvmass:
|
|
return cvmass();
|
|
case iCpmolar:
|
|
return cpmolar();
|
|
case iCp0molar:
|
|
return cp0molar();
|
|
case iCpmass:
|
|
return cpmass();
|
|
case iCp0mass:
|
|
return cp0mass();
|
|
case imolar_mass:
|
|
return molar_mass();
|
|
case iT_reducing:
|
|
return get_reducing_state().T;
|
|
case irhomolar_reducing:
|
|
return get_reducing_state().rhomolar;
|
|
case ispeed_sound:
|
|
return speed_sound();
|
|
case ialpha0:
|
|
return alpha0();
|
|
case idalpha0_ddelta_consttau:
|
|
return dalpha0_dDelta();
|
|
case idalpha0_dtau_constdelta:
|
|
return dalpha0_dTau();
|
|
case iBvirial:
|
|
return Bvirial();
|
|
case idBvirial_dT:
|
|
return dBvirial_dT();
|
|
case iCvirial:
|
|
return Cvirial();
|
|
case idCvirial_dT:
|
|
return dCvirial_dT();
|
|
case iisothermal_compressibility:
|
|
return isothermal_compressibility();
|
|
case iviscosity:
|
|
return viscosity();
|
|
case iconductivity:
|
|
return conductivity();
|
|
case iPrandtl:
|
|
return Prandtl();
|
|
case isurface_tension:
|
|
return surface_tension();
|
|
case iPhase:
|
|
return phase();
|
|
case iZ:
|
|
return compressibility_factor();
|
|
default:
|
|
throw ValueError(format("This input [%d: \"%s\"] is not valid for keyed_output",key,get_parameter_information(key,"short").c_str()));
|
|
}
|
|
}
|
|
|
|
double AbstractState::tau(void){
|
|
if (!_tau) _tau = calc_reciprocal_reduced_temperature();
|
|
return _tau;
|
|
}
|
|
double AbstractState::delta(void){
|
|
if (!_delta) _delta = calc_reduced_density();
|
|
return _delta;
|
|
}
|
|
double AbstractState::Tmin(void){
|
|
return calc_Tmin();
|
|
}
|
|
double AbstractState::Tmax(void){
|
|
return calc_Tmax();
|
|
}
|
|
double AbstractState::Ttriple(void){
|
|
return calc_Ttriple();
|
|
}
|
|
double AbstractState::pmax(void){
|
|
return calc_pmax();
|
|
}
|
|
double AbstractState::T_critical(void){
|
|
return calc_T_critical();
|
|
}
|
|
double AbstractState::T_reducing(void){
|
|
return calc_T_reducing();
|
|
}
|
|
double AbstractState::p_critical(void){
|
|
return calc_p_critical();
|
|
}
|
|
double AbstractState::p_triple(void){
|
|
return calc_p_triple();
|
|
}
|
|
double AbstractState::rhomolar_critical(void){
|
|
return calc_rhomolar_critical();
|
|
}
|
|
double AbstractState::rhomass_critical(void){
|
|
return calc_rhomolar_critical()*molar_mass();
|
|
}
|
|
double AbstractState::rhomolar_reducing(void){
|
|
return calc_rhomolar_reducing();
|
|
}
|
|
double AbstractState::rhomass_reducing(void){
|
|
return calc_rhomolar_reducing()*molar_mass();
|
|
}
|
|
double AbstractState::hmolar(void){
|
|
if (!_hmolar) _hmolar = calc_hmolar();
|
|
return _hmolar;
|
|
}
|
|
double AbstractState::smolar(void){
|
|
if (!_smolar) _smolar = calc_smolar();
|
|
return _smolar;
|
|
}
|
|
double AbstractState::umolar(void){
|
|
if (!_umolar) _umolar = calc_umolar();
|
|
return _umolar;
|
|
}
|
|
double AbstractState::cpmolar(void){
|
|
if (!_cpmolar) _cpmolar = calc_cpmolar();
|
|
return _cpmolar;
|
|
}
|
|
double AbstractState::cp0molar(void){
|
|
return calc_cpmolar_idealgas();
|
|
}
|
|
double AbstractState::cvmolar(void){
|
|
if (!_cvmolar) _cvmolar = calc_cvmolar();
|
|
return _cvmolar;
|
|
}
|
|
double AbstractState::speed_sound(void){
|
|
if (!_speed_sound) _speed_sound = calc_speed_sound();
|
|
return _speed_sound;
|
|
}
|
|
double AbstractState::viscosity(void){
|
|
if (!_viscosity) _viscosity = calc_viscosity();
|
|
return _viscosity;
|
|
}
|
|
double AbstractState::conductivity(void){
|
|
if (!_conductivity) _conductivity = calc_conductivity();
|
|
return _conductivity;
|
|
}
|
|
double AbstractState::melting_line(int param, int given, double value){
|
|
return calc_melting_line(param, given, value);
|
|
}
|
|
double AbstractState::acentric_factor(){
|
|
return calc_acentric_factor();
|
|
}
|
|
double AbstractState::saturation_ancillary(parameters param, int Q, parameters given, double value){
|
|
return calc_saturation_ancillary(param, Q, given, value);
|
|
}
|
|
double AbstractState::surface_tension(void){
|
|
if (!_surface_tension) _surface_tension = calc_surface_tension();
|
|
return _surface_tension;
|
|
}
|
|
double AbstractState::molar_mass(void){
|
|
if (!_molar_mass) _molar_mass = calc_molar_mass();
|
|
return _molar_mass;
|
|
}
|
|
double AbstractState::gas_constant(void){
|
|
if (!_gas_constant) _gas_constant = calc_gas_constant();
|
|
return _gas_constant;
|
|
}
|
|
double AbstractState::fugacity_coefficient(int i){
|
|
// TODO: Cache the fug. coeff for each component
|
|
return calc_fugacity_coefficient(i);
|
|
}
|
|
void AbstractState::build_phase_envelope(const std::string &type)
|
|
{
|
|
calc_phase_envelope(type);
|
|
}
|
|
double AbstractState::isothermal_compressibility(void){
|
|
return 1.0/_rhomolar*first_partial_deriv(iDmolar, iP, iT);
|
|
}
|
|
double AbstractState::isobaric_expansion_coefficient(void){
|
|
return -1.0/pow(_rhomolar,2)*first_partial_deriv(iDmolar, iT, iP);
|
|
}
|
|
double AbstractState::Bvirial(void){ return calc_Bvirial(); }
|
|
double AbstractState::Cvirial(void){ return calc_Cvirial(); }
|
|
double AbstractState::dBvirial_dT(void){ return calc_dBvirial_dT(); }
|
|
double AbstractState::dCvirial_dT(void){ return calc_dCvirial_dT(); }
|
|
double AbstractState::compressibility_factor(void){ return calc_compressibility_factor(); }
|
|
|
|
// Get the derivatives of the parameters in the partial derivative with respect to T and rho
|
|
void get_dT_drho(AbstractState &AS, parameters index, CoolPropDbl &dT, CoolPropDbl &drho)
|
|
{
|
|
CoolPropDbl T = AS.T(),
|
|
rho = AS.rhomolar(),
|
|
rhor = AS.rhomolar_reducing(),
|
|
Tr = AS.T_reducing(),
|
|
dT_dtau = -pow(T, 2)/Tr,
|
|
R = AS.gas_constant(),
|
|
delta = rho/rhor,
|
|
tau = Tr/T;
|
|
|
|
switch (index)
|
|
{
|
|
case iT:
|
|
dT = 1; drho = 0; break;
|
|
case iDmolar:
|
|
dT = 0; drho = 1; break;
|
|
case iDmass:
|
|
dT = 0; drho = AS.molar_mass(); break;
|
|
case iP:
|
|
{
|
|
// dp/drho|T
|
|
drho = R*T*(1+2*delta*AS.dalphar_dDelta()+pow(delta, 2)*AS.d2alphar_dDelta2());
|
|
// dp/dT|rho
|
|
dT = rho*R*(1+delta*AS.dalphar_dDelta() - tau*delta*AS.d2alphar_dDelta_dTau());
|
|
break;
|
|
}
|
|
case iHmass:
|
|
case iHmolar:
|
|
{
|
|
// dh/dT|rho
|
|
dT = R*(-pow(tau,2)*(AS.d2alpha0_dTau2()+AS.d2alphar_dTau2()) + (1+delta*AS.dalphar_dDelta()-tau*delta*AS.d2alphar_dDelta_dTau()));
|
|
// dh/drhomolar|T
|
|
drho = T*R/rho*(tau*delta*AS.d2alphar_dDelta_dTau()+delta*AS.dalphar_dDelta()+pow(delta,2)*AS.d2alphar_dDelta2());
|
|
if (index == iHmass){
|
|
// dhmolar/drhomolar|T * dhmass/dhmolar where dhmass/dhmolar = 1/mole mass
|
|
drho /= AS.molar_mass();
|
|
dT /= AS.molar_mass();
|
|
}
|
|
break;
|
|
}
|
|
case iSmass:
|
|
case iSmolar:
|
|
{
|
|
// ds/dT|rho
|
|
dT = R/T*(-pow(tau,2)*(AS.d2alpha0_dTau2()+AS.d2alphar_dTau2()));
|
|
// ds/drho|T
|
|
drho = R/rho*(-(1+delta*AS.dalphar_dDelta()-tau*delta*AS.d2alphar_dDelta_dTau()));
|
|
if (index == iSmass){
|
|
// ds/drho|T / drhomass/drhomolar where drhomass/drhomolar = mole mass
|
|
drho /= AS.molar_mass();
|
|
dT /= AS.molar_mass();
|
|
}
|
|
break;
|
|
}
|
|
case iUmass:
|
|
case iUmolar:
|
|
{
|
|
// du/dT|rho
|
|
dT = R*(-pow(tau,2)*(AS.d2alpha0_dTau2()+AS.d2alphar_dTau2()));
|
|
// du/drho|T
|
|
drho = AS.T()*R/rho*(tau*delta*AS.d2alphar_dDelta_dTau());
|
|
if (index == iUmass){
|
|
// du/drho|T / drhomass/drhomolar where drhomass/drhomolar = mole mass
|
|
drho /= AS.molar_mass();
|
|
dT /= AS.molar_mass();
|
|
}
|
|
break;
|
|
}
|
|
case iTau:
|
|
dT = 1/dT_dtau; drho = 0; break;
|
|
case iDelta:
|
|
dT = 0; drho = 1/rhor; break;
|
|
default:
|
|
throw ValueError(format("input to get_dT_drho[%s] is invalid",get_parameter_information(index,"short").c_str()));
|
|
}
|
|
}
|
|
void get_dT_drho_second_derivatives(AbstractState &AS, int index, CoolPropDbl &dT2, CoolPropDbl &drho_dT, CoolPropDbl &drho2)
|
|
{
|
|
CoolPropDbl T = AS.T(),
|
|
rho = AS.rhomolar(),
|
|
rhor = AS.rhomolar_reducing(),
|
|
Tr = AS.T_reducing(),
|
|
R = AS.gas_constant(),
|
|
delta = rho/rhor,
|
|
tau = Tr/T;
|
|
|
|
// Here we use T and rho as independent variables since derivations are already done by Thorade, 2013,
|
|
// Partial derivatives of thermodynamic state propertiesfor dynamic simulation, DOI 10.1007/s12665-013-2394-z
|
|
|
|
switch (index)
|
|
{
|
|
case iT:
|
|
case iDmass:
|
|
case iDmolar:
|
|
dT2 = 0; // d2rhomolar_dtau2
|
|
drho2 = 0;
|
|
drho_dT = 0;
|
|
break;
|
|
case iTau:
|
|
dT2 = 2*Tr/pow(T,3); drho_dT = 0; drho2 = 0; break;
|
|
case iDelta:
|
|
dT2 = 0; drho_dT = 0; drho2 = 0; break;
|
|
case iP:
|
|
{
|
|
drho2 = T*R/rho*(2*delta*AS.dalphar_dDelta()+4*pow(delta,2)*AS.d2alphar_dDelta2()+pow(delta,3)*AS.d3alphar_dDelta3());
|
|
dT2 = rho*R/T*(pow(tau,2)*delta*AS.d3alphar_dDelta_dTau2());
|
|
drho_dT = R*(1+2*delta*AS.dalphar_dDelta() +pow(delta,2)*AS.d2alphar_dDelta2() - 2*delta*tau*AS.d2alphar_dDelta_dTau() - tau*pow(delta, 2)*AS.d3alphar_dDelta2_dTau());
|
|
break;
|
|
}
|
|
case iHmass:
|
|
case iHmolar:
|
|
{
|
|
// d2h/drho2|T
|
|
drho2 = R*T*pow(delta/rho,2)*(tau*AS.d3alphar_dDelta2_dTau() + 2*AS.d2alphar_dDelta2() + delta*AS.d3alphar_dDelta3());
|
|
// d2h/dT2|rho
|
|
dT2 = R/T*pow(tau, 2)*(tau*(AS.d3alpha0_dTau3()+AS.d3alphar_dTau3()) + 2*(AS.d2alpha0_dTau2()+AS.d2alphar_dTau2()) + delta*AS.d3alphar_dDelta_dTau2());
|
|
// d2h/drho/dT
|
|
drho_dT = R/rho*delta*(delta*AS.d2alphar_dDelta2() - pow(tau,2)*AS.d3alphar_dDelta_dTau2() + AS.dalphar_dDelta() - tau*delta*AS.d3alphar_dDelta2_dTau() - tau*AS.d2alphar_dDelta_dTau());
|
|
if (index == iHmass){
|
|
drho2 /= AS.molar_mass();
|
|
drho_dT /= AS.molar_mass();
|
|
dT2 /= AS.molar_mass();
|
|
}
|
|
break;
|
|
}
|
|
case iSmass:
|
|
case iSmolar:
|
|
{
|
|
// d2s/rho2|T
|
|
drho2 = R/pow(rho,2)*(1-pow(delta,2)*AS.d2alphar_dDelta2() + tau*pow(delta,2)*AS.d3alphar_dDelta2_dTau());
|
|
// d2s/dT2|rho
|
|
dT2 = R*pow(tau/T, 2)*(tau*(AS.d3alpha0_dTau3()+AS.d3alphar_dTau3())+3*(AS.d2alpha0_dTau2()+AS.d2alphar_dTau2()));
|
|
// d2s/drho/dT
|
|
drho_dT = R/(T*rho)*(-pow(tau,2)*delta*AS.d3alphar_dDelta_dTau2());
|
|
if (index == iSmass){
|
|
drho2 /= AS.molar_mass();
|
|
drho_dT /= AS.molar_mass();
|
|
dT2 /= AS.molar_mass();
|
|
}
|
|
break;
|
|
}
|
|
case iUmass:
|
|
case iUmolar:
|
|
{
|
|
// d2u/rho2|T
|
|
drho2 = R*T*tau*pow(delta/rho,2)*AS.d3alphar_dDelta2_dTau();
|
|
// d2u/dT2|rho
|
|
dT2 = R/T*pow(tau, 2)*(tau*(AS.d3alpha0_dTau3()+AS.d3alphar_dTau3())+2*(AS.d2alpha0_dTau2()+AS.d2alphar_dTau2()));
|
|
// d2u/drho/dT
|
|
drho_dT = R/rho*(-pow(tau,2)*delta*AS.d3alphar_dDelta_dTau2());
|
|
if (index == iUmass){
|
|
drho2 /= AS.molar_mass();
|
|
drho_dT /= AS.molar_mass();
|
|
dT2 /= AS.molar_mass();
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
throw ValueError(format("input to get_dT_drho_second_derivatives[%s] is invalid", get_parameter_information(index,"short").c_str()));
|
|
}
|
|
}
|
|
CoolPropDbl AbstractState::calc_first_partial_deriv(parameters Of, parameters Wrt, parameters Constant)
|
|
{
|
|
CoolPropDbl dOf_dT, dOf_drho, dWrt_dT, dWrt_drho, dConstant_dT, dConstant_drho;
|
|
|
|
get_dT_drho(*this, Of, dOf_dT, dOf_drho);
|
|
get_dT_drho(*this, Wrt, dWrt_dT, dWrt_drho);
|
|
get_dT_drho(*this, Constant, dConstant_dT, dConstant_drho);
|
|
|
|
return (dOf_dT*dConstant_drho-dOf_drho*dConstant_dT)/(dWrt_dT*dConstant_drho-dWrt_drho*dConstant_dT);
|
|
}
|
|
CoolPropDbl AbstractState::calc_second_partial_deriv(parameters Of1, parameters Wrt1, parameters Constant1, parameters Wrt2, parameters Constant2)
|
|
{
|
|
CoolPropDbl dOf1_dT, dOf1_drho, dWrt1_dT, dWrt1_drho, dConstant1_dT, dConstant1_drho, d2Of1_dT2, d2Of1_drhodT,
|
|
d2Of1_drho2, d2Wrt1_dT2, d2Wrt1_drhodT, d2Wrt1_drho2, d2Constant1_dT2, d2Constant1_drhodT, d2Constant1_drho2,
|
|
dWrt2_dT, dWrt2_drho, dConstant2_dT, dConstant2_drho, N, D, dNdrho__T, dDdrho__T, dNdT__rho, dDdT__rho,
|
|
dderiv1_drho, dderiv1_dT, second;
|
|
|
|
// First and second partials needed for terms involved in first derivative
|
|
get_dT_drho(*this, Of1, dOf1_dT, dOf1_drho);
|
|
get_dT_drho(*this, Wrt1, dWrt1_dT, dWrt1_drho);
|
|
get_dT_drho(*this, Constant1, dConstant1_dT, dConstant1_drho);
|
|
get_dT_drho_second_derivatives(*this, Of1, d2Of1_dT2, d2Of1_drhodT, d2Of1_drho2);
|
|
get_dT_drho_second_derivatives(*this, Wrt1, d2Wrt1_dT2, d2Wrt1_drhodT, d2Wrt1_drho2);
|
|
get_dT_drho_second_derivatives(*this, Constant1, d2Constant1_dT2, d2Constant1_drhodT, d2Constant1_drho2);
|
|
|
|
// First derivatives of terms involved in the second derivative
|
|
get_dT_drho(*this, Wrt2, dWrt2_dT, dWrt2_drho);
|
|
get_dT_drho(*this, Constant2, dConstant2_dT, dConstant2_drho);
|
|
|
|
// Numerator and denominator of first partial derivative term
|
|
N = dOf1_dT*dConstant1_drho - dOf1_drho*dConstant1_dT;
|
|
D = dWrt1_dT*dConstant1_drho - dWrt1_drho*dConstant1_dT;
|
|
|
|
// Derivatives of the numerator and denominator of the first partial derivative term with respect to rho, T held constant
|
|
// They are of similar form, with Of1 and Wrt1 swapped
|
|
dNdrho__T = dOf1_dT*d2Constant1_drho2 + d2Of1_drhodT*dConstant1_drho - dOf1_drho*d2Constant1_drhodT - d2Of1_drho2*dConstant1_dT;
|
|
dDdrho__T = dWrt1_dT*d2Constant1_drho2 + d2Wrt1_drhodT*dConstant1_drho - dWrt1_drho*d2Constant1_drhodT - d2Wrt1_drho2*dConstant1_dT;
|
|
|
|
// Derivatives of the numerator and denominator of the first partial derivative term with respect to T, rho held constant
|
|
// They are of similar form, with Of1 and Wrt1 swapped
|
|
dNdT__rho = dOf1_dT*d2Constant1_drhodT + d2Of1_dT2*dConstant1_drho - dOf1_drho*d2Constant1_dT2 - d2Of1_drhodT*dConstant1_dT;
|
|
dDdT__rho = dWrt1_dT*d2Constant1_drhodT + d2Wrt1_dT2*dConstant1_drho - dWrt1_drho*d2Constant1_dT2 - d2Wrt1_drhodT*dConstant1_dT;
|
|
|
|
// First partial of first derivative term with respect to T
|
|
dderiv1_drho = (D*dNdrho__T - N*dDdrho__T)/pow(D, 2);
|
|
|
|
// First partial of first derivative term with respect to rho
|
|
dderiv1_dT = (D*dNdT__rho - N*dDdT__rho)/pow(D, 2);
|
|
|
|
// Complete second derivative
|
|
second = (dderiv1_dT*dConstant2_drho - dderiv1_drho*dConstant2_dT)/(dWrt2_dT*dConstant2_drho - dWrt2_drho*dConstant2_dT);
|
|
|
|
return second;
|
|
}
|
|
// // ----------------------------------------
|
|
// // Smoothing functions for density
|
|
// // ----------------------------------------
|
|
// /// A smoothed version of the derivative using a spline curve in the region of x=0 to x=xend
|
|
// virtual double AbstractState::drhodh_constp_smoothed(double xend);
|
|
// /// A smoothed version of the derivative using a spline curve in the region of x=0 to x=xend
|
|
// virtual double AbstractState::drhodp_consth_smoothed(double xend);
|
|
// /// Density corresponding to the smoothed derivatives in the region of x=0 to x=xend
|
|
// virtual void AbstractState::rho_smoothed(double xend, double *rho_spline, double *dsplinedh, double *dsplinedp);
|
|
|
|
} /* namespace CoolProp */
|
|
|
|
|
|
#ifdef ENABLE_CATCH
|
|
|
|
#include "catch.hpp"
|
|
|
|
TEST_CASE("Check AbstractState","[AbstractState]")
|
|
{
|
|
SECTION("bad backend")
|
|
{
|
|
CHECK_THROWS(shared_ptr<CoolProp::AbstractState> Water(CoolProp::AbstractState::factory("DEFINITELY_A_BAD_BACKEND", "Water")));
|
|
}
|
|
SECTION("good backend - bad fluid")
|
|
{
|
|
CHECK_THROWS(shared_ptr<CoolProp::AbstractState> Water(CoolProp::AbstractState::factory("HEOS", "DEFINITELY_A_BAD_FLUID")));
|
|
}
|
|
SECTION("good backend - helmholtz")
|
|
{
|
|
CHECK_NOTHROW(shared_ptr<CoolProp::AbstractState> Water(CoolProp::AbstractState::factory("HEOS", "Water")));
|
|
}
|
|
SECTION("good backend - incomp")
|
|
{
|
|
CHECK_NOTHROW(shared_ptr<CoolProp::AbstractState> Water(CoolProp::AbstractState::factory("INCOMP", "DEB")));
|
|
}
|
|
SECTION("good backend - REFPROP")
|
|
{
|
|
CHECK_NOTHROW(shared_ptr<CoolProp::AbstractState> Water(CoolProp::AbstractState::factory("REFPROP", "Water")));
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|