Files
CoolProp/src/PolyMath.cpp

1937 lines
66 KiB
C++

#include "PolyMath.h"
#include "CoolPropTools.h"
#include "Exceptions.h"
#include "MatrixMath.h"
#include <vector>
#include <string>
//#include <sstream>
//#include <numeric>
#include <math.h>
#include <iostream>
#include "Solvers.h"
#include <unsupported/Eigen/Polynomials>
namespace CoolProp{
/// Set the coefficient matrix.
/// @param coefficients matrix containing the ordered coefficients
void Polynomial2D::setCoefficients(const Eigen::MatrixXd &coefficients){
this->coefficients = coefficients;
this->coefficientsDerX = this->deriveCoeffs(coefficients,0);
this->coefficientsDerY = this->deriveCoeffs(coefficients,1);
}
void Polynomial2D::setCoefficients(const std::vector<std::vector<double> > &coefficients){
this->setCoefficients(vec_to_eigen(coefficients));
}
/// Basic checks for coefficient vectors.
/** Starts with only the first coefficient dimension
* and checks the matrix size against the parameters rows and columns. */
/// @param rows unsigned integer value that represents the desired degree of the polynomial
bool Polynomial2D::checkCoefficients(const unsigned int rows){
return this->checkCoefficients(this->coefficients,rows);
}
/// @param rows unsigned integer value that represents the desired degree of the polynomial in the 1st dimension
/// @param columns unsigned integer value that represents the desired degree of the polynomial in the 2nd dimension
bool Polynomial2D::checkCoefficients(const unsigned int rows, const unsigned int columns){
return this->checkCoefficients(this->coefficients,rows, columns);
}
/// @param coefficients vector containing the ordered coefficients
/// @param rows unsigned integer value that represents the desired degree of the polynomial
bool Polynomial2D::checkCoefficients(const Eigen::MatrixXd &coefficients, const unsigned int rows){
if (coefficients.cols() != 1) {
throw ValueError(format("You have a 2D coefficient matrix (%d,%d), please use the 2D checks. ",coefficients.rows(),coefficients.cols()));
}
if (coefficients.rows() == rows){
return true;
} else {
throw ValueError(format("The number of coefficients %d does not match with %d. ",coefficients.rows(),rows));
}
return false;
}
/// @param coefficients matrix containing the ordered coefficients
/// @param rows unsigned integer value that represents the desired degree of the polynomial in the 1st dimension
/// @param columns unsigned integer value that represents the desired degree of the polynomial in the 2nd dimension
bool Polynomial2D::checkCoefficients(const Eigen::MatrixXd &coefficients, const unsigned int rows, const unsigned int columns){
if (coefficients.rows() == rows) {
if (coefficients.cols() == columns) {
return true;
} else {
throw ValueError(format("The number of columns %d does not match with %d. ",coefficients.cols(),columns));
}
} else {
throw ValueError(format("The number of rows %d does not match with %d. ",coefficients.rows(),rows));
}
return false;
}
/// Integration functions
/** Integrating coefficients for polynomials is done by dividing the
* original coefficients by (i+1) and elevating the order by 1
* through adding a zero as first coefficient.
* Some reslicing needs to be applied to integrate along the x-axis.
* In the brine/solution equations, reordering of the parameters
* avoids this expensive operation. However, it is included for the
* sake of completeness.
*/
/// @param coefficients matrix containing the ordered coefficients
/// @param axis unsigned integer value that represents the desired direction of integration
Eigen::MatrixXd Polynomial2D::integrateCoeffs(const Eigen::MatrixXd &coefficients, int axis = -1){
std::size_t r = coefficients.rows(), c = coefficients.cols();
Eigen::MatrixXd newCoefficients;
switch (axis) {
case 0:
newCoefficients = Eigen::MatrixXd::Zero(r+1,c);
newCoefficients.block(1,0,r,c) = coefficients.block(0,0,r,c);
for (size_t i = 0; i < r; ++i) {
for (size_t j = 0; j < c; ++j) {
newCoefficients(i+1,j) /= (i+1.);
}
}
break;
case 1:
newCoefficients = Eigen::MatrixXd::Zero(r,c+1);
newCoefficients.block(0,1,r,c) = coefficients.block(0,0,r,c);
for (size_t i = 0; i < r; ++i) {
for (size_t j = 0; j < c; ++j) {
newCoefficients(i,j+1) /= (j+1.);
}
}
break;
default:
throw ValueError(format("You have to provide a dimension, 0 or 1, for integration, %d is not valid. ",axis));
break;
}
return newCoefficients;
}
/// Derivative coefficients calculation
/** Deriving coefficients for polynomials is done by multiplying the
* original coefficients with i and lowering the order by 1.
*/
/// @param coefficients matrix containing the ordered coefficients
/// @param axis unsigned integer value that represents the desired direction of derivation
Eigen::MatrixXd Polynomial2D::deriveCoeffs(const Eigen::MatrixXd &coefficients, int axis = -1){
std::size_t r = coefficients.rows(), c = coefficients.cols();
Eigen::MatrixXd newCoefficients(coefficients);
switch (axis) {
case 0:
//newCoefficients.resize(r-1,c);
for (size_t i = 1; i < r; ++i) {
for (size_t j = 0; j < c; ++j) {
newCoefficients(i,j) *= i;
}
}
removeRow(newCoefficients,0);
break;
case 1:
//newCoefficients.resize(r,c-1);
for (size_t i = 0; i < r; ++i) {
for (size_t j = 1; j < c; ++j) {
newCoefficients(i,j) *= j;
}
}
removeColumn(newCoefficients,0);
break;
default:
throw ValueError(format("You have to provide a dimension, 0 or 1, for derivation, %d is not valid. ",axis));
break;
}
return newCoefficients;
}
/// The core functions to evaluate the polynomial
/** It is here we implement the different special
* functions that allow us to specify certain
* types of polynomials.
* The derivative might bee needed during the
* solution process of the solver. It could also
* be a protected function...
*/
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input
double Polynomial2D::evaluate(const Eigen::MatrixXd &coefficients, const double &x_in){
if (coefficients.rows() != 1) {
throw ValueError(format("You have a 2D coefficient matrix (%d,%d), please use the 2D functions. ",coefficients.rows(),coefficients.cols()));
}
double result = Eigen::poly_eval( Eigen::RowVectorXd(coefficients), x_in );
if (this->do_debug()) std::cout << "Running evaluate(" << mat_to_string(coefficients) << ", " << vec_to_string(x_in) << "): " << result << std::endl;
return result;
}
/// @param coefficients vector containing the ordered coefficients
/// @param x_in double value that represents the current input in the 1st dimension
/// @param y_in double value that represents the current input in the 2nd dimension
double Polynomial2D::evaluate(const Eigen::MatrixXd &coefficients, const double &x_in, const double &y_in){
size_t r = coefficients.rows(), c = coefficients.cols();
double result = evaluate(coefficients.row(r-1), y_in);
for(int i=r-2; i>=0; i--) {
result *= x_in;
result += evaluate(coefficients.row(i), y_in);
}
if (this->do_debug()) std::cout << "Running evaluate(" << mat_to_string(coefficients) << ", " << vec_to_string(x_in) << ", " << vec_to_string(y_in) << "): " << result << std::endl;
return result;
}
/// @param x_in double value that represents the current input in the 1st dimension
/// @param y_in double value that represents the current input in the 2nd dimension
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
double Polynomial2D::derivative(const double &x_in, const double &y_in, int axis = -1){
double result = 0;
switch (axis) {
case 0:
result = this->evaluate(this->coefficientsDerX, x_in,y_in);
break;
case 1:
result = this->evaluate(this->coefficientsDerY, x_in,y_in);
break;
default:
throw ValueError(format("You have to provide a dimension, 0 or 1, for derivation, %d is not valid. ",axis));
break;
}
return result;
}
/// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
/// @param z_in double value that represents the current output in the 3rd dimension
/// @param axis unsigned integer value that represents the axis to solve for (0=x, 1=y)
double Polynomial2D::solve(const double &in, const double &z_in, int axis = -1){
std::size_t r = coefficients.rows(), c = coefficients.cols();
Eigen::VectorXd tmpCoefficients;
switch (axis) {
case 0:
tmpCoefficients = Eigen::VectorXd::Zero(r);
for(size_t i=0; i<r; i++) {
tmpCoefficients(i,0) = evaluate(coefficients.row(i), in);
}
break;
case 1:
tmpCoefficients = Eigen::VectorXd::Zero(c);
for(size_t i=0; i<c; i++) {
tmpCoefficients(i,0) = evaluate(coefficients.col(i).transpose(), in);
}
break;
default:
throw ValueError(format("You have to provide a dimension, 0 or 1, for the solver, %d is not valid. ",axis));
break;
}
tmpCoefficients(0,0) -= z_in;
if (this->do_debug()) std::cout << "Coefficients: " << mat_to_string(Eigen::MatrixXd(tmpCoefficients)) << std::endl;
Eigen::PolynomialSolver<double,Eigen::Dynamic> polySolver( tmpCoefficients );
std::vector<double> rootsVec;
polySolver.realRoots(rootsVec);
if (this->do_debug()) std::cout << "Real roots: " << vec_to_string(rootsVec) << std::endl;
return rootsVec[0]; // TODO: implement root selection algorithm
}
/// Simple polynomial function generator. <- Deprecated due to poor performance, use Horner-scheme instead
/** Base function to produce n-th order polynomials
* based on the length of the coefficient vector.
* Starts with only the first coefficient at x^0. */
double Polynomial2D::simplePolynomial(std::vector<double> const& coefficients, double x){
double result = 0.;
for(unsigned int i=0; i<coefficients.size();i++) {
result += coefficients[i] * pow(x,(int)i);
}
if (this->do_debug()) std::cout << "Running simplePolynomial(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << "): " << result << std::endl;
return result;
}
double Polynomial2D::simplePolynomial(std::vector<std::vector<double> > const& coefficients, double x, double y){
double result = 0;
for(unsigned int i=0; i<coefficients.size();i++) {
result += pow(x,(int)i) * simplePolynomial(coefficients[i], y);
}
if (this->do_debug()) std::cout << "Running simplePolynomial(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << ", " << vec_to_string(y) << "): " << result << std::endl;
return result;
}
/// Horner function generator implementations
/** Represent polynomials according to Horner's scheme.
* This avoids unnecessary multiplication and thus
* speeds up calculation.
*/
double Polynomial2D::baseHorner(std::vector<double> const& coefficients, double x){
double result = 0;
for(int i=coefficients.size()-1; i>=0; i--) {
result *= x;
result += coefficients[i];
}
if (this->do_debug()) std::cout << "Running baseHorner(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << "): " << result << std::endl;
return result;
}
double Polynomial2D::baseHorner(std::vector< std::vector<double> > const& coefficients, double x, double y){
double result = 0;
for(int i=coefficients.size()-1; i>=0; i--) {
result *= x;
result += baseHorner(coefficients[i], y);
}
if (this->do_debug()) std::cout << "Running baseHorner(" << vec_to_string(coefficients) << ", " << vec_to_string(x) << ", " << vec_to_string(y) << "): " << result << std::endl;
return result;
}
}
///// The core functions to evaluate the polynomial
///** It is here we implement the different special
// * functions that allow us to specify certain
// * types of polynomials.
// * The derivative might bee needed during the
// * solution process of the solver. It could also
// * be a protected function...
// */
///// @param x_in double value that represents the current input in the 1st dimension
///// @param y_in double value that represents the current input in the 2nd dimension
//double Polynomial2D::evaluate(const double &x_in, const double &y_in);
///// @param x_in double value that represents the current input in the 1st dimension
///// @param y_in double value that represents the current input in the 2nd dimension
///// @param axis unsigned integer value that represents the axis to solve for (1=x, 2=y)
//double Polynomial2D::derivative(const double &x_in, const double &y_in, unsigned int axis = 1);
///// @param in double value that represents the current input in x (1st dimension) or y (2nd dimension)
///// @param z_in double value that represents the current output in the 3rd dimension
///// @param axis unsigned integer value that represents the axis to solve for (1=x, 2=y)
//double Polynomial2D::solve(const double &in, const double &z_in, unsigned int axis = 1);
#ifdef ENABLE_CATCH
#include <math.h>
#include <iostream>
#include "catch.hpp"
TEST_CASE("Internal consistency checks and example use cases for PolyMath.cpp","[PolyMath]")
{
bool PRINT = false;
std::string tmpStr;
/// Test case for "SylthermXLT" by "Dow Chemicals"
std::vector<double> cHeat;
cHeat.clear();
cHeat.push_back(+1.1562261074E+03);
cHeat.push_back(+2.0994549103E+00);
cHeat.push_back(+7.7175381057E-07);
cHeat.push_back(-3.7008444051E-20);
double deltaT = 0.1;
double Tmin = 273.15- 50;
double Tmax = 273.15+250;
double Tinc = 200;
std::vector<std::vector<double> > cHeat2D;
cHeat2D.push_back(cHeat);
cHeat2D.push_back(cHeat);
cHeat2D.push_back(cHeat);
Eigen::MatrixXd matrix2D = CoolProp::vec_to_eigen(cHeat2D);
Eigen::MatrixXd matrix2Dtmp;
std::vector<std::vector<double> > vec2Dtmp;
CoolProp::Polynomial2D poly2D;
SECTION("Coefficient parsing and setting") {
CHECK_NOTHROW(poly2D.setCoefficients(cHeat2D));
CHECK_THROWS(poly2D.checkCoefficients(4,5));
CHECK_NOTHROW(poly2D.checkCoefficients(3,4));
CHECK_NOTHROW(poly2D.setCoefficients(matrix2D));
CHECK_THROWS(poly2D.checkCoefficients(4,5));
CHECK_NOTHROW(poly2D.checkCoefficients(3,4));
}
SECTION("Coefficient operations") {
Eigen::MatrixXd matrix;
CoolProp::Polynomial2D poly;
CHECK_THROWS(poly2D.integrateCoeffs(matrix2D));
CHECK_NOTHROW(matrix = poly2D.integrateCoeffs(matrix2D, 0));
tmpStr = CoolProp::mat_to_string(matrix2D);
if (PRINT) std::cout << tmpStr << std::endl;
tmpStr = CoolProp::mat_to_string(matrix);
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
CHECK_NOTHROW(matrix = poly2D.integrateCoeffs(matrix2D, 1));
tmpStr = CoolProp::mat_to_string(matrix2D);
if (PRINT) std::cout << tmpStr << std::endl;
tmpStr = CoolProp::mat_to_string(matrix);
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
CHECK_THROWS(poly2D.deriveCoeffs(matrix2D));
CHECK_NOTHROW(matrix = poly2D.deriveCoeffs(matrix2D, 0));
tmpStr = CoolProp::mat_to_string(matrix2D);
if (PRINT) std::cout << tmpStr << std::endl;
tmpStr = CoolProp::mat_to_string(matrix);
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
CHECK_NOTHROW(matrix = poly2D.deriveCoeffs(matrix2D, 1));
tmpStr = CoolProp::mat_to_string(matrix2D);
if (PRINT) std::cout << tmpStr << std::endl;
tmpStr = CoolProp::mat_to_string(matrix);
if (PRINT) std::cout << tmpStr << std::endl << std::endl;
}
SECTION("Evaluation and test values"){
Eigen::MatrixXd matrix = CoolProp::vec_to_eigen(cHeat);
CoolProp::Polynomial2D poly(matrix);
double acc = 0.0001;
double T = 273.15+50;
double c = poly.evaluate(T, 0.0);
double d = 1834.746;
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(c,d,acc) );
}
//c = 2.0;
c = poly.solve_x(0.0, d);
{
CAPTURE(T);
CAPTURE(c);
CAPTURE(d);
CHECK( check_abs(c,T,acc) );
}
// T = 0.0;
// solve.setGuess(75+273.15);
// T = solve.polyval(cHeat,c);
// printf("Should be : T = %3.3f \t K \n",273.15+50.0);
// printf("From object: T = %3.3f \t K \n",T);
//
// T = 0.0;
// solve.setLimits(273.15+10,273.15+100);
// T = solve.polyval(cHeat,c);
// printf("Should be : T = %3.3f \t K \n",273.15+50.0);
// printf("From object: T = %3.3f \t K \n",T);
}
SECTION("Integration and derivation tests") {
Eigen::MatrixXd matrix(matrix2D);
CoolProp::Polynomial2D poly(matrix);
Eigen::MatrixXd matrixInt = poly.integrateCoeffs(matrix, 1);
CoolProp::Polynomial2D polyInt(matrixInt);
Eigen::MatrixXd matrixDer = poly.deriveCoeffs(matrix, 1);
CoolProp::Polynomial2D polyDer(matrixDer);
CHECK_THROWS( poly2D.evaluate(matrix,0.0) );
double x = 0.3, y = 255.3, val1, val2, val3, val4;
//CHECK( fabs( polyInt.derivative(x,y,0)-poly2D.evaluate(x,y) ) <= 1e-10 );
std::string tmpStr;
double acc = 0.001;
for (double T = Tmin; T<Tmax; T+=Tinc) {
val1 = poly.evaluate(x, T-deltaT);
val2 = poly.evaluate(x, T+deltaT);
val3 = (val2-val1)/2/deltaT;
val4 = polyDer.evaluate(x, T);
CAPTURE(T);
CAPTURE(val3);
CAPTURE(val4);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
tmpStr = CoolProp::mat_to_string(matrixDer);
CAPTURE(tmpStr);
CHECK( check_abs(val3,val4,acc) );
}
for (double T = Tmin; T<Tmax; T+=Tinc) {
val1 = polyInt.evaluate(x, T-deltaT);
val2 = polyInt.evaluate(x, T+deltaT);
val3 = (val2-val1)/2/deltaT;
val4 = poly.evaluate(x, T);
CAPTURE(T);
CAPTURE(val3);
CAPTURE(val4);
tmpStr = CoolProp::mat_to_string(matrixInt);
CAPTURE(tmpStr);
tmpStr = CoolProp::mat_to_string(matrix);
CAPTURE(tmpStr);
CHECK( check_abs(val3,val4,acc) );
}
for (double T = Tmin; T<Tmax; T+=Tinc) {
val1 = poly.evaluate(x, T);
val2 = polyInt.derivative(x, T, 1);
CAPTURE(T);
CAPTURE(val1);
CAPTURE(val2);
CHECK( check_abs(val1,val2,acc) );
}
for (double T = Tmin; T<Tmax; T+=Tinc) {
val1 = poly.derivative(x, T, 1);
val2 = polyDer.evaluate(x, T);
CAPTURE(T);
CAPTURE(val1);
CAPTURE(val2);
CHECK( check_abs(val1,val2,acc) );
}
}
}
#endif /* ENABLE_CATCH */
/// Constructors for the base class for all Polynomials
//Polynomial1D::Polynomial1D();
//bool Polynomial2D::setCoefficients(const Eigen::MatrixXd &coefficients){
// this.coefficients = coefficients;
// return this.coefficients == coefficients;
//}
//bool Polynomial2D::setCoefficients(const std::vector< std::vector<double> > &coefficients){
// return this->setCoefficients(convert(coefficients));
//}
//namespace CoolProp{
//
//BasePolynomial::BasePolynomial(){
// this->POLYMATH_DEBUG = false;
//}
//
//
///// Basic checks for coefficient vectors.
///** Starts with only the first coefficient dimension
// * and checks the vector length against parameter n. */
//bool BasePolynomial::checkCoefficients(const std::vector<double> &coefficients, unsigned int n){
// if (coefficients.size() == n){
// return true;
// } else {
// throw ValueError(format("The number of coefficients %d does not match with %d. ",coefficients.size(),n));
// }
// return false;
//}
//bool BasePolynomial::checkCoefficients(std::vector< std::vector<double> > const& coefficients, unsigned int rows, unsigned int columns){
// if (coefficients.size() == rows){
// bool result = true;
// for(unsigned int i=0; i<rows; i++) {
// result = result && checkCoefficients(coefficients[i],columns);
// }
// return result;
// } else {
// throw ValueError(format("The number of rows %d does not match with %d. ",coefficients.size(),rows));
// }
// return false;
//}
//
//
///** Integrating coefficients for polynomials is done by dividing the
// * original coefficients by (i+1) and elevating the order by 1.
// * Some reslicing needs to be applied to integrate along the x-axis.
// */
//std::vector<double> BasePolynomial::integrateCoeffs(std::vector<double> const& coefficients){
// std::vector<double> newCoefficients;
// unsigned int sizeX = coefficients.size();
// if (sizeX<1) throw ValueError(format("You have to provide coefficients, a vector length of %d is not a valid. ",sizeX));
// // pushing a zero elevates the order by 1
// newCoefficients.push_back(0.0);
// for(unsigned int i=0; i<coefficients.size(); i++) {
// newCoefficients.push_back(coefficients[i]/(i+1.));
// }
// return newCoefficients;
//}
//std::vector< std::vector<double> > BasePolynomial::integrateCoeffs(std::vector< std::vector<double> > const& coefficients, bool axis){
// std::vector< std::vector<double> > newCoefficients;
// unsigned int sizeX = coefficients.size();
// if (sizeX<1) throw ValueError(format("You have to provide coefficients, a vector length of %d is not a valid. ",sizeX));
//
// if (axis==true){
// std::vector< std::vector<double> > tmpCoefficients;
// tmpCoefficients = transpose(coefficients);
// unsigned int sizeY = tmpCoefficients.size();
// for(unsigned int i=0; i<sizeY; i++) {
// newCoefficients.push_back(integrateCoeffs(tmpCoefficients[i]));
// }
// return transpose(newCoefficients);
// } else if (axis==false){
// for(unsigned int i=0; i<sizeX; i++) {
// newCoefficients.push_back(integrateCoeffs(coefficients[i]));
// }
// return newCoefficients;
// } else {
// throw ValueError(format("You can only use x-axis (0) and y-axis (1) for integration. %d is not a valid input. ",axis));
// }
// return newCoefficients;
//}
//
//
///** Deriving coefficients for polynomials is done by multiplying the
// * original coefficients with i and lowering the order by 1.
// */
//std::vector<double> BasePolynomial::deriveCoeffs(std::vector<double> const& coefficients){
// std::vector<double> newCoefficients;
// unsigned int sizeX = coefficients.size();
// if (sizeX<1) throw ValueError(format("You have to provide coefficients, a vector length of %d is not a valid. ",sizeX));
// // skipping the first element lowers the order
// for(unsigned int i=1; i<coefficients.size(); i++) {
// newCoefficients.push_back(coefficients[i]*i);
// }
// return newCoefficients;
//}
//std::vector< std::vector<double> > BasePolynomial::deriveCoeffs(const std::vector< std::vector<double> > &coefficients, unsigned int axis){
// std::vector< std::vector<double> > newCoefficients;
// unsigned int sizeX = coefficients.size();
// if (sizeX<1) throw ValueError(format("You have to provide coefficients, a vector length of %d is not a valid. ",sizeX));
//
// if (axis==0){
// std::vector< std::vector<double> > tmpCoefficients;
// tmpCoefficients = transpose(coefficients);
// unsigned int sizeY = tmpCoefficients.size();
// for(unsigned int i=0; i<sizeY; i++) {
// newCoefficients.push_back(deriveCoeffs(tmpCoefficients[i]));
// }
// return transpose(newCoefficients);
// } else if (axis==1){
// for(unsigned int i=0; i<sizeX; i++) {
// newCoefficients.push_back(deriveCoeffs(coefficients[i]));
// }
// return newCoefficients;
// } else {
// throw ValueError(format("You can only use x-axis (0) and y-axis (1) for derivation. %d is not a valid input. ",axis));
// }
// return newCoefficients;
//}
//
//
///** The core of the polynomial wrappers are the different
// * implementations that follow below. In case there are
// * new calculation schemes available, please do not delete
// * the implementations, but mark them as deprecated.
// * The old functions are good for debugging since the
// * structure is easier to read than the backward Horner-scheme
// * or the recursive Horner-scheme.
// */
//
///// Simple polynomial function generator. <- Deprecated due to poor performance, use Horner-scheme instead
///** Base function to produce n-th order polynomials
// * based on the length of the coefficient vector.
// * Starts with only the first coefficient at x^0. */
//double BasePolynomial::simplePolynomial(std::vector<double> const& coefficients, double x){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running simplePolynomial(std::vector, " << x << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// double result = 0.;
// for(unsigned int i=0; i<coefficients.size();i++) {
// result += coefficients[i] * pow(x,(int)i);
// }
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//double BasePolynomial::simplePolynomial(std::vector<std::vector<double> > const& coefficients, double x, double y){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running simplePolynomial(std::vector, " << x << ", " << y << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// double result = 0;
// for(unsigned int i=0; i<coefficients.size();i++) {
// result += pow(x,(int)i) * simplePolynomial(coefficients[i], y);
// }
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
//
///// Simple integrated polynomial function generator.
///** Base function to produce integrals of n-th order
// * polynomials based on the length of the coefficient
// * vector.
// * Starts with only the first coefficient at x^0 */
/////Indefinite integral in x-direction
//double BasePolynomial::simplePolynomialInt(std::vector<double> const& coefficients, double x){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running simplePolynomialInt(std::vector, " << x << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// double result = 0.;
// for(unsigned int i=0; i<coefficients.size();i++) {
// result += 1./(i+1.) * coefficients[i] * pow(x,(int)(i+1.));
// }
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
/////Indefinite integral in y-direction only
//double BasePolynomial::simplePolynomialInt(std::vector<std::vector<double> > const& coefficients, double x, double y){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running simplePolynomialInt(std::vector, " << x << ", " << y << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// double result = 0.;
// for(unsigned int i=0; i<coefficients.size();i++) {
// result += pow(x,(int)i) * simplePolynomialInt(coefficients[i], y);
// }
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
//
///// Simple integrated polynomial function generator divided by independent variable.
///** Base function to produce integrals of n-th order
// * polynomials based on the length of the coefficient
// * vector.
// * Starts with only the first coefficient at x^0 */
//double BasePolynomial::simpleFracInt(std::vector<double> const& coefficients, double x){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running simpleFracInt(std::vector, " << x << "): ";
// }
// double result = coefficients[0] * log(x);
// if (coefficients.size() > 1) {
// for (unsigned int i=1; i<coefficients.size(); i++){
// result += 1./(i) * coefficients[i] * pow(x,(int)(i));
// }
// }
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
//double BasePolynomial::simpleFracInt(std::vector< std::vector<double> > const& coefficients, double x, double y){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running simpleFracInt(std::vector, " << x << ", " << y << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// double result = 0;
// for (unsigned int i=0; i<coefficients.size(); i++){
// result += pow(x,(int)i) * polyfracint(coefficients[i],y);
// }
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
//
///** Simple integrated centred(!) polynomial function generator divided by independent variable.
// * We need to rewrite some of the functions in order to
// * use central fit. Having a central temperature xbase
// * allows for a better fit, but requires a different
// * formulation of the fracInt function group. Other
// * functions are not affected.
// * Starts with only the first coefficient at x^0 */
//
/////Helper functions to calculate binomial coefficients: http://rosettacode.org/wiki/Evaluate_binomial_coefficients#C.2B.2B
////double BasePolynomial::factorial(double nValue){
//// double result = nValue;
//// double result_next;
//// double pc = nValue;
//// do {
//// result_next = result*(pc-1);
//// result = result_next;
//// pc--;
//// } while(pc>2);
//// nValue = result;
//// return nValue;
////}
////double BasePolynomial::factorial(double nValue){
//// if (nValue == 0) return (1);
//// else return (nValue * factorial(nValue - 1));
////}
//double BasePolynomial::factorial(double nValue){
// double value = 1;
// for(int i = 2; i <= nValue; i++){
// value = value * i;
// }
// return value;
//}
//
//double BasePolynomial::binom(double nValue, double nValue2){
// double result;
// if(nValue2 == 1) return nValue;
// result = (factorial(nValue)) / (factorial(nValue2)*factorial((nValue - nValue2)));
// nValue2 = result;
// return nValue2;
//}
//
/////Helper functions to calculate the D vector:
//std::vector<double> BasePolynomial::fracIntCentralDvector(int m, double x, double xbase){
// std::vector<double> D;
// double tmp;
// if (m<1) throw ValueError(format("You have to provide coefficients, a vector length of %d is not a valid. ",m));
// for (int j=0; j<m; j++){ // loop through row
// tmp = pow(-1.0,j) * log(x) * pow(xbase,(int)j);
// for(int k=0; k<j; k++) { // internal loop for every entry
// tmp += binom(j,k) * pow(-1.0,k) / (j-k) * pow(x,j-k) * pow(xbase,k);
// }
// D.push_back(tmp);
// }
// return D;
//}
//
/////Indefinite integral of a centred polynomial divided by its independent variable
//double BasePolynomial::fracIntCentral(std::vector<double> const& coefficients, double x, double xbase){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running fracIntCentral(std::vector, " << x << ", " << xbase << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// int m = coefficients.size();
// std::vector<double> D = fracIntCentralDvector(m, x, xbase);
// double result = 0;
// for(int j=0; j<m; j++) {
// result += coefficients[j] * D[j];
// }
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
//
///// Horner function generator implementations
///** Represent polynomials according to Horner's scheme.
// * This avoids unnecessary multiplication and thus
// * speeds up calculation.
// */
//double BasePolynomial::baseHorner(std::vector<double> const& coefficients, double x){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running baseHorner(std::vector, " << x << "): ";
// }
// double result = 0;
// for(int i=coefficients.size()-1; i>=0; i--) {
// result *= x;
// result += coefficients[i];
// }
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
//double BasePolynomial::baseHorner(std::vector< std::vector<double> > const& coefficients, double x, double y){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running baseHorner(std::vector, " << x << ", " << y << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// double result = 0;
// for(int i=coefficients.size()-1; i>=0; i--) {
// result *= x;
// result += baseHorner(coefficients[i], y);
// }
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
/////Indefinite integral in x-direction
//double BasePolynomial::baseHornerInt(std::vector<double> const& coefficients, double x){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running baseHornerInt(std::vector, " << x << "): ";
// }
// double result = 0;
// for(int i=coefficients.size()-1; i>=0; i--) {
// result *= x;
// result += coefficients[i]/(i+1.);
// }
// result = result * x;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
/////Indefinite integral in y-direction only
//double BasePolynomial::baseHornerInt(std::vector<std::vector<double> > const& coefficients, double x, double y){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running baseHornerInt(std::vector, " << x << ", " << y << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// double result = 0;
// for(int i=coefficients.size()-1; i>=0; i--) {
// result *= x;
// result += baseHornerInt(coefficients[i], y);
// }
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
/////Indefinite integral in x-direction of a polynomial divided by its independent variable
//double BasePolynomial::baseHornerFracInt(std::vector<double> const& coefficients, double x){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running baseHornerFra(std::vector, " << x << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// double result = 0;
// if (coefficients.size() > 1) {
// for(int i=coefficients.size()-1; i>=1; i--) {
// result *= x;
// result += coefficients[i]/(i);
// }
// result *= x;
// }
// result += coefficients[0] * log(x);
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
/////Indefinite integral in y-direction of a polynomial divided by its 2nd independent variable
//double BasePolynomial::baseHornerFracInt(std::vector<std::vector<double> > const& coefficients, double x, double y){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running baseHornerFra(std::vector, " << x << ", " << y << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
//
// double result = 0;
// for(int i=coefficients.size()-1; i>=0; i--) {
// result *= x;
// result += baseHornerFracInt(coefficients[i], y);
// }
//
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
//
///** Alternatives
// * Simple functions that heavily rely on other parts of this file.
// * We still need to check which combinations yield the best
// * performance.
// */
/////Derivative in x-direction
//double BasePolynomial::deriveIn2Steps(std::vector<double> const& coefficients, double x){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running deriveIn2Steps(std::vector, " << x << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// double result = polyval(deriveCoeffs(coefficients),x);
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
/////Derivative in terms of x(axis=true) or y(axis=false).
//double BasePolynomial::deriveIn2Steps(std::vector< std::vector<double> > const& coefficients, double x, double y, bool axis){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running deriveIn2Steps(std::vector, " << x << ", " << y << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// double result = polyval(deriveCoeffs(coefficients,axis),x,y);
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
/////Indefinite integral in x-direction
//double BasePolynomial::integrateIn2Steps(std::vector<double> const& coefficients, double x){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running integrateIn2Steps(std::vector, " << x << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// double result = polyval(integrateCoeffs(coefficients),x);
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
/////Indefinite integral in terms of x(axis=true) or y(axis=false).
//double BasePolynomial::integrateIn2Steps(std::vector< std::vector<double> > const& coefficients, double x, double y, bool axis){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running integrateIn2Steps(std::vector, " << x << ", " << y << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// double result = polyval(integrateCoeffs(coefficients,axis),x,y);
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
/////Indefinite integral in x-direction of a polynomial divided by its independent variable
//double BasePolynomial::fracIntIn2Steps(std::vector<double> const& coefficients, double x){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running fracIntIn2Steps(std::vector, " << x << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// double result = coefficients[0] * log(x);
// if (coefficients.size() > 1) {
// std::vector<double> newCoeffs(coefficients.begin() + 1, coefficients.end());
// result += polyint(newCoeffs,x);
// }
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
/////Indefinite integral in y-direction of a polynomial divided by its 2nd independent variable
//double BasePolynomial::fracIntIn2Steps(std::vector<std::vector<double> > const& coefficients, double x, double y){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running fracIntIn2Steps(std::vector, " << x << ", " << y << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// std::vector<double> newCoeffs;
// for (unsigned int i=0; i<coefficients.size(); i++){
// newCoeffs.push_back(polyfracint(coefficients[i],y));
// }
// double result = polyval(newCoeffs,x);
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
/////Indefinite integral in y-direction of a centred polynomial divided by its 2nd independent variable
//double BasePolynomial::fracIntCentral2Steps(std::vector<std::vector<double> > const& coefficients, double x, double y, double ybase){
// if (this->POLYMATH_DEBUG) {
// std::cout << "Running fracIntCentral2Steps(std::vector, " << x << ", " << y << ", " << ybase << "): ";
// }
// bool db = this->POLYMATH_DEBUG;
// this->POLYMATH_DEBUG = false;
// std::vector<double> newCoeffs;
// for (unsigned int i=0; i<coefficients.size(); i++){
// newCoeffs.push_back(fracIntCentral(coefficients[i], y, ybase));
// }
// double result = polyval(newCoeffs,x);
// this->POLYMATH_DEBUG = db;
// if (this->POLYMATH_DEBUG) {
// std::cout << result << std::endl;
// }
// return result;
//}
//
//
//
//
///** Implements the function wrapper interface and can be
// * used by the solvers. This is only an example and you should
// * use local redefinitions of the class.
// * TODO: Make multidimensional
// */
//PolyResidual::PolyResidual(){
// this->dim = -1;
//}
//
//PolyResidual::PolyResidual(const std::vector<double> &coefficients, double y){
// this->output = y;
// this->firstDim = 0;
// this->coefficients.clear();
// this->coefficients.push_back(coefficients);
// this->dim = i1D;
//}
//
//PolyResidual::PolyResidual(const std::vector< std::vector<double> > &coefficients, double x, double z){
// this->output = z;
// this->firstDim = x;
// this->coefficients = coefficients;
// this->dim = i2D;
//}
//
//double PolyResidual::call(double x){
// double polyRes = -1;
// switch (this->dim) {
// case i1D:
// polyRes = this->poly.polyval(this->coefficients[0], x);
// break;
// case i2D:
// polyRes = this->poly.polyval(this->coefficients, this->firstDim, x);
// break;
// default:
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
// }
// return polyRes - this->output;
//}
//
//double PolyResidual::deriv(double x){
// double polyRes = -1;
// switch (this->dim) {
// case i1D:
// polyRes = this->poly.polyder(this->coefficients[0], x);
// break;
// case i2D:
// polyRes = this->poly.polyder(this->coefficients, this->firstDim, x);
// break;
// default:
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
// }
// return polyRes;
//}
//
//double PolyIntResidual::call(double x){
// double polyRes = -1;
// switch (this->dim) {
// case i1D:
// polyRes = this->poly.polyint(this->coefficients[0], x);
// break;
// case i2D:
// polyRes = this->poly.polyint(this->coefficients, this->firstDim, x);
// break;
// default:
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
// }
// return polyRes - this->output;
//}
//
//double PolyIntResidual::deriv(double x){
// double polyRes = -1;
// switch (this->dim) {
// case i1D:
// polyRes = this->poly.polyval(this->coefficients[0], x);
// break;
// case i2D:
// polyRes = this->poly.polyval(this->coefficients, this->firstDim, x);
// break;
// default:
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
// }
// return polyRes;
//}
//
//double PolyFracIntResidual::call(double x){
// double polyRes = -1;
// switch (this->dim) {
// case i1D:
// polyRes = this->poly.polyfracint(this->coefficients[0], x);
// break;
// case i2D:
// polyRes = this->poly.polyfracint(this->coefficients, this->firstDim, x);
// break;
// default:
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
// }
// return polyRes - this->output;
//}
//
//double PolyFracIntResidual::deriv(double x){
// double polyRes = -1;
// switch (this->dim) {
// case i1D:
// polyRes = this->poly.polyfracval(this->coefficients[0], x);
// break;
// case i2D:
// polyRes = this->poly.polyfracval(this->coefficients, this->firstDim, x);
// break;
// default:
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
// }
// return polyRes;
//}
//
//double PolyFracIntCentralResidual::call(double x){
// double polyRes = -1;
// switch (this->dim) {
// case i1D:
// polyRes = this->poly.polyfracintcentral(this->coefficients[0], x, this->baseVal);
// break;
// case i2D:
// polyRes = this->poly.polyfracintcentral(this->coefficients, this->firstDim, x, this->baseVal);
// break;
// default:
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
// }
// return polyRes - this->output;
//}
//
//double PolyFracIntCentralResidual::deriv(double x){
// throw CoolProp::NotImplementedError("Derivative of a polynomial frac int is not defined.");
//}
//
//double PolyDerResidual::call(double x){
// double polyRes = -1;
// switch (this->dim) {
// case i1D:
// polyRes = this->poly.polyder(this->coefficients[0], x);
// break;
// case i2D:
// polyRes = this->poly.polyder(this->coefficients, this->firstDim, x);
// break;
// default:
// throw CoolProp::NotImplementedError("There are only 1D and 2D, a polynomial's live is not 3D.");
// }
// return polyRes - this->output;
//}
//
//double PolyDerResidual::deriv(double x){
// throw CoolProp::NotImplementedError("2nd derivative of a polynomial is not defined.");
//}
//
//
//
//
///** Implements the same public functions as the BasePolynomial
// * but solves the polynomial for the given value
// * instead of evaluating it.
// * TODO: This class does not check for bijective
// * polynomials and is therefore a little
// * fragile.
// */
//PolynomialSolver::PolynomialSolver(){
// this->POLYMATH_DEBUG = false;
// this->macheps = DBL_EPSILON;
// this->tol = DBL_EPSILON*1e3;
// this->maxiter = 50;
//}
//
///** Everything related to the normal polynomials goes in this
// * section, holds all the functions for solving polynomials.
// */
///// Solves a one-dimensional polynomial for the given coefficients
///// @param coefficients vector containing the ordered coefficients
///// @param y double value that represents the current input
//double PolynomialSolver::polyval(const std::vector<double> &coefficients, double y) {
// PolyResidual residual = PolyResidual(coefficients, y);
// return this->solve(residual);
//}
//
///// Solves a two-dimensional polynomial for the given coefficients
///// @param coefficients vector containing the ordered coefficients
///// @param x double value that represents the current input in the 1st dimension
///// @param z double value that represents the current output
//double PolynomialSolver::polyval(const std::vector< std::vector<double> > &coefficients, double x, double z){
// PolyResidual residual = PolyResidual(coefficients, x, z);
// return this->solve(residual);
//}
//
//
///** Everything related to the integrated polynomials goes in this
// * section, holds all the functions for solving polynomials.
// */
///// Solves the indefinite integral of a one-dimensional polynomial
///// @param coefficients vector containing the ordered coefficients
///// @param y double value that represents the current output
//double PolynomialSolver::polyint(const std::vector<double> &coefficients, double y){
// PolyIntResidual residual = PolyIntResidual(coefficients, y);
// return this->solve(residual);
//}
//
///// Solves the indefinite integral of a two-dimensional polynomial along the 2nd axis (y)
///// @param coefficients vector containing the ordered coefficients
///// @param x double value that represents the current input in the 1st dimension
///// @param z double value that represents the current output
//double PolynomialSolver::polyint(const std::vector< std::vector<double> > &coefficients, double x, double z){
// PolyIntResidual residual = PolyIntResidual(coefficients, x, z);
// return this->solve(residual);
//}
//
//
///** Everything related to the derived polynomials goes in this
// * section, holds all the functions for solving polynomials.
// */
///// Solves the derivative of a one-dimensional polynomial
///// @param coefficients vector containing the ordered coefficients
///// @param y double value that represents the current output
//double PolynomialSolver::polyder(const std::vector<double> &coefficients, double y){
// PolyDerResidual residual = PolyDerResidual(coefficients, y);
// return this->solve(residual);
//}
//
///// Solves the derivative of a two-dimensional polynomial along the 2nd axis (y)
///// @param coefficients vector containing the ordered coefficients
///// @param x double value that represents the current input in the 1st dimension
///// @param z double value that represents the current output
//double PolynomialSolver::polyder(const std::vector< std::vector<double> > &coefficients, double x, double z){
// PolyDerResidual residual = PolyDerResidual(coefficients, x, z);
// return this->solve(residual);
//}
//
//
///** Everything related to the polynomials divided by one variable goes in this
// * section, holds all the functions for solving polynomials.
// */
///// Solves the indefinite integral of a one-dimensional polynomial divided by its independent variable
///// @param coefficients vector containing the ordered coefficients
///// @param y double value that represents the current output
//double PolynomialSolver::polyfracval(const std::vector<double> &coefficients, double y){
// throw CoolProp::NotImplementedError("This solver has not been implemented, yet."); // TODO: Implement function
//}
//
///// Solves the indefinite integral of a two-dimensional polynomial divided by its 2nd independent variable
///// @param coefficients vector containing the ordered coefficients
///// @param x double value that represents the current input in the 1st dimension
///// @param z double value that represents the current output
//double PolynomialSolver::polyfracval(const std::vector< std::vector<double> > &coefficients, double x, double z){
// throw CoolProp::NotImplementedError("This solver has not been implemented, yet."); // TODO: Implement function
//}
//
//
///** Everything related to the integrated polynomials divided by one variable goes in this
// * section, holds all the functions for solving polynomials.
// */
///// Solves the indefinite integral of a one-dimensional polynomial divided by its independent variable
///// @param coefficients vector containing the ordered coefficients
///// @param y double value that represents the current output
//double PolynomialSolver::polyfracint(const std::vector<double> &coefficients, double y){
// PolyFracIntResidual residual = PolyFracIntResidual(coefficients, y);
// return this->solve(residual);
//}
//
///// Solves the indefinite integral of a two-dimensional polynomial divided by its 2nd independent variable
///// @param coefficients vector containing the ordered coefficients
///// @param x double value that represents the current input in the 1st dimension
///// @param z double value that represents the current output
//double PolynomialSolver::polyfracint(const std::vector< std::vector<double> > &coefficients, double x, double z){
// PolyFracIntResidual residual = PolyFracIntResidual(coefficients, x, z);
// return this->solve(residual);
//}
//
///// Solves the indefinite integral of a centred one-dimensional polynomial divided by its independent variable
///// @param coefficients vector containing the ordered coefficients
///// @param y double value that represents the current output
///// @param xbase central x-value for fitted function
//double PolynomialSolver::polyfracintcentral(const std::vector<double> &coefficients, double y, double xbase){
// PolyFracIntCentralResidual residual = PolyFracIntCentralResidual(coefficients, y, xbase);
// return this->solve(residual);
//}
//
///// Solves the indefinite integral of a centred two-dimensional polynomial divided by its 2nd independent variable
///// @param coefficients vector containing the ordered coefficients
///// @param x double value that represents the current input in the 1st dimension
///// @param z double value that represents the current output
///// @param ybase central y-value for fitted function
//double PolynomialSolver::polyfracintcentral(const std::vector< std::vector<double> > &coefficients, double x, double z, double ybase){
// PolyFracIntCentralResidual residual = PolyFracIntCentralResidual(coefficients, x, z, ybase);
// return this->solve(residual);
//}
//
//
///** Everything related to the derived polynomials divided by one variable goes in this
// * section, holds all the functions for solving polynomials.
// */
///// Solves the derivative of a one-dimensional polynomial divided by its independent variable
///// @param coefficients vector containing the ordered coefficients
///// @param y double value that represents the current output
//double PolynomialSolver::polyfracder(const std::vector<double> &coefficients, double y){
// throw CoolProp::NotImplementedError("This solver has not been implemented, yet."); // TODO: Implement function
//}
//
///// Solves the derivative of a two-dimensional polynomial divided by its 2nd independent variable
///// @param coefficients vector containing the ordered coefficients
///// @param x double value that represents the current input in the 1st dimension
///// @param z double value that represents the current output
//double PolynomialSolver::polyfracder(const std::vector< std::vector<double> > &coefficients, double x, double z){
// throw CoolProp::NotImplementedError("This solver has not been implemented, yet."); // TODO: Implement function
//}
//
///// Solves the derivative of a centred one-dimensional polynomial divided by its independent variable
///// @param coefficients vector containing the ordered coefficients
///// @param y double value that represents the current output
///// @param xbase central x-value for fitted function
//double PolynomialSolver::polyfracdercentral(const std::vector<double> &coefficients, double y, double xbase){
// throw CoolProp::NotImplementedError("This solver has not been implemented, yet."); // TODO: Implement function
//}
//
///// Solves the derivative of a centred two-dimensional polynomial divided by its 2nd independent variable
///// @param coefficients vector containing the ordered coefficients
///// @param x double value that represents the current input in the 1st dimension
///// @param z double value that represents the current output
///// @param ybase central y-value for fitted function
//double PolynomialSolver::polyfracdercentral(const std::vector< std::vector<double> > &coefficients, double x, double z, double ybase){
// throw CoolProp::NotImplementedError("This solver has not been implemented, yet."); // TODO: Implement function
//}
//
//
///** Set the solvers and updates either the guess values or the
// * boundaries for the variable to solve for.
// */
///// Sets the guess value for the Newton solver and enables it.
///// @param guess double value that represents the guess value
//void PolynomialSolver::setGuess(double guess){
// this->uses = iNewton;
// this->guess = guess;
// this->min = -1;
// this->max = -1;
//}
///// Sets the limits for the Brent solver and enables it.
///// @param min double value that represents the lower boundary
///// @param max double value that represents the upper boundary
//void PolynomialSolver::setLimits(double min, double max){
// this->uses = iBrent;
// this->guess = -1;
// this->min = min;
// this->max = max;
//}
//
///// Solves the equations based on previously defined parameters.
///// @param min double value that represents the lower boundary
///// @param max double value that represents the upper boundary
//double PolynomialSolver::solve(PolyResidual &res){
// std::string errstring;
// double result = -1.0;
// switch (this->uses) {
// case iNewton: ///< Newton solver with derivative and guess value
// if (res.is2D()) {
// throw CoolProp::NotImplementedError("The Newton solver is not suitable for 2D polynomials, yet.");
// }
// result = Newton(res, this->guess, this->tol, this->maxiter, errstring);
// break;
//
// case iBrent: ///< Brent solver with bounds
// result = Brent(res, this->min, this->max, this->macheps, this->tol, this->maxiter, errstring);
// break;
//
// default:
// throw CoolProp::NotImplementedError("This solver has not been implemented or you forgot to select a solver...");
// }
// return result;
//}
//
//
///** Here we define the functions that should be to evaluate exponential
// * functions. Not really polynomials, I know...
// */
//
//BaseExponential::BaseExponential(){
// this->POLYMATH_DEBUG = false;
//// this->poly = new BaseExponential();
//}
////
////BaseExponential::~BaseExponential(){
//// delete this->poly;
////}
//
///// Evaluates an exponential function for the given coefficients
///// @param coefficients vector containing the ordered coefficients
///// @param x double value that represents the current input
///// @param n int value that determines the kind of exponential function
//double BaseExponential::expval(const std::vector<double> &coefficients, double x, int n){
// double result = 0.;
// if (n==1) {
// this->poly.checkCoefficients(coefficients,3);
// result = exp(coefficients[0]/(x+coefficients[1]) - coefficients[2]);
// } else if (n==2) {
// result = exp(this->poly.polyval(coefficients, x));
// } else {
// throw ValueError(format("There is no function defined for this input (%d). ",n));
// }
// return result;
//}
//
///// Evaluates an exponential function for the given coefficients
///// @param coefficients vector containing the ordered coefficients
///// @param x double value that represents the current input in the 1st dimension
///// @param y double value that represents the current input in the 2nd dimension
///// @param n int value that determines the kind of exponential function
//double BaseExponential::expval(const std::vector< std::vector<double> > &coefficients, double x, double y, int n){
// double result = 0.;
// if (n==2) {
// result = exp(this->poly.polyval(coefficients, x, y));
// } else {
// throw ValueError(format("There is no function defined for this input (%d). ",n));
// }
// return result;
//}
//
//
//}
//
//
//#ifdef ENABLE_CATCH
//#include <math.h>
//#include "catch.hpp"
//
//class PolynomialConsistencyFixture {
//public:
// CoolProp::BasePolynomial poly;
// CoolProp::PolynomialSolver solver;
//// enum dims {i1D, i2D};
//// double firstDim;
//// int dim;
//// std::vector< std::vector<double> > coefficients;
////
//// void setInputs(const std::vector<double> &coefficients){
//// this->firstDim = 0;
//// this->coefficients.clear();
//// this->coefficients.push_back(coefficients);
//// this->dim = i1D;
//// }
////
//// void setInputs(const std::vector< std::vector<double> > &coefficients, double x){
//// this->firstDim = x;
//// this->coefficients = coefficients;
//// this->dim = i2D;
//// }
//};
//
//
//TEST_CASE("Internal consistency checks with PolyMath objects","[PolyMath]")
//{
// CoolProp::BasePolynomial poly;
// CoolProp::PolynomialSolver solver;
//
// /// Test case for "SylthermXLT" by "Dow Chemicals"
// std::vector<double> cHeat;
// cHeat.clear();
// cHeat.push_back(+1.1562261074E+03);
// cHeat.push_back(+2.0994549103E+00);
// cHeat.push_back(+7.7175381057E-07);
// cHeat.push_back(-3.7008444051E-20);
//
// double deltaT = 0.1;
// double Tmin = 273.15- 50;
// double Tmax = 273.15+250;
// double Tinc = 15;
//
// double val1,val2,val3,val4;
//
// SECTION("DerFromVal1D") {
// for (double T = Tmin; T<Tmax; T+=Tinc) {
// val1 = poly.polyval(cHeat, T-deltaT);
// val2 = poly.polyval(cHeat, T+deltaT);
// val3 = (val2-val1)/2/deltaT;
// val4 = poly.polyder(cHeat, T);
// CAPTURE(T);
// CAPTURE(val3);
// CAPTURE(val4);
// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
// }
// }
// SECTION("ValFromInt1D") {
// for (double T = Tmin; T<Tmax; T+=Tinc) {
// val1 = poly.polyint(cHeat, T-deltaT);
// val2 = poly.polyint(cHeat, T+deltaT);
// val3 = (val2-val1)/2/deltaT;
// val4 = poly.polyval(cHeat, T);
// CAPTURE(T);
// CAPTURE(val3);
// CAPTURE(val4);
// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
// }
// }
//
// SECTION("Solve1DNewton") {
// for (double T = Tmin; T<Tmax; T+=Tinc) {
// val1 = poly.polyval(cHeat, T);
// solver.setGuess(T+100);
// val2 = solver.polyval(cHeat, val1);
// CAPTURE(T);
// CAPTURE(val1);
// CAPTURE(val2);
// CHECK(fabs(T-val2) < 1e-1);
//
// val1 = poly.polyint(cHeat, T);
// solver.setGuess(T+100);
// val2 = solver.polyint(cHeat, val1);
// CAPTURE(T);
// CAPTURE(val1);
// CAPTURE(val2);
// CHECK(fabs(T-val2) < 1e-1);
//
//// val1 = poly.polyder(cHeat, T);
//// solver.setGuess(T+100);
//// val2 = solver.polyder(cHeat, val1);
//// CAPTURE(T);
//// CAPTURE(val1);
//// CAPTURE(val2);
//// CHECK(fabs(T-val2) < 1e-1);
////
//// val1 = poly.polyfracint(cHeat, T);
//// solver.setGuess(T+100);
//// val2 = solver.polyfracint(cHeat, val1);
//// CAPTURE(T);
//// CAPTURE(val1);
//// CAPTURE(val2);
//// CHECK(fabs(T-val2) < 1e-1);
// }
// }
// SECTION("Solve1DBrent") {
// for (double T = Tmin; T<Tmax; T+=Tinc) {
// val1 = poly.polyval(cHeat, T);
// solver.setLimits(T-300,T+300);
// val2 = solver.polyval(cHeat, val1);
// CAPTURE(T);
// CAPTURE(val1);
// CAPTURE(val2);
// CHECK(fabs(T-val2) < 1e-1);
//
// val1 = poly.polyint(cHeat, T);
// solver.setLimits(T-300,T+300);
// val2 = solver.polyint(cHeat, val1);
// CAPTURE(T);
// CAPTURE(val1);
// CAPTURE(val2);
// CHECK(fabs(T-val2) < 1e-1);
//
// val1 = poly.polyder(cHeat, T);
// solver.setLimits(T-300,T+300);
// val2 = solver.polyder(cHeat, val1);
// CAPTURE(T);
// CAPTURE(val1);
// CAPTURE(val2);
// CHECK(fabs(T-val2) < 1e-1);
//
// val1 = poly.polyfracint(cHeat, T);
// solver.setLimits(T-100,T+100);
// val2 = solver.polyfracint(cHeat, val1);
// CAPTURE(T);
// CAPTURE(val1);
// CAPTURE(val2);
// CHECK(fabs(T-val2) < 1e-1);
//
// val1 = poly.polyfracintcentral(cHeat, T, 250.0);
// solver.setLimits(T-100,T+100);
// val2 = solver.polyfracintcentral(cHeat, val1, 250.0);
// CAPTURE(T);
// CAPTURE(val1);
// CAPTURE(val2);
// CHECK(fabs(T-val2) < 1e-1);
//
// }
// }
//
// /// Test case for 2D
// double xDim1 = 0.3;
// std::vector< std::vector<double> > cHeat2D;
// cHeat2D.clear();
// cHeat2D.push_back(cHeat);
// cHeat2D.push_back(cHeat);
// cHeat2D.push_back(cHeat);
//
// //setInputs(cHeat2D, 0.3);
//
// SECTION("DerFromVal2D") {
// for (double T = Tmin; T<Tmax; T+=Tinc) {
// val1 = poly.polyval(cHeat2D, xDim1, T-deltaT);
// val2 = poly.polyval(cHeat2D, xDim1, T+deltaT);
// val3 = (val2-val1)/2/deltaT;
// val4 = poly.polyder(cHeat2D, xDim1, T);
// CAPTURE(T);
// CAPTURE(val3);
// CAPTURE(val4);
// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
// }
// }
//
// SECTION("ValFromInt2D") {
// for (double T = Tmin; T<Tmax; T+=Tinc) {
// val1 = poly.polyint(cHeat2D, xDim1, T-deltaT);
// val2 = poly.polyint(cHeat2D, xDim1, T+deltaT);
// val3 = (val2-val1)/2/deltaT;
// val4 = poly.polyval(cHeat2D, xDim1, T);
// CAPTURE(T);
// CAPTURE(val3);
// CAPTURE(val4);
// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
// }
// }
//
//// SECTION("Solve2DNewton") {
//// for (double T = Tmin; T<Tmax; T+=Tinc) {
//// val1 = poly.polyval(cHeat2D, xDim1, T);
//// solver.setGuess(T+100);
//// val2 = solver.polyval(cHeat2D, xDim1, val1);
//// CAPTURE(T);
//// CAPTURE(val1);
//// CAPTURE(val2);
//// CHECK(fabs(T-val2) < 1e-1);
//// }
//// }
// SECTION("Solve2DBrent") {
// for (double T = Tmin; T<Tmax; T+=Tinc) {
// val1 = poly.polyval(cHeat2D, xDim1, T);
// solver.setLimits(T-300,T+300);
// val2 = solver.polyval(cHeat2D, xDim1, val1);
// CAPTURE(T);
// CAPTURE(val1);
// CAPTURE(val2);
// CHECK(fabs(T-val2) < 1e-1);
//
// val1 = poly.polyint(cHeat2D, xDim1, T);
// solver.setLimits(T-300,T+300);
// val2 = solver.polyint(cHeat2D, xDim1, val1);
// CAPTURE(T);
// CAPTURE(val1);
// CAPTURE(val2);
// CHECK(fabs(T-val2) < 1e-1);
//
// val1 = poly.polyder(cHeat2D, xDim1, T);
// solver.setLimits(T-300,T+300);
// val2 = solver.polyder(cHeat2D, xDim1, val1);
// CAPTURE(T);
// CAPTURE(val1);
// CAPTURE(val2);
// CHECK(fabs(T-val2) < 1e-1);
//
// val1 = poly.polyfracint(cHeat2D, xDim1, T);
// solver.setLimits(T-100,T+100);
// val2 = solver.polyfracint(cHeat2D, xDim1, val1);
// CAPTURE(T);
// CAPTURE(val1);
// CAPTURE(val2);
// CHECK(fabs(T-val2) < 1e-1);
//
// val1 = poly.polyfracintcentral(cHeat2D, xDim1, T, 250);
// solver.setLimits(T-100,T+100);
// val2 = solver.polyfracintcentral(cHeat2D, xDim1, val1, 250);
// CAPTURE(T);
// CAPTURE(val1);
// CAPTURE(val2);
// CHECK(fabs(T-val2) < 1e-1);
// }
// }
//
//}
//
////TEST_CASE_METHOD(PolynomialConsistencyFixture,"Internal consistency checks","[PolyMath]")
////{
//// /// Test case for "SylthermXLT" by "Dow Chemicals"
//// std::vector<double> cHeat;
//// cHeat.clear();
//// cHeat.push_back(+1.1562261074E+03);
//// cHeat.push_back(+2.0994549103E+00);
//// cHeat.push_back(+7.7175381057E-07);
//// cHeat.push_back(-3.7008444051E-20);
////
//// //setInputs(cHeat);
//// double deltaT = 0.1;
//// double val1,val2,val3,val4;
////
//// SECTION("DerFromVal1D") {
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
//// val1 = this->poly.polyval(cHeat, T-deltaT);
//// val2 = this->poly.polyval(cHeat, T+deltaT);
//// val3 = (val2-val1)/2/deltaT;
//// val4 = this->poly.polyder(cHeat, T);
//// CAPTURE(T);
//// CAPTURE(val3);
//// CAPTURE(val4);
//// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
//// }
//// }
////
//// SECTION("ValFromInt1D") {
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
//// val1 = this->poly.polyint(cHeat, T-deltaT);
//// val2 = this->poly.polyint(cHeat, T+deltaT);
//// val3 = (val2-val1)/2/deltaT;
//// val4 = this->poly.polyval(cHeat, T);
//// CAPTURE(T);
//// CAPTURE(val3);
//// CAPTURE(val4);
//// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
//// }
//// }
////
//// SECTION("Solve1DNewton") {
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
//// val1 = this->poly.polyval(cHeat, T);
//// this->solver.setGuess(T+100);
//// val2 = this->solver.polyval(cHeat, val1);
//// CAPTURE(T);
//// CAPTURE(val1);
//// CAPTURE(val2);
//// CHECK(fabs(T-val2) < 1e-1);
//// }
//// }
//// SECTION("Solve1DBrent") {
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
//// val1 = this->poly.polyval(cHeat, T);
//// this->solver.setLimits(T-300,T+300);
//// val2 = this->solver.polyval(cHeat, val1);
//// CAPTURE(T);
//// CAPTURE(val1);
//// CAPTURE(val2);
//// CHECK(fabs(T-val2) < 1e-1);
//// }
//// }
////
//// /// Test case for 2D
//// std::vector< std::vector<double> > cHeat2D;
//// cHeat2D.clear();
//// cHeat2D.push_back(cHeat);
//// cHeat2D.push_back(cHeat);
//// cHeat2D.push_back(cHeat);
////
//// //setInputs(cHeat2D, 0.3);
////
//// SECTION("DerFromVal2D") {
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
//// val1 = this->poly.polyval(cHeat, T-deltaT);
//// val2 = this->poly.polyval(cHeat, T+deltaT);
//// val3 = (val2-val1)/2/deltaT;
//// val4 = this->poly.polyder(cHeat, T);
//// CAPTURE(T);
//// CAPTURE(val3);
//// CAPTURE(val4);
//// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
//// }
//// }
////
//// SECTION("ValFromInt2D") {
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
//// val1 = this->poly.polyint(cHeat, T-deltaT);
//// val2 = this->poly.polyint(cHeat, T+deltaT);
//// val3 = (val2-val1)/2/deltaT;
//// val4 = this->poly.polyval(cHeat, T);
//// CAPTURE(T);
//// CAPTURE(val3);
//// CAPTURE(val4);
//// CHECK( (1.0-fabs(val4/val3)) < 1e-1);
//// }
//// }
////
//// SECTION("Solve2DNewton") {
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
//// val1 = this->poly.polyval(cHeat, T);
//// this->solver.setGuess(T+100);
//// val2 = this->solver.polyval(cHeat, val1);
//// CAPTURE(T);
//// CAPTURE(val1);
//// CAPTURE(val2);
//// CHECK(fabs(T-val2) < 1e-1);
//// }
//// }
//// SECTION("Solve2DBrent") {
//// for (double T = 273.15-50; T<273.15+250; T+=15) {
//// val1 = this->poly.polyval(cHeat, T);
//// this->solver.setLimits(T-300,T+300);
//// val2 = this->solver.polyval(cHeat, val1);
//// CAPTURE(T);
//// CAPTURE(val1);
//// CAPTURE(val2);
//// CHECK(fabs(T-val2) < 1e-1);
//// }
//// }
////
////}
////
////TEST_CASE("Check against hard coded data","[PolyMath]")
////{
//// CHECK(fabs(HumidAir::f_factor(-60+273.15,101325)/(1.00708)-1) < 1e-3);
//// CHECK(fabs(HumidAir::f_factor( 80+273.15,101325)/(1.00573)-1) < 1e-3);
//// CHECK(fabs(HumidAir::f_factor(-60+273.15,10000e3)/(2.23918)-1) < 1e-3);
//// CHECK(fabs(HumidAir::f_factor(300+273.15,10000e3)/(1.04804)-1) < 1e-3);
////}
//
//
//
////int main() {
////
//// Catch::ConfigData &config = session.configData();
//// config.testsOrTags.clear();
//// config.testsOrTags.push_back("[fast]");
//// session.useConfigData(config);
//// return session.run();
////
////}
//
//#endif /* CATCH_ENABLED */
//
//
////int main() {
////
//// std::vector<double> cHeat;
//// cHeat.clear();
//// cHeat.push_back(+1.1562261074E+03);
//// cHeat.push_back(+2.0994549103E+00);
//// cHeat.push_back(+7.7175381057E-07);
//// cHeat.push_back(-3.7008444051E-20);
////
//// CoolProp::BasePolynomial base = CoolProp::BasePolynomial();
//// CoolProp::PolynomialSolver solve = CoolProp::PolynomialSolver();
////
//// double T = 273.15+50;
////
//// double c = base.polyval(cHeat,T);
//// printf("Should be : c = %3.3f \t J/kg/K \n",1834.746);
//// printf("From object: c = %3.3f \t J/kg/K \n",c);
////
//// T = 0.0;
//// solve.setGuess(75+273.15);
//// T = solve.polyval(cHeat,c);
//// printf("Should be : T = %3.3f \t K \n",273.15+50.0);
//// printf("From object: T = %3.3f \t K \n",T);
////
//// T = 0.0;
//// solve.setLimits(273.15+10,273.15+100);
//// T = solve.polyval(cHeat,c);
//// printf("Should be : T = %3.3f \t K \n",273.15+50.0);
//// printf("From object: T = %3.3f \t K \n",T);
////
////}