Files
CoolProp/src/AbstractState.cpp
2014-06-06 21:21:12 +02:00

342 lines
9.9 KiB
C++

/*
* AbstractState.cpp
*
* Created on: 21 Dec 2013
* Author: jowr
*/
#include "math.h"
#include "AbstractState.h"
#include "Backends/REFPROP/REFPROPBackend.h"
#include "Backends/Helmholtz/HelmholtzEOSBackend.h"
#include "Backends/Incompressible/IncompressibleBackend.h"
#include "Backends/Helmholtz/Fluids/FluidLibrary.h"
namespace CoolProp {
AbstractState * AbstractState::factory(const std::string &backend, const std::string &fluid_string)
{
static std::string HEOS_string = "HEOS";
if (!backend.compare("HEOS"))
{
if (fluid_string.find('&') == std::string::npos){
return new HelmholtzEOSBackend(&get_fluid(fluid_string));
}
else{
// Split at the '&'
std::vector<std::string> components = strsplit(fluid_string,'&');
return new HelmholtzEOSMixtureBackend(components);
}
}
else if (!backend.compare("REFPROP"))
{
if (fluid_string.find('&') == std::string::npos){
return new REFPROPBackend(fluid_string);
}
else{
// Split at the '&'
std::vector<std::string> components = strsplit(fluid_string,'&');
return new REFPROPMixtureBackend(components);
}
}
else if (!backend.compare("INCOMP"))
{
return new IncompressibleBackend(fluid_string);
}
else if (!backend.compare("BRINE"))
{
throw ValueError("BRINE backend not yet implemented");
}
else if (!backend.compare("TREND"))
{
throw ValueError("TREND backend not yet implemented");
}
else if (!backend.compare("?"))
{
std::size_t idel = fluid_string.find("::");
// Backend has not been specified, and we have to figure out what the backend is by parsing the string
if (idel == std::string::npos) // No '::' found, no backend specified, try HEOS, otherwise a failure
{
// Figure out what backend to use
return factory(HEOS_string, fluid_string);
}
else
{
// Split string at the '::' into two std::string, call again
return factory(std::string(fluid_string.begin(), fluid_string.begin() + idel), std::string(fluid_string.begin()+idel+2, fluid_string.end()));
}
}
else
{
throw ValueError(format("Invalid backend name [%s] to factory function",backend.c_str()));
}
}
bool AbstractState::clear() {
// Reset all instances of CachedElement and overwrite
// the internal double values with -_HUGE
this->_fluid_type = FLUID_TYPE_UNDEFINED;
this->_phase = iphase_unknown;
this->_forceSinglePhase = false;
this->_forceTwoPhase = false;
this->_R = _HUGE;
/// Ancillary curve values
this->_rhoLanc.clear();
this->_rhoVanc.clear();
this->_pVanc.clear();
this->_pLanc.clear();
this->_TVanc.clear();
this->_TLanc.clear();
this->_critical.T = -_HUGE;
this->_critical.hmolar = -_HUGE;
this->_critical.p = -_HUGE;
this->_critical.rhomolar = -_HUGE;
this->_critical.smolar = -_HUGE;
this->_reducing.T = -_HUGE;
this->_reducing.hmolar = -_HUGE;
this->_reducing.p = -_HUGE;
this->_reducing.rhomolar = -_HUGE;
this->_reducing.smolar = -_HUGE;
/// Bulk values
this->_rhomolar = -_HUGE;
this->_T = -_HUGE;
this->_p = -_HUGE;
this->_Q = -_HUGE;
this->_tau.clear();
this->_delta.clear();
this->_umolar.clear();
this->_cpmolar.clear();
this->_cvmolar.clear();
this->_speed_sound.clear();
this->_hmolar.clear();
this->_smolar.clear();
this->_logp.clear();
this->_logrhomolar.clear();
///// Smoothing values
//this->rhospline = -_HUGE;
//this->dsplinedp = -_HUGE;
//this->dsplinedh = -_HUGE;
/// Cached low-level elements for in-place calculation of other properties
this->_alpha0.clear();
this->_dalpha0_dTau.clear();
this->_dalpha0_dDelta.clear();
this->_d2alpha0_dTau2.clear();
this->_d2alpha0_dDelta_dTau.clear();
this->_d2alpha0_dDelta2.clear();
this->_d3alpha0_dTau3.clear();
this->_d3alpha0_dDelta_dTau2.clear();
this->_d3alpha0_dDelta2_dTau.clear();
this->_d3alpha0_dDelta3.clear();
this->_alphar.clear();
this->_dalphar_dTau.clear();
this->_dalphar_dDelta.clear();
this->_d2alphar_dTau2.clear();
this->_d2alphar_dDelta_dTau.clear();
this->_d2alphar_dDelta2.clear();
this->_d3alphar_dTau3.clear();
this->_d3alphar_dDelta_dTau2.clear();
this->_d3alphar_dDelta2_dTau.clear();
this->_d3alphar_dDelta3.clear();
this->_dalphar_dDelta_lim.clear();
this->_d2alphar_dDelta2_lim.clear();
this->_d2alphar_dDelta_dTau_lim.clear();
this->_d3alphar_dDelta2_dTau_lim.clear();
return true;
}
double AbstractState::keyed_output(int key)
{
switch (key)
{
case iQ:
return Q();
case iT:
return T();
case iP:
return p();
case iDmolar:
return rhomolar();
case iDmass:
return rhomass();
case iHmolar:
return hmolar();
case iHmass:
return hmass();
case iSmolar:
return smolar();
case iSmass:
return smass();
case iUmolar:
return umolar();
case iUmass:
return umass();
case iCvmolar:
return cvmolar();
case iCvmass:
return cvmass();
case iCpmolar:
return cpmolar();
case iCpmass:
return cpmass();
case imolar_mass:
return molar_mass();
case iT_reducing:
return get_reducing().T;
case irhomolar_reducing:
return get_reducing().rhomolar;
case ispeed_sound:
return speed_sound();
//case iT_critical:
// return get_critical().T;
//case irhomolar_critical:
// return get_critical().rhomolar; // TODO
case ialpha0:
return alpha0();
case idalpha0_ddelta_consttau:
return dalpha0_dDelta();
case idalpha0_dtau_constdelta:
return dalpha0_dTau();
case iBvirial:
return Bvirial();
case idBvirial_dT:
return dBvirial_dT();
case iCvirial:
return Cvirial();
case idCvirial_dT:
return dCvirial_dT();
case iisothermal_compressibility:
return isothermal_compressibility();
case iviscosity:
return viscosity();
case iconductivity:
return conductivity();
default:
throw ValueError(format("This input [%d: \"%s\"] is not valid for keyed_output",key,get_parameter_information(key,"short").c_str()));
}
}
double AbstractState::tau(void){
if (!_tau) _tau = calc_reciprocal_reduced_temperature();
return _tau;
}
double AbstractState::delta(void){
if (!_delta) _delta = calc_reduced_density();
return _delta;
}
double AbstractState::Tmax(void){
return calc_Tmax();
}
double AbstractState::Ttriple(void){
return calc_Ttriple();
}
double AbstractState::pmax(void){
return calc_pmax();
}
double AbstractState::T_critical(void){
return calc_T_critical();
}
double AbstractState::p_critical(void){
return calc_p_critical();
}
double AbstractState::rhomolar_critical(void){
return calc_rhomolar_critical();
}
double AbstractState::hmolar(void){
if (!_hmolar) _hmolar = calc_hmolar();
return _hmolar;
}
double AbstractState::smolar(void){
if (!_smolar) _smolar = calc_smolar();
return _smolar;
}
double AbstractState::umolar(void){
if (!_umolar) _umolar = calc_umolar();
return _umolar;
}
double AbstractState::cpmolar(void){
if (!_cpmolar) _cpmolar = calc_cpmolar();
return _cpmolar;
}
double AbstractState::cvmolar(void){
if (!_cvmolar) _cvmolar = calc_cvmolar();
return _cvmolar;
}
double AbstractState::speed_sound(void){
if (!_speed_sound) _speed_sound = calc_speed_sound();
return _speed_sound;
}
double AbstractState::viscosity(void){
if (!_viscosity) _viscosity = calc_viscosity();
return _viscosity;
}
double AbstractState::conductivity(void){
if (!_conductivity) _conductivity = calc_conductivity();
return _conductivity;
}
double AbstractState::surface_tension(void){
if (!_surface_tension) _surface_tension = calc_surface_tension();
return _surface_tension;
}
double AbstractState::molar_mass(void){
if (!_molar_mass) _molar_mass = calc_molar_mass();
return _molar_mass;
}
double AbstractState::gas_constant(void){
if (!_gas_constant) _gas_constant = calc_gas_constant();
return _gas_constant;
}
double AbstractState::fugacity_coefficient(int i){
// TODO: Cache the fug. coeff for each component
return calc_fugacity_coefficient(i);
}
double AbstractState::isothermal_compressibility(void){
return 1.0/_rhomolar*first_partial_deriv(iDmolar, iP, iT);
}
double AbstractState::isobaric_expansion_coefficient(void){
return -1.0/pow(_rhomolar,2)*first_partial_deriv(iDmolar, iT, iP);
}
double AbstractState::Bvirial(void){ return calc_Bvirial(); }
double AbstractState::Cvirial(void){ return calc_Cvirial(); }
double AbstractState::dBvirial_dT(void){ return calc_dBvirial_dT(); }
double AbstractState::dCvirial_dT(void){ return calc_dCvirial_dT(); }
// // ----------------------------------------
// // Smoothing functions for density
// // ----------------------------------------
// /// A smoothed version of the derivative using a spline curve in the region of x=0 to x=xend
// virtual double AbstractState::drhodh_constp_smoothed(double xend);
// /// A smoothed version of the derivative using a spline curve in the region of x=0 to x=xend
// virtual double AbstractState::drhodp_consth_smoothed(double xend);
// /// Density corresponding to the smoothed derivatives in the region of x=0 to x=xend
// virtual void AbstractState::rho_smoothed(double xend, double *rho_spline, double *dsplinedh, double *dsplinedp);
} /* namespace CoolProp */
#ifdef ENABLE_CATCH
#include "catch.hpp"
TEST_CASE("Check AbstractState","[AbstractState]")
{
SECTION("bad backend")
{
CHECK_THROWS(std::tr1::shared_ptr<CoolProp::AbstractState> Water(CoolProp::AbstractState::factory("DEFINITELY_A_BAD_BACKEND", "Water")));
}
}
#endif