Files
CoolProp/src/CoolPropTools.cpp
Ian Bell 86f52bdf4e Phase Envelope calculations now include Tsat_max and psat_max, along with indices thereof.
The Tsat_max and psat_max values are calculated using exact solution based on finding dT/dP and dp/dT equaling zero by a 1D solution in rhov.

See also https://github.com/CoolProp/CoolProp/issues/133

Signed-off-by: Ian Bell <ian.h.bell@gmail.com>
2014-09-10 15:17:19 +02:00

315 lines
6.7 KiB
C++

#define _CRT_SECURE_NO_WARNINGS
#include <string>
#include <vector>
#include <cstdio>
#include <cstdarg>
#include <stdlib.h>
#include "math.h"
#include "stdio.h"
#include "float.h"
#include <string.h>
#include "CoolPropTools.h"
#include "MatrixMath.h"
#include "Exceptions.h"
double root_sum_square(std::vector<double> x)
{
double sum = 0;
for (unsigned int i=0; i<x.size(); i++)
{
sum += pow(x[i],2);
}
return sqrt(sum);
}
std::string format(const char* fmt, ...)
{
int size = 512;
char* buffer = 0;
buffer = new char[size];
va_list vl;
va_start(vl,fmt);
int nsize = vsnprintf(buffer,size,fmt,vl);
if(size<=nsize){//fail delete buffer and try again
delete buffer; buffer = 0;
buffer = new char[nsize+1];//+1 for /0
nsize = vsnprintf(buffer,size,fmt,vl);
}
std::string ret(buffer);
va_end(vl);
delete[] buffer;
return ret;
}
std::vector<std::string> strsplit(std::string s, char del)
{
std::size_t iL = 0, iR = 0, N = s.size();
std::vector<std::string> v;
// Find the first instance of the delimiter
iR = s.find_first_of(del);
// Delimiter not found, return the same string again
if (iR == std::string::npos){
v.push_back(s);
return v;
}
while (iR != N-1)
{
v.push_back(s.substr(iL,iR-iL));
iL = iR;
iR = s.find_first_of(del,iR+1);
// Move the iL to the right to avoid the delimiter
iL += 1;
if (iR == std::string::npos)
{
v.push_back(s.substr(iL,N-iL));
break;
}
}
return v;
}
double interp1d(std::vector<double> *x, std::vector<double> *y, double x0)
{
std::size_t i,L,R,M;
L=0;
R=(*x).size()-1;
M=(L+R)/2;
// Use interval halving to find the indices which bracket the density of interest
while (R-L>1)
{
if (x0 >= (*x)[M])
{ L=M; M=(L+R)/2; continue;}
if (x0 < (*x)[M])
{ R=M; M=(L+R)/2; continue;}
}
i=L;
if (i<(*x).size()-2)
{
// Go "forwards" with the interpolation range
return QuadInterp((*x)[i],(*x)[i+1],(*x)[i+2],(*y)[i],(*y)[i+1],(*y)[i+2],x0);
}
else
{
// Go "backwards" with the interpolation range
return QuadInterp((*x)[i],(*x)[i-1],(*x)[i-2],(*y)[i],(*y)[i-1],(*y)[i-2],x0);
}
}
double powInt(double x, int y)
{
// Raise a double to an integer power
// Overload not provided in math.h
int i;
double product=1.0;
double x_in;
int y_in;
if (y==0)
{
return 1.0;
}
if (y<0)
{
x_in=1/x;
y_in=-y;
}
else
{
x_in=x;
y_in=y;
}
if (y_in==1)
{
return x_in;
}
product=x_in;
for (i=1;i<y_in;i++)
{
product=product*x_in;
}
return product;
}
void MatInv_2(double A[2][2] , double B[2][2])
{
double Det;
//Using Cramer's Rule to solve
Det=A[0][0]*A[1][1]-A[1][0]*A[0][1];
B[0][0]=1.0/Det*A[1][1];
B[1][1]=1.0/Det*A[0][0];
B[1][0]=-1.0/Det*A[1][0];
B[0][1]=-1.0/Det*A[0][1];
}
std::string get_file_contents(const char *filename)
{
std::ifstream in(filename, std::ios::in | std::ios::binary);
if (in)
{
std::string contents;
in.seekg(0, std::ios::end);
contents.resize((unsigned int) in.tellg());
in.seekg(0, std::ios::beg);
in.read(&contents[0], contents.size());
in.close();
return(contents);
}
throw(errno);
}
void solve_cubic(double a, double b, double c, double d, int &N, double &x0, double &x1, double &x2)
{
// 0 = ax^3 + b*x^2 + c*x + d
if (std::abs(a) < 10*DBL_EPSILON){
if (std::abs(b) < 10*DBL_EPSILON){
// Linear solution if a = 0 and b = 0
x0 = -d/c;
N = 1;
return;
}
else{
// Quadratic solution(s) if a = 0 and b != 0
x0 = (-c+sqrt(c*c-4*b*d))/(2*b);
x1 = (-c-sqrt(c*c-4*b*d))/(2*b);
N = 2;
return;
}
}
// Ok, it is really a cubic
// Discriminant
double DELTA = 18*a*b*c*d-4*b*b*b*d+b*b*c*c-4*a*c*c*c-27*a*a*d*d;
double DELTA0 = b*b*b-2*a*c;
// Deal with special cases
if (std::abs(DELTA) < 10*DBL_EPSILON){
if (std::abs(DELTA0)>0){
x0 = (9*a*d-b*c)/(2*DELTA0);
x1 = x0;
x2 = (4*a*b*c - 9*a*a*d - b*b*b)/(a*DELTA0);
N = 3;
return;
}
else{
x0 = -b/(3*a);
x1 = x0;
x2 = x0;
N = 3;
return;
}
}
// Coefficients for the depressed cubic t^3+p*t+q = 0
double p = (3*a*c-b*b)/(3*a*a);
double q = (2*b*b*b-9*a*b*c+27*a*a*d)/(27*a*a*a);
if (DELTA<0)
{
// One real root
double t0;
if (4*p*p*p+27*q*q>0 && p<0)
{
t0 = -2.0*std::abs(q)/q*sqrt(-p/3.0)*cosh(1.0/3.0*acosh(-3.0*std::abs(q)/(2.0*p)*sqrt(-3.0/p)));
}
else
{
t0 = -2.0*sqrt(p/3.0)*sinh(1.0/3.0*asinh(3.0*q/(2.0*p)*sqrt(3.0/p)));
}
N = 1;
x0 = t0-b/(3*a);
x1 = t0-b/(3*a);
x2 = t0-b/(3*a);
}
else //(DELTA>0)
{
// Three real roots
double t0 = 2.0*sqrt(-p/3.0)*cos(1.0/3.0*acos(3.0*q/(2.0*p)*sqrt(-3.0/p))-0*2.0*M_PI/3.0);
double t1 = 2.0*sqrt(-p/3.0)*cos(1.0/3.0*acos(3.0*q/(2.0*p)*sqrt(-3.0/p))-1*2.0*M_PI/3.0);
double t2 = 2.0*sqrt(-p/3.0)*cos(1.0/3.0*acos(3.0*q/(2.0*p)*sqrt(-3.0/p))-2*2.0*M_PI/3.0);
N = 3;
x0 = t0-b/(3*a);
x1 = t1-b/(3*a);
x2 = t2-b/(3*a);
}
}
std::string strjoin(std::vector<std::string> strings, std::string delim)
{
// Empty input vector
if (strings.empty()){return "";}
std::string output = strings[0];
for (unsigned int i = 1; i < strings.size(); i++)
{
output += format("%s%s",delim.c_str(),strings[i].c_str());
}
return output;
}
SplineClass::SplineClass()
{
Nconstraints = 0;
A.resize(4, std::vector<double>(4, 0));
B.resize(4,0);
}
bool SplineClass::build()
{
if (Nconstraints == 4)
{
std::vector<double> abcd = CoolProp::linsolve(A,B);
a = abcd[0];
b = abcd[1];
c = abcd[2];
d = abcd[3];
return true;
}
else
{
throw CoolProp::ValueError(format("Number of constraints[%d] is not equal to 4", Nconstraints));
}
}
bool SplineClass::add_value_constraint(double x, double y)
{
int i = Nconstraints;
if (i == 4)
return false;
A[i][0] = x*x*x;
A[i][1] = x*x;
A[i][2] = x;
A[i][3] = 1;
B[i] = y;
Nconstraints++;
return true;
}
void SplineClass::add_4value_constraints(double x1, double x2, double x3, double x4, double y1, double y2, double y3, double y4)
{
add_value_constraint(x1, y1);
add_value_constraint(x2, y2);
add_value_constraint(x3, y3);
add_value_constraint(x4, y4);
}
bool SplineClass::add_derivative_constraint(double x, double dydx)
{
int i = Nconstraints;
if (i == 4)
return false;
A[i][0] = 3*x*x;
A[i][1] = 2*x;
A[i][2] = 1;
A[i][3] = 0;
B[i] = dydx;
Nconstraints++;
return true;
}
double SplineClass::evaluate(double x)
{
return a*x*x*x+b*x*x+c*x+d;
}