Files
CoolProp/include/CoolPropTools.h
Ian Bell de8c4e1b86 Added linspace function
Signed-off-by: Ian Bell <ian.h.bell@gmail.com>
2014-08-01 14:15:55 +02:00

301 lines
10 KiB
C++

#ifndef COOLPROPTOOLS_H
#define COOLPROPTOOLS_H
#define _CRT_SECURE_NO_WARNINGS
#include "PlatformDetermination.h"
#include "Exceptions.h"
#include <string>
#include <vector>
#include <cmath>
#include "float.h"
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
#ifndef COOLPROP_OK
#define COOLPROP_OK 1
#endif
#if defined(HUGE_VAL) && !defined(_HUGE)
# define _HUGE HUGE_VAL
#else
// GCC Version of huge value macro
#if defined(HUGE) && !defined(_HUGE)
# define _HUGE HUGE
#endif
#endif
#if defined(_MSC_VER)
// Microsoft version of math.h doesn't include acosh or asinh, so we just define them here.
// It was included from Visual Studio 2013
#if _MSC_VER < 1800
static double acosh(double x)
{
return log(x + sqrt(x*x - 1.0));
}
static double asinh(double value)
{
if(value>0){
return log(value + sqrt(value * value + 1));
}
else{
return -log(-value + sqrt(value * value + 1));
}
}
#endif
#endif
#if defined(__powerpc__)
// PPC version of math.h doesn't include acosh or asinh, so we just define them here
static double acosh(double x)
{
return log(x + sqrt(x*x - 1.0) );
}
static double asinh(double value)
{
if(value>0){
return log(value + sqrt(value * value + 1));
}
else{
return -log(-value + sqrt(value * value + 1));
}
}
#endif
#if defined(__powerpc__)
#undef min
#undef max
#undef EOS
#endif
inline bool ValidNumber(double x)
{
// Idea from http://www.johndcook.com/IEEE_exceptions_in_cpp.html
return (x <= DBL_MAX && x >= -DBL_MAX);
};
/// Define the deprecated macro to give compile-time warnings
#ifdef __GNUC__
#define DEPRECATED(func) func __attribute__ ((deprecated))
#elif defined(_MSC_VER)
#define DEPRECATED(func) __declspec(deprecated) func
#else
#pragma message("WARNING: You need to implement DEPRECATED for this compiler")
#define DEPRECATED(func) func
#endif
#include <algorithm>
#include <functional>
#include <cctype>
#include <map>
#include <locale>
#include <fstream>
#include <cerrno>
#include <numeric>
/// The following code for the trim functions was taken from http://stackoverflow.com/questions/216823/whats-the-best-way-to-trim-stdstring
// trim from start
inline std::string &strlstrip(std::string &s) {
s.erase(s.begin(), std::find_if(s.begin(), s.end(), std::not1(std::ptr_fun<int, int>(std::isspace))));
return s;
}
// trim from end
inline std::string &strrstrip(std::string &s) {
s.erase(std::find_if(s.rbegin(), s.rend(), std::not1(std::ptr_fun<int, int>(std::isspace))).base(), s.end());
return s;
}
// trim from both ends
inline std::string &strstrip(std::string &s) {
return strlstrip(strrstrip(s));
}
// Get all the contents of a file and dump into a STL string
// Thanks to http://stackoverflow.com/questions/2602013/read-whole-ascii-file-into-c-stdstring
std::string get_file_contents(const char *filename);
// Missing string printf
std::string format(const char* fmt, ...);
// Missing string split - like in Python
std::vector<std::string> strsplit(std::string s, char del);
inline std::string upper(const std::string str_)
{
std::string str = str_;
std::transform(str.begin(), str.end(), str.begin(), ::toupper);
return str;
}
std::string strjoin(std::vector<std::string> strings, std::string delim);
void MatInv_2(double A[2][2] , double B[2][2]);
double root_sum_square(std::vector<double> x);
double interp1d(std::vector<double> *x, std::vector<double> *y, double x0);
double powInt(double x, int y);
#define POW2(x) x*x
#define POW3(x) x*x*x
#define POW4(x) x*x*x*x
#define POW5(x) x*x*x*x*x
#define POW6(x) x*x*x*x*x*x
#define POW7(x) x*x*x*x*x*x*x
template<class T> T LinearInterp(T x0, T x1, T y0, T y1, T x)
{
return (y1-y0)/(x1-x0)*(x-x0)+y0;
};
template<class T> T LinearInterp(std::vector<T> x, std::vector<T> y, std::size_t i0, std::size_t i1, T val)
{
return LinearInterp(x[i0],x[i1],y[i0],y[i1],val);
};
template<class T> T QuadInterp(T x0, T x1, T x2, T f0, T f1, T f2, T x)
{
/* Quadratic interpolation.
Based on method from Kreyszig,
Advanced Engineering Mathematics, 9th Edition
*/
T L0, L1, L2;
L0=((x-x1)*(x-x2))/((x0-x1)*(x0-x2));
L1=((x-x0)*(x-x2))/((x1-x0)*(x1-x2));
L2=((x-x0)*(x-x1))/((x2-x0)*(x2-x1));
return L0*f0+L1*f1+L2*f2;
};
template<class T> T QuadInterp(std::vector<T> x, std::vector<T> y, int i0, int i1, int i2, T val)
{
return QuadInterp(x[i0],x[i1],x[i2],y[i0],y[i1],y[i2],val);
};
template<class T> T CubicInterp( T x0, T x1, T x2, T x3, T f0, T f1, T f2, T f3, T x)
{
/*
Lagrange cubic interpolation as from
http://nd.edu/~jjwteach/441/PdfNotes/lecture6.pdf
*/
T L0,L1,L2,L3;
L0=((x-x1)*(x-x2)*(x-x3))/((x0-x1)*(x0-x2)*(x0-x3));
L1=((x-x0)*(x-x2)*(x-x3))/((x1-x0)*(x1-x2)*(x1-x3));
L2=((x-x0)*(x-x1)*(x-x3))/((x2-x0)*(x2-x1)*(x2-x3));
L3=((x-x0)*(x-x1)*(x-x2))/((x3-x0)*(x3-x1)*(x3-x2));
return L0*f0+L1*f1+L2*f2+L3*f3;
};
template<class T> T CubicInterp(std::vector<T> x, std::vector<T> y, int i0, int i1, int i2, int i3, T val)
{
return CubicInterp(x[i0],x[i1],x[i2],x[i3],y[i0],y[i1],y[i2],y[i3],val);
};
template<class T> T is_in_closed_range( T x1, T x2, T x)
{
if (x1 > x2)
{
std::swap(x1, x2);
}
return (x >= x1 && x <= x2);
};
void solve_cubic(double a, double b, double c, double d, int &N, double &x0, double &x1, double &x2);
inline double min3(double x1, double x2, double x3){return std::min(std::min(x1, x2), x3);};
inline double max3(double x1, double x2, double x3){return std::max(std::max(x1, x2), x3);};
inline bool double_equal(double a, double b){return fabs(a - b) <= 1 * DBL_EPSILON * std::max(fabs(a), fabs(b));};
template<class T> T max_abs_value(std::vector<T> x)
{
T max = 0;
std::size_t N = x.size();
for (std::size_t i = 0; i < N; ++i)
{
T axi = fabs(x[i]);
if (axi > max){ max = axi; }
}
return max;
}
inline int Kronecker_delta(int i, int j){if (i == j) {return 1;} else {return 0;}};
class Dictionary
{
private:
std::map<std::string, double> numbers;
std::map<std::string, std::string> strings;
std::map<std::string, std::vector<double> > double_vectors;
public:
Dictionary(){};
void add_string(std::string s1, std::string s2){ strings.insert(std::pair<std::string, std::string>(s1, s2));}
void add_number(std::string s1, double d){ numbers.insert(std::pair<std::string, double>(s1, d));}
void add_double_vector(std::string s1, std::vector<double> d){ double_vectors.insert(std::pair<std::string, std::vector<double> >(s1, d));}
std::string get_string(std::string s)
{
if (strings.find(s) != strings.end()){ return strings[s]; } else{ throw std::exception(); }
};
double get_number(std::string s)
{
if (numbers.find(s) != numbers.end()){ return numbers[s]; } else{ throw std::exception(); }
};
std::vector<double> get_double_vector(std::string s)
{
if (double_vectors.find(s) != double_vectors.end()){ return double_vectors[s]; } else{ throw std::exception(); }
};
};
/// Utility function to clear a std::map of pointers
//http://stackoverflow.com/questions/569110/why-is-memory-still-accessible-after-stdmapclear-is-called
template <typename M> void freeClear( M & amap ) {
for ( typename M::iterator it = amap.begin(); it != amap.end(); ++it ) {
delete it->second;
}
amap.clear();
}
/// Make a linearly spaced vector of points
template <typename T> std::vector<T> linspace(T xmin, T xmax, int n) {
std::vector<T> x(n, 0.0);
for ( std::size_t i = 0; i < n; ++i) {
x[i] = (xmax-xmin)/(n-1)*i+xmin;
}
return x;
}
/// Some functions related to testing and comparison of values
bool inline check_abs(double A, double B, double D){
double max = fabs(A);
double min = fabs(B);
if (min>max) {
max = min;
min = fabs(A);
}
if (max>DBL_EPSILON*1e3) return ( ( 1.0-min/max*1e0 ) < D );
else throw CoolProp::ValueError(format("Too small numbers: %f cannot be tested with an accepted error of %f for a machine precision of %f. ",max,D,DBL_EPSILON));
};
bool inline check_abs(double A, double B){
return check_abs(A,B,1e5*DBL_EPSILON);
};
template<class T> void normalize_vector(std::vector<T> &x)
{
// Sum up all the elements in the vector
T sumx = std::accumulate( x.begin(), x.end(), static_cast<T>(0) );
// Normalize the components by dividing each by the sum
for (std::size_t i = 0; i < x.size(); ++i){
x[i] /= sumx;
}
};
#define CATCH_ALL_ERRORS_RETURN_HUGE(x) try{ \
x \
} \
catch(const std::exception& e){ \
std::cout << e.what() << std::endl; \
return _HUGE; \
} \
catch(...){ \
return _HUGE; \
}
#endif