mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-02-02 11:34:54 -05:00
Use a Textarea component for the FluxTextEncoderInvocation prompt field.
This commit is contained in:
committed by
psychedelicious
parent
ed46acee79
commit
06a9d4e2b2
@@ -5,7 +5,7 @@ import torch
|
||||
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokenizer
|
||||
|
||||
from invokeai.app.invocations.baseinvocation import BaseInvocation, Classification, invocation
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
|
||||
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, UIComponent
|
||||
from invokeai.app.invocations.model import CLIPField, T5EncoderField
|
||||
from invokeai.app.invocations.primitives import FluxConditioningOutput
|
||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||
@@ -41,7 +41,10 @@ class FluxTextEncoderInvocation(BaseInvocation):
|
||||
t5_max_seq_len: Literal[256, 512] = InputField(
|
||||
description="Max sequence length for the T5 encoder. Expected to be 256 for FLUX schnell models and 512 for FLUX dev models."
|
||||
)
|
||||
prompt: str = InputField(description="Text prompt to encode.")
|
||||
prompt: str = InputField(
|
||||
description="Text prompt to encode.",
|
||||
ui_component=UIComponent.Textarea,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def invoke(self, context: InvocationContext) -> FluxConditioningOutput:
|
||||
|
||||
Reference in New Issue
Block a user