initial setup of lora support

This commit is contained in:
Jordan
2023-02-18 05:29:04 -07:00
parent 8c63fac958
commit 141be95c2c
5 changed files with 55 additions and 2 deletions

View File

@@ -457,6 +457,9 @@ class Generate:
self.sampler_name = sampler_name
self._set_sampler()
if self.model.lora_manager:
prompt = self.model.lora_manager.configure_prompt(prompt)
# apply the concepts library to the prompt
prompt = self.huggingface_concepts_library.replace_concepts_with_triggers(
prompt,
@@ -515,6 +518,9 @@ class Generate:
'extractor':self.safety_feature_extractor
} if self.safety_checker else None
if self.model.lora_manager:
self.model.lora_manager.load_lora()
results = generator.generate(
prompt,
iterations=iterations,
@@ -927,6 +933,7 @@ class Generate:
self.model_name = model_name
self._set_sampler() # requires self.model_name to be set first
return self.model
def load_huggingface_concepts(self, concepts:list[str]):

View File

@@ -28,6 +28,7 @@ from typing_extensions import ParamSpec
from ldm.invoke.globals import Globals
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent, PostprocessingSettings
from ldm.modules.textual_inversion_manager import TextualInversionManager
from ldm.modules.lora_manager import LoraManager
from ..offloading import LazilyLoadedModelGroup, FullyLoadedModelGroup, ModelGroup
from ...models.diffusion.cross_attention_map_saving import AttentionMapSaver
from ...modules.prompt_to_embeddings_converter import WeightedPromptFragmentsToEmbeddingsConverter
@@ -292,6 +293,8 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
self.textual_inversion_manager = TextualInversionManager(tokenizer=self.tokenizer,
text_encoder=self.text_encoder,
full_precision=use_full_precision)
self.lora_manager = LoraManager(self.unet)
# InvokeAI's interface for text embeddings and whatnot
self.prompt_fragments_to_embeddings_converter = WeightedPromptFragmentsToEmbeddingsConverter(
tokenizer=self.tokenizer,

View File

@@ -0,0 +1,43 @@
import re
from pathlib import Path
from ldm.invoke.globals import global_models_dir
from diffusers.models import UNet2DConditionModel
class LoraManager:
def __init__(self, model: UNet2DConditionModel):
self.weights = {}
self.model = model
self.lora_path = Path(global_models_dir(), 'lora')
self.lora_match = re.compile(r"<lora:([^>]+)>")
self.prompt = None
def apply_lora_model(self, args):
args = args.split(':')
name = args[0]
path = Path(self.lora_path, name)
if path.is_dir():
print(f"loading lora: {path}")
self.model.load_attn_procs(path.absolute().as_posix())
if len(args) == 2:
self.weights[name] = args[1]
def load_lora_from_prompt(self, prompt: str):
for m in re.findall(self.lora_match, prompt):
self.apply_lora_model(m)
def load_lora(self):
self.load_lora_from_prompt(self.prompt)
def configure_prompt(self, prompt: str) -> str:
self.prompt = prompt
def found(m):
return ""
return re.sub(self.lora_match, found, prompt)