Apply black

This commit is contained in:
Martin Kristiansen
2023-07-27 10:54:01 -04:00
parent 2183dba5c5
commit 218b6d0546
148 changed files with 5486 additions and 6296 deletions

View File

@@ -10,12 +10,13 @@ from PIL import Image
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import instantiate_from_config
rescale = lambda x: (x + 1.) / 2.
rescale = lambda x: (x + 1.0) / 2.0
def custom_to_pil(x):
x = x.detach().cpu()
x = torch.clamp(x, -1., 1.)
x = (x + 1.) / 2.
x = torch.clamp(x, -1.0, 1.0)
x = (x + 1.0) / 2.0
x = x.permute(1, 2, 0).numpy()
x = (255 * x).astype(np.uint8)
x = Image.fromarray(x)
@@ -51,49 +52,51 @@ def logs2pil(logs, keys=["sample"]):
@torch.no_grad()
def convsample(model, shape, return_intermediates=True,
verbose=True,
make_prog_row=False):
def convsample(model, shape, return_intermediates=True, verbose=True, make_prog_row=False):
if not make_prog_row:
return model.p_sample_loop(None, shape,
return_intermediates=return_intermediates, verbose=verbose)
return model.p_sample_loop(None, shape, return_intermediates=return_intermediates, verbose=verbose)
else:
return model.progressive_denoising(
None, shape, verbose=True
)
return model.progressive_denoising(None, shape, verbose=True)
@torch.no_grad()
def convsample_ddim(model, steps, shape, eta=1.0
):
def convsample_ddim(model, steps, shape, eta=1.0):
ddim = DDIMSampler(model)
bs = shape[0]
shape = shape[1:]
samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, eta=eta, verbose=False,)
samples, intermediates = ddim.sample(
steps,
batch_size=bs,
shape=shape,
eta=eta,
verbose=False,
)
return samples, intermediates
@torch.no_grad()
def make_convolutional_sample(model, batch_size, vanilla=False, custom_steps=None, eta=1.0,):
def make_convolutional_sample(
model,
batch_size,
vanilla=False,
custom_steps=None,
eta=1.0,
):
log = dict()
shape = [batch_size,
model.model.diffusion_model.in_channels,
model.model.diffusion_model.image_size,
model.model.diffusion_model.image_size]
shape = [
batch_size,
model.model.diffusion_model.in_channels,
model.model.diffusion_model.image_size,
model.model.diffusion_model.image_size,
]
with model.ema_scope("Plotting"):
t0 = time.time()
if vanilla:
sample, progrow = convsample(model, shape,
make_prog_row=True)
sample, progrow = convsample(model, shape, make_prog_row=True)
else:
sample, intermediates = convsample_ddim(model, steps=custom_steps, shape=shape,
eta=eta)
sample, intermediates = convsample_ddim(model, steps=custom_steps, shape=shape, eta=eta)
t1 = time.time()
@@ -101,32 +104,32 @@ def make_convolutional_sample(model, batch_size, vanilla=False, custom_steps=Non
log["sample"] = x_sample
log["time"] = t1 - t0
log['throughput'] = sample.shape[0] / (t1 - t0)
log["throughput"] = sample.shape[0] / (t1 - t0)
print(f'Throughput for this batch: {log["throughput"]}')
return log
def run(model, logdir, batch_size=50, vanilla=False, custom_steps=None, eta=None, n_samples=50000, nplog=None):
if vanilla:
print(f'Using Vanilla DDPM sampling with {model.num_timesteps} sampling steps.')
print(f"Using Vanilla DDPM sampling with {model.num_timesteps} sampling steps.")
else:
print(f'Using DDIM sampling with {custom_steps} sampling steps and eta={eta}')
print(f"Using DDIM sampling with {custom_steps} sampling steps and eta={eta}")
tstart = time.time()
n_saved = len(glob.glob(os.path.join(logdir,'*.png')))-1
n_saved = len(glob.glob(os.path.join(logdir, "*.png"))) - 1
# path = logdir
if model.cond_stage_model is None:
all_images = []
print(f"Running unconditional sampling for {n_samples} samples")
for _ in trange(n_samples // batch_size, desc="Sampling Batches (unconditional)"):
logs = make_convolutional_sample(model, batch_size=batch_size,
vanilla=vanilla, custom_steps=custom_steps,
eta=eta)
logs = make_convolutional_sample(
model, batch_size=batch_size, vanilla=vanilla, custom_steps=custom_steps, eta=eta
)
n_saved = save_logs(logs, logdir, n_saved=n_saved, key="sample")
all_images.extend([custom_to_np(logs["sample"])])
if n_saved >= n_samples:
print(f'Finish after generating {n_saved} samples')
print(f"Finish after generating {n_saved} samples")
break
all_img = np.concatenate(all_images, axis=0)
all_img = all_img[:n_samples]
@@ -135,7 +138,7 @@ def run(model, logdir, batch_size=50, vanilla=False, custom_steps=None, eta=None
np.savez(nppath, all_img)
else:
raise NotImplementedError('Currently only sampling for unconditional models supported.')
raise NotImplementedError("Currently only sampling for unconditional models supported.")
print(f"sampling of {n_saved} images finished in {(time.time() - tstart) / 60.:.2f} minutes.")
@@ -168,58 +171,33 @@ def get_parser():
nargs="?",
help="load from logdir or checkpoint in logdir",
)
parser.add_argument(
"-n",
"--n_samples",
type=int,
nargs="?",
help="number of samples to draw",
default=50000
)
parser.add_argument("-n", "--n_samples", type=int, nargs="?", help="number of samples to draw", default=50000)
parser.add_argument(
"-e",
"--eta",
type=float,
nargs="?",
help="eta for ddim sampling (0.0 yields deterministic sampling)",
default=1.0
default=1.0,
)
parser.add_argument(
"-v",
"--vanilla_sample",
default=False,
action='store_true',
action="store_true",
help="vanilla sampling (default option is DDIM sampling)?",
)
parser.add_argument("-l", "--logdir", type=str, nargs="?", help="extra logdir", default="none")
parser.add_argument(
"-l",
"--logdir",
type=str,
nargs="?",
help="extra logdir",
default="none"
)
parser.add_argument(
"-c",
"--custom_steps",
type=int,
nargs="?",
help="number of steps for ddim and fastdpm sampling",
default=50
)
parser.add_argument(
"--batch_size",
type=int,
nargs="?",
help="the bs",
default=10
"-c", "--custom_steps", type=int, nargs="?", help="number of steps for ddim and fastdpm sampling", default=50
)
parser.add_argument("--batch_size", type=int, nargs="?", help="the bs", default=10)
return parser
def load_model_from_config(config, sd):
model = instantiate_from_config(config)
model.load_state_dict(sd,strict=False)
model.load_state_dict(sd, strict=False)
model.cuda()
model.eval()
return model
@@ -233,8 +211,7 @@ def load_model(config, ckpt, gpu, eval_mode):
else:
pl_sd = {"state_dict": None}
global_step = None
model = load_model_from_config(config.model,
pl_sd["state_dict"])
model = load_model_from_config(config.model, pl_sd["state_dict"])
return model, global_step
@@ -253,9 +230,9 @@ if __name__ == "__main__":
if os.path.isfile(opt.resume):
# paths = opt.resume.split("/")
try:
logdir = '/'.join(opt.resume.split('/')[:-1])
logdir = "/".join(opt.resume.split("/")[:-1])
# idx = len(paths)-paths[::-1].index("logs")+1
print(f'Logdir is {logdir}')
print(f"Logdir is {logdir}")
except ValueError:
paths = opt.resume.split("/")
idx = -2 # take a guess: path/to/logdir/checkpoints/model.ckpt
@@ -278,7 +255,8 @@ if __name__ == "__main__":
if opt.logdir != "none":
locallog = logdir.split(os.sep)[-1]
if locallog == "": locallog = logdir.split(os.sep)[-2]
if locallog == "":
locallog = logdir.split(os.sep)[-2]
print(f"Switching logdir from '{logdir}' to '{os.path.join(opt.logdir, locallog)}'")
logdir = os.path.join(opt.logdir, locallog)
@@ -301,13 +279,19 @@ if __name__ == "__main__":
sampling_file = os.path.join(logdir, "sampling_config.yaml")
sampling_conf = vars(opt)
with open(sampling_file, 'w') as f:
with open(sampling_file, "w") as f:
yaml.dump(sampling_conf, f, default_flow_style=False)
print(sampling_conf)
run(model, imglogdir, eta=opt.eta,
vanilla=opt.vanilla_sample, n_samples=opt.n_samples, custom_steps=opt.custom_steps,
batch_size=opt.batch_size, nplog=numpylogdir)
run(
model,
imglogdir,
eta=opt.eta,
vanilla=opt.vanilla_sample,
n_samples=opt.n_samples,
custom_steps=opt.custom_steps,
batch_size=opt.batch_size,
nplog=numpylogdir,
)
print("done.")