mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-02-17 20:43:33 -05:00
Apply black
This commit is contained in:
@@ -15,10 +15,11 @@ from contextlib import contextmanager, nullcontext
|
||||
import k_diffusion as K
|
||||
import torch.nn as nn
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
from ldm.util import instantiate_from_config
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
from ldm.invoke.devices import choose_torch_device
|
||||
from ldm.invoke.devices import choose_torch_device
|
||||
|
||||
|
||||
def chunk(it, size):
|
||||
it = iter(it)
|
||||
@@ -53,23 +54,19 @@ def main():
|
||||
type=str,
|
||||
nargs="?",
|
||||
default="a painting of a virus monster playing guitar",
|
||||
help="the prompt to render"
|
||||
help="the prompt to render",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outdir",
|
||||
type=str,
|
||||
nargs="?",
|
||||
help="dir to write results to",
|
||||
default="outputs/txt2img-samples"
|
||||
"--outdir", type=str, nargs="?", help="dir to write results to", default="outputs/txt2img-samples"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--skip_grid",
|
||||
action='store_true',
|
||||
action="store_true",
|
||||
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--skip_save",
|
||||
action='store_true',
|
||||
action="store_true",
|
||||
help="do not save individual samples. For speed measurements.",
|
||||
)
|
||||
parser.add_argument(
|
||||
@@ -80,22 +77,22 @@ def main():
|
||||
)
|
||||
parser.add_argument(
|
||||
"--plms",
|
||||
action='store_true',
|
||||
action="store_true",
|
||||
help="use plms sampling",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--klms",
|
||||
action='store_true',
|
||||
action="store_true",
|
||||
help="use klms sampling",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--laion400m",
|
||||
action='store_true',
|
||||
action="store_true",
|
||||
help="uses the LAION400M model",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--fixed_code",
|
||||
action='store_true',
|
||||
action="store_true",
|
||||
help="if enabled, uses the same starting code across samples ",
|
||||
)
|
||||
parser.add_argument(
|
||||
@@ -176,11 +173,7 @@ def main():
|
||||
help="the seed (for reproducible sampling)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--precision",
|
||||
type=str,
|
||||
help="evaluate at this precision",
|
||||
choices=["full", "autocast"],
|
||||
default="autocast"
|
||||
"--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast"
|
||||
)
|
||||
opt = parser.parse_args()
|
||||
|
||||
@@ -190,17 +183,17 @@ def main():
|
||||
opt.ckpt = "models/ldm/text2img-large/model.ckpt"
|
||||
opt.outdir = "outputs/txt2img-samples-laion400m"
|
||||
|
||||
|
||||
config = OmegaConf.load(f"{opt.config}")
|
||||
model = load_model_from_config(config, f"{opt.ckpt}")
|
||||
|
||||
seed_everything(opt.seed)
|
||||
|
||||
device = torch.device(choose_torch_device())
|
||||
model = model.to(device)
|
||||
model = model.to(device)
|
||||
|
||||
#for klms
|
||||
# for klms
|
||||
model_wrap = K.external.CompVisDenoiser(model)
|
||||
|
||||
class CFGDenoiser(nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
@@ -232,10 +225,10 @@ def main():
|
||||
print(f"reading prompts from {opt.from_file}")
|
||||
with open(opt.from_file, "r") as f:
|
||||
data = f.read().splitlines()
|
||||
if (len(data) >= batch_size):
|
||||
if len(data) >= batch_size:
|
||||
data = list(chunk(data, batch_size))
|
||||
else:
|
||||
while (len(data) < batch_size):
|
||||
while len(data) < batch_size:
|
||||
data.append(data[-1])
|
||||
data = [data]
|
||||
|
||||
@@ -247,14 +240,14 @@ def main():
|
||||
start_code = None
|
||||
if opt.fixed_code:
|
||||
shape = [opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f]
|
||||
if device.type == 'mps':
|
||||
start_code = torch.randn(shape, device='cpu').to(device)
|
||||
if device.type == "mps":
|
||||
start_code = torch.randn(shape, device="cpu").to(device)
|
||||
else:
|
||||
torch.randn(shape, device=device)
|
||||
|
||||
precision_scope = autocast if opt.precision=="autocast" else nullcontext
|
||||
if device.type in ['mps', 'cpu']:
|
||||
precision_scope = nullcontext # have to use f32 on mps
|
||||
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
||||
if device.type in ["mps", "cpu"]:
|
||||
precision_scope = nullcontext # have to use f32 on mps
|
||||
with torch.no_grad():
|
||||
with precision_scope(device.type):
|
||||
with model.ema_scope():
|
||||
@@ -271,23 +264,25 @@ def main():
|
||||
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
|
||||
|
||||
if not opt.klms:
|
||||
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
|
||||
conditioning=c,
|
||||
batch_size=opt.n_samples,
|
||||
shape=shape,
|
||||
verbose=False,
|
||||
unconditional_guidance_scale=opt.scale,
|
||||
unconditional_conditioning=uc,
|
||||
eta=opt.ddim_eta,
|
||||
x_T=start_code)
|
||||
samples_ddim, _ = sampler.sample(
|
||||
S=opt.ddim_steps,
|
||||
conditioning=c,
|
||||
batch_size=opt.n_samples,
|
||||
shape=shape,
|
||||
verbose=False,
|
||||
unconditional_guidance_scale=opt.scale,
|
||||
unconditional_conditioning=uc,
|
||||
eta=opt.ddim_eta,
|
||||
x_T=start_code,
|
||||
)
|
||||
else:
|
||||
sigmas = model_wrap.get_sigmas(opt.ddim_steps)
|
||||
if start_code:
|
||||
x = start_code
|
||||
else:
|
||||
x = torch.randn([opt.n_samples, *shape], device=device) * sigmas[0] # for GPU draw
|
||||
x = torch.randn([opt.n_samples, *shape], device=device) * sigmas[0] # for GPU draw
|
||||
model_wrap_cfg = CFGDenoiser(model_wrap)
|
||||
extra_args = {'cond': c, 'uncond': uc, 'cond_scale': opt.scale}
|
||||
extra_args = {"cond": c, "uncond": uc, "cond_scale": opt.scale}
|
||||
samples_ddim = K.sampling.sample_lms(model_wrap_cfg, x, sigmas, extra_args=extra_args)
|
||||
|
||||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||
@@ -295,9 +290,10 @@ def main():
|
||||
|
||||
if not opt.skip_save:
|
||||
for x_sample in x_samples_ddim:
|
||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||
x_sample = 255.0 * rearrange(x_sample.cpu().numpy(), "c h w -> h w c")
|
||||
Image.fromarray(x_sample.astype(np.uint8)).save(
|
||||
os.path.join(sample_path, f"{base_count:05}.png"))
|
||||
os.path.join(sample_path, f"{base_count:05}.png")
|
||||
)
|
||||
base_count += 1
|
||||
|
||||
if not opt.skip_grid:
|
||||
@@ -306,18 +302,17 @@ def main():
|
||||
if not opt.skip_grid:
|
||||
# additionally, save as grid
|
||||
grid = torch.stack(all_samples, 0)
|
||||
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
||||
grid = rearrange(grid, "n b c h w -> (n b) c h w")
|
||||
grid = make_grid(grid, nrow=n_rows)
|
||||
|
||||
# to image
|
||||
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
||||
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
||||
grid = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy()
|
||||
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f"grid-{grid_count:04}.png"))
|
||||
grid_count += 1
|
||||
|
||||
toc = time.time()
|
||||
|
||||
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
||||
f" \nEnjoy.")
|
||||
print(f"Your samples are ready and waiting for you here: \n{outpath} \n" f" \nEnjoy.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
Reference in New Issue
Block a user