mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-02-05 01:55:08 -05:00
Remove accelerate library
This library is not required to use k-diffusion Make k-diffusion wrapper closer to the other samplers
This commit is contained in:
@@ -2,7 +2,6 @@
|
||||
import k_diffusion as K
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import accelerate
|
||||
|
||||
class CFGDenoiser(nn.Module):
|
||||
def __init__(self, model):
|
||||
@@ -17,12 +16,11 @@ class CFGDenoiser(nn.Module):
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
|
||||
class KSampler(object):
|
||||
def __init__(self,model,schedule="lms", **kwargs):
|
||||
def __init__(self, model, schedule="lms", device="cuda", **kwargs):
|
||||
super().__init__()
|
||||
self.model = K.external.CompVisDenoiser(model)
|
||||
self.accelerator = accelerate.Accelerator()
|
||||
self.device = self.accelerator.device
|
||||
self.model = K.external.CompVisDenoiser(model)
|
||||
self.schedule = schedule
|
||||
self.device = device
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
x_in = torch.cat([x] * 2)
|
||||
@@ -67,8 +65,5 @@ class KSampler(object):
|
||||
x = torch.randn([batch_size, *shape], device=self.device) * sigmas[0] # for GPU draw
|
||||
model_wrap_cfg = CFGDenoiser(self.model)
|
||||
extra_args = {'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}
|
||||
return (K.sampling.__dict__[f'sample_{self.schedule}'](model_wrap_cfg, x, sigmas, extra_args=extra_args, disable=not self.accelerator.is_main_process),
|
||||
return (K.sampling.__dict__[f'sample_{self.schedule}'](model_wrap_cfg, x, sigmas, extra_args=extra_args),
|
||||
None)
|
||||
|
||||
def gather(samples_ddim):
|
||||
return self.accelerator.gather(samples_ddim)
|
||||
|
||||
@@ -467,17 +467,17 @@ The vast majority of these arguments default to reasonable values.
|
||||
elif self.sampler_name == 'ddim':
|
||||
self.sampler = DDIMSampler(self.model, device=self.device)
|
||||
elif self.sampler_name == 'k_dpm_2_a':
|
||||
self.sampler = KSampler(self.model,'dpm_2_ancestral')
|
||||
self.sampler = KSampler(self.model, 'dpm_2_ancestral', device=self.device)
|
||||
elif self.sampler_name == 'k_dpm_2':
|
||||
self.sampler = KSampler(self.model,'dpm_2')
|
||||
self.sampler = KSampler(self.model, 'dpm_2', device=self.device)
|
||||
elif self.sampler_name == 'k_euler_a':
|
||||
self.sampler = KSampler(self.model,'euler_ancestral')
|
||||
self.sampler = KSampler(self.model, 'euler_ancestral', device=self.device)
|
||||
elif self.sampler_name == 'k_euler':
|
||||
self.sampler = KSampler(self.model,'euler')
|
||||
self.sampler = KSampler(self.model, 'euler', device=self.device)
|
||||
elif self.sampler_name == 'k_heun':
|
||||
self.sampler = KSampler(self.model,'heun')
|
||||
self.sampler = KSampler(self.model, 'heun', device=self.device)
|
||||
elif self.sampler_name == 'k_lms':
|
||||
self.sampler = KSampler(self.model,'lms')
|
||||
self.sampler = KSampler(self.model, 'lms', device=self.device)
|
||||
else:
|
||||
msg = f'unsupported sampler {self.sampler_name}, defaulting to plms'
|
||||
self.sampler = PLMSSampler(self.model, device=self.device)
|
||||
|
||||
Reference in New Issue
Block a user