fix(app): add trusted classes to torch safe globals to prevent errors when loading them

In `ObjectSerializerDisk`, we use `torch.load` to load serialized objects from disk. With torch 2.6.0, torch defaults to `weights_only=True`. As a result, torch will raise when attempting to deserialize anything with an unrecognized class.

For example, our `ConditioningFieldData` class is untrusted. When we load conditioning from disk, we will get a runtime error.

Torch provides a method to add trusted classes to an allowlist. This change adds an arg to `ObjectSerializerDisk` to add a list of safe globals to the allowlist and uses it for both `ObjectSerializerDisk` instances.

Note: My first attempt inferred the class from the generic type arg that `ObjectSerializerDisk` accepts, and added that to the allowlist. Unfortunately, this doesn't work.

For example, `ConditioningFieldData` has a `conditionings` attribute that may be one some other untrusted classes representing model-specific conditioning data. So, even if we allowlist `ConditioningFieldData`, loading will fail when torch deserializes the `conditionings` attribute.
This commit is contained in:
psychedelicious
2025-03-27 08:11:36 +10:00
parent 4d58c222f3
commit 5fa2cf59e2
3 changed files with 36 additions and 4 deletions

View File

@@ -37,7 +37,13 @@ from invokeai.app.services.style_preset_records.style_preset_records_sqlite impo
from invokeai.app.services.urls.urls_default import LocalUrlService
from invokeai.app.services.workflow_records.workflow_records_sqlite import SqliteWorkflowRecordsStorage
from invokeai.app.services.workflow_thumbnails.workflow_thumbnails_disk import WorkflowThumbnailFileStorageDisk
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningFieldData
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
BasicConditioningInfo,
ConditioningFieldData,
FLUXConditioningInfo,
SD3ConditioningInfo,
SDXLConditioningInfo,
)
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.version.invokeai_version import __version__
@@ -101,10 +107,25 @@ class ApiDependencies:
images = ImageService()
invocation_cache = MemoryInvocationCache(max_cache_size=config.node_cache_size)
tensors = ObjectSerializerForwardCache(
ObjectSerializerDisk[torch.Tensor](output_folder / "tensors", ephemeral=True)
ObjectSerializerDisk[torch.Tensor](
output_folder / "tensors",
safe_globals=[torch.Tensor],
ephemeral=True,
),
max_cache_size=0,
)
conditioning = ObjectSerializerForwardCache(
ObjectSerializerDisk[ConditioningFieldData](output_folder / "conditioning", ephemeral=True)
ObjectSerializerDisk[ConditioningFieldData](
output_folder / "conditioning",
safe_globals=[
ConditioningFieldData,
BasicConditioningInfo,
SDXLConditioningInfo,
FLUXConditioningInfo,
SD3ConditioningInfo,
],
ephemeral=True,
),
)
download_queue_service = DownloadQueueService(app_config=configuration, event_bus=events)
model_images_service = ModelImageFileStorageDisk(model_images_folder / "model_images")

View File

@@ -21,10 +21,16 @@ class ObjectSerializerDisk(ObjectSerializerBase[T]):
"""Disk-backed storage for arbitrary python objects. Serialization is handled by `torch.save` and `torch.load`.
:param output_dir: The folder where the serialized objects will be stored
:param safe_globals: A list of types to be added to the safe globals for torch serialization
:param ephemeral: If True, objects will be stored in a temporary directory inside the given output_dir and cleaned up on exit
"""
def __init__(self, output_dir: Path, ephemeral: bool = False):
def __init__(
self,
output_dir: Path,
safe_globals: list[type],
ephemeral: bool = False,
) -> None:
super().__init__()
self._ephemeral = ephemeral
self._base_output_dir = output_dir
@@ -42,6 +48,8 @@ class ObjectSerializerDisk(ObjectSerializerBase[T]):
self._output_dir = Path(self._tempdir.name) if self._tempdir else self._base_output_dir
self.__obj_class_name: Optional[str] = None
torch.serialization.add_safe_globals(safe_globals) if safe_globals else None
def load(self, name: str) -> T:
file_path = self._get_path(name)
try:

View File

@@ -69,6 +69,9 @@ class SD3ConditioningInfo:
@dataclass
class ConditioningFieldData:
# If you change this class, adding more types, you _must_ update the instantiation of ObjectSerializerDisk in
# invokeai/app/api/dependencies.py, adding the types to the list of safe globals. If you do not, torch will be
# unable to deserialize the object and will raise an error.
conditionings: (
List[BasicConditioningInfo]
| List[SDXLConditioningInfo]