mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-02-12 17:55:02 -05:00
Merge branch 'main' into OMI
This commit is contained in:
@@ -582,6 +582,8 @@ def invocation(
|
||||
|
||||
fields: dict[str, tuple[Any, FieldInfo]] = {}
|
||||
|
||||
original_model_fields: dict[str, OriginalModelField] = {}
|
||||
|
||||
for field_name, field_info in cls.model_fields.items():
|
||||
annotation = field_info.annotation
|
||||
assert annotation is not None, f"{field_name} on invocation {invocation_type} has no type annotation."
|
||||
@@ -589,7 +591,7 @@ def invocation(
|
||||
f"{field_name} on invocation {invocation_type} has a non-dict json_schema_extra, did you forget to use InputField?"
|
||||
)
|
||||
|
||||
cls._original_model_fields[field_name] = OriginalModelField(annotation=annotation, field_info=field_info)
|
||||
original_model_fields[field_name] = OriginalModelField(annotation=annotation, field_info=field_info)
|
||||
|
||||
validate_field_default(cls.__name__, field_name, invocation_type, annotation, field_info)
|
||||
|
||||
@@ -676,6 +678,7 @@ def invocation(
|
||||
docstring = cls.__doc__
|
||||
new_class = create_model(cls.__qualname__, __base__=cls, __module__=cls.__module__, **fields) # type: ignore
|
||||
new_class.__doc__ = docstring
|
||||
new_class._original_model_fields = original_model_fields
|
||||
|
||||
InvocationRegistry.register_invocation(new_class)
|
||||
|
||||
|
||||
@@ -24,7 +24,6 @@ from invokeai.frontend.cli.arg_parser import InvokeAIArgs
|
||||
INIT_FILE = Path("invokeai.yaml")
|
||||
DB_FILE = Path("invokeai.db")
|
||||
LEGACY_INIT_FILE = Path("invokeai.init")
|
||||
DEVICE = Literal["auto", "cpu", "cuda", "cuda:1", "mps"]
|
||||
PRECISION = Literal["auto", "float16", "bfloat16", "float32"]
|
||||
ATTENTION_TYPE = Literal["auto", "normal", "xformers", "sliced", "torch-sdp"]
|
||||
ATTENTION_SLICE_SIZE = Literal["auto", "balanced", "max", 1, 2, 3, 4, 5, 6, 7, 8]
|
||||
@@ -93,7 +92,7 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
vram: DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_vram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.
|
||||
lazy_offload: DEPRECATED: This setting is no longer used. Lazy-offloading is enabled by default. This config setting will be removed once the new model cache behavior is stable.
|
||||
pytorch_cuda_alloc_conf: Configure the Torch CUDA memory allocator. This will impact peak reserved VRAM usage and performance. Setting to "backend:cudaMallocAsync" works well on many systems. The optimal configuration is highly dependent on the system configuration (device type, VRAM, CUDA driver version, etc.), so must be tuned experimentally.
|
||||
device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `cuda:1`, `mps`
|
||||
device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `mps`, `cuda:N` (where N is a device number)
|
||||
precision: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.<br>Valid values: `auto`, `float16`, `bfloat16`, `float32`
|
||||
sequential_guidance: Whether to calculate guidance in serial instead of in parallel, lowering memory requirements.
|
||||
attention_type: Attention type.<br>Valid values: `auto`, `normal`, `xformers`, `sliced`, `torch-sdp`
|
||||
@@ -176,7 +175,7 @@ class InvokeAIAppConfig(BaseSettings):
|
||||
pytorch_cuda_alloc_conf: Optional[str] = Field(default=None, description="Configure the Torch CUDA memory allocator. This will impact peak reserved VRAM usage and performance. Setting to \"backend:cudaMallocAsync\" works well on many systems. The optimal configuration is highly dependent on the system configuration (device type, VRAM, CUDA driver version, etc.), so must be tuned experimentally.")
|
||||
|
||||
# DEVICE
|
||||
device: DEVICE = Field(default="auto", description="Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.")
|
||||
device: str = Field(default="auto", description="Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `mps`, `cuda:N` (where N is a device number)", pattern=r"^(auto|cpu|mps|cuda(:\d+)?)$")
|
||||
precision: PRECISION = Field(default="auto", description="Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.")
|
||||
|
||||
# GENERATION
|
||||
|
||||
@@ -296,7 +296,7 @@ class LoRAConfigBase(ABC, BaseModel):
|
||||
from invokeai.backend.patches.lora_conversions.formats import flux_format_from_state_dict
|
||||
|
||||
sd = mod.load_state_dict(mod.path)
|
||||
value = flux_format_from_state_dict(sd)
|
||||
value = flux_format_from_state_dict(sd, mod.metadata())
|
||||
mod.cache[key] = value
|
||||
return value
|
||||
|
||||
|
||||
@@ -21,6 +21,10 @@ from invokeai.backend.model_manager.taxonomy import (
|
||||
ModelType,
|
||||
SubModelType,
|
||||
)
|
||||
from invokeai.backend.patches.lora_conversions.flux_aitoolkit_lora_conversion_utils import (
|
||||
is_state_dict_likely_in_flux_aitoolkit_format,
|
||||
lora_model_from_flux_aitoolkit_state_dict,
|
||||
)
|
||||
from invokeai.backend.patches.lora_conversions.flux_control_lora_utils import (
|
||||
is_state_dict_likely_flux_control,
|
||||
lora_model_from_flux_control_state_dict,
|
||||
@@ -99,6 +103,8 @@ class LoRALoader(ModelLoader):
|
||||
model = lora_model_from_flux_onetrainer_state_dict(state_dict=state_dict)
|
||||
elif is_state_dict_likely_flux_control(state_dict=state_dict):
|
||||
model = lora_model_from_flux_control_state_dict(state_dict=state_dict)
|
||||
elif is_state_dict_likely_in_flux_aitoolkit_format(state_dict=state_dict):
|
||||
model = lora_model_from_flux_aitoolkit_state_dict(state_dict=state_dict)
|
||||
else:
|
||||
raise ValueError("LoRA model is in unsupported FLUX format")
|
||||
else:
|
||||
|
||||
@@ -138,6 +138,7 @@ class FluxLoRAFormat(str, Enum):
|
||||
Kohya = "flux.kohya"
|
||||
OneTrainer = "flux.onetrainer"
|
||||
Control = "flux.control"
|
||||
AIToolkit = "flux.aitoolkit"
|
||||
|
||||
|
||||
AnyVariant: TypeAlias = Union[ModelVariantType, ClipVariantType, None]
|
||||
|
||||
@@ -0,0 +1,63 @@
|
||||
import json
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
|
||||
from invokeai.backend.patches.layers.base_layer_patch import BaseLayerPatch
|
||||
from invokeai.backend.patches.layers.utils import any_lora_layer_from_state_dict
|
||||
from invokeai.backend.patches.lora_conversions.flux_diffusers_lora_conversion_utils import _group_by_layer
|
||||
from invokeai.backend.patches.lora_conversions.flux_lora_constants import FLUX_LORA_TRANSFORMER_PREFIX
|
||||
from invokeai.backend.patches.model_patch_raw import ModelPatchRaw
|
||||
from invokeai.backend.util import InvokeAILogger
|
||||
|
||||
|
||||
def is_state_dict_likely_in_flux_aitoolkit_format(state_dict: dict[str, Any], metadata: dict[str, Any] = None) -> bool:
|
||||
if metadata:
|
||||
try:
|
||||
software = json.loads(metadata.get("software", "{}"))
|
||||
except json.JSONDecodeError:
|
||||
return False
|
||||
return software.get("name") == "ai-toolkit"
|
||||
# metadata got lost somewhere
|
||||
return any("diffusion_model" == k.split(".", 1)[0] for k in state_dict.keys())
|
||||
|
||||
|
||||
@dataclass
|
||||
class GroupedStateDict:
|
||||
transformer: dict[str, Any] = field(default_factory=dict)
|
||||
# might also grow CLIP and T5 submodels
|
||||
|
||||
|
||||
def _group_state_by_submodel(state_dict: dict[str, Any]) -> GroupedStateDict:
|
||||
logger = InvokeAILogger.get_logger()
|
||||
grouped = GroupedStateDict()
|
||||
for key, value in state_dict.items():
|
||||
submodel_name, param_name = key.split(".", 1)
|
||||
match submodel_name:
|
||||
case "diffusion_model":
|
||||
grouped.transformer[param_name] = value
|
||||
case _:
|
||||
logger.warning(f"Unexpected submodel name: {submodel_name}")
|
||||
return grouped
|
||||
|
||||
|
||||
def _rename_peft_lora_keys(state_dict: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
|
||||
"""Renames keys from the PEFT LoRA format to the InvokeAI format."""
|
||||
renamed_state_dict = {}
|
||||
for key, value in state_dict.items():
|
||||
renamed_key = key.replace(".lora_A.", ".lora_down.").replace(".lora_B.", ".lora_up.")
|
||||
renamed_state_dict[renamed_key] = value
|
||||
return renamed_state_dict
|
||||
|
||||
|
||||
def lora_model_from_flux_aitoolkit_state_dict(state_dict: dict[str, torch.Tensor]) -> ModelPatchRaw:
|
||||
state_dict = _rename_peft_lora_keys(state_dict)
|
||||
by_layer = _group_by_layer(state_dict)
|
||||
by_model = _group_state_by_submodel(by_layer)
|
||||
|
||||
layers: dict[str, BaseLayerPatch] = {}
|
||||
for layer_key, layer_state_dict in by_model.transformer.items():
|
||||
layers[FLUX_LORA_TRANSFORMER_PREFIX + layer_key] = any_lora_layer_from_state_dict(layer_state_dict)
|
||||
|
||||
return ModelPatchRaw(layers=layers)
|
||||
@@ -1,4 +1,7 @@
|
||||
from invokeai.backend.model_manager.taxonomy import FluxLoRAFormat
|
||||
from invokeai.backend.patches.lora_conversions.flux_aitoolkit_lora_conversion_utils import (
|
||||
is_state_dict_likely_in_flux_aitoolkit_format,
|
||||
)
|
||||
from invokeai.backend.patches.lora_conversions.flux_control_lora_utils import is_state_dict_likely_flux_control
|
||||
from invokeai.backend.patches.lora_conversions.flux_diffusers_lora_conversion_utils import (
|
||||
is_state_dict_likely_in_flux_diffusers_format,
|
||||
@@ -11,7 +14,7 @@ from invokeai.backend.patches.lora_conversions.flux_onetrainer_lora_conversion_u
|
||||
)
|
||||
|
||||
|
||||
def flux_format_from_state_dict(state_dict):
|
||||
def flux_format_from_state_dict(state_dict: dict, metadata: dict | None = None) -> FluxLoRAFormat | None:
|
||||
if is_state_dict_likely_in_flux_kohya_format(state_dict):
|
||||
return FluxLoRAFormat.Kohya
|
||||
elif is_state_dict_likely_in_flux_onetrainer_format(state_dict):
|
||||
@@ -20,5 +23,7 @@ def flux_format_from_state_dict(state_dict):
|
||||
return FluxLoRAFormat.Diffusers
|
||||
elif is_state_dict_likely_flux_control(state_dict):
|
||||
return FluxLoRAFormat.Control
|
||||
elif is_state_dict_likely_in_flux_aitoolkit_format(state_dict, metadata):
|
||||
return FluxLoRAFormat.AIToolkit
|
||||
else:
|
||||
return None
|
||||
|
||||
@@ -19,6 +19,7 @@ export const CanvasToolbarSaveToGalleryButton = memo(() => {
|
||||
onClick={shift ? saveBboxToGallery : saveCanvasToGallery}
|
||||
icon={<PiFloppyDiskBold />}
|
||||
aria-label={shift ? t('controlLayers.saveBboxToGallery') : t('controlLayers.saveCanvasToGallery')}
|
||||
colorScheme="invokeBlue"
|
||||
tooltip={shift ? t('controlLayers.saveBboxToGallery') : t('controlLayers.saveCanvasToGallery')}
|
||||
isDisabled={isBusy}
|
||||
/>
|
||||
|
||||
@@ -122,11 +122,11 @@ const NODE_TYPE_PUBLISH_DENYLIST = [
|
||||
'metadata_to_controlnets',
|
||||
'metadata_to_ip_adapters',
|
||||
'metadata_to_t2i_adapters',
|
||||
'google_imagen3_generate',
|
||||
'google_imagen3_edit',
|
||||
'google_imagen4_generate',
|
||||
'chatgpt_create_image',
|
||||
'chatgpt_edit_image',
|
||||
'google_imagen3_generate_image',
|
||||
'google_imagen3_edit_image',
|
||||
'google_imagen4_generate_image',
|
||||
'chatgpt_4o_generate_image',
|
||||
'chatgpt_4o_edit_image',
|
||||
];
|
||||
|
||||
export const selectHasUnpublishableNodes = createSelector(selectNodes, (nodes) => {
|
||||
|
||||
@@ -12161,7 +12161,7 @@ export type components = {
|
||||
* vram: DEPRECATED: This setting is no longer used. It has been replaced by `max_cache_vram_gb`, but most users will not need to use this config since automatic cache size limits should work well in most cases. This config setting will be removed once the new model cache behavior is stable.
|
||||
* lazy_offload: DEPRECATED: This setting is no longer used. Lazy-offloading is enabled by default. This config setting will be removed once the new model cache behavior is stable.
|
||||
* pytorch_cuda_alloc_conf: Configure the Torch CUDA memory allocator. This will impact peak reserved VRAM usage and performance. Setting to "backend:cudaMallocAsync" works well on many systems. The optimal configuration is highly dependent on the system configuration (device type, VRAM, CUDA driver version, etc.), so must be tuned experimentally.
|
||||
* device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `cuda:1`, `mps`
|
||||
* device: Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `mps`, `cuda:N` (where N is a device number)
|
||||
* precision: Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.<br>Valid values: `auto`, `float16`, `bfloat16`, `float32`
|
||||
* sequential_guidance: Whether to calculate guidance in serial instead of in parallel, lowering memory requirements.
|
||||
* attention_type: Attention type.<br>Valid values: `auto`, `normal`, `xformers`, `sliced`, `torch-sdp`
|
||||
@@ -12436,11 +12436,10 @@ export type components = {
|
||||
pytorch_cuda_alloc_conf?: string | null;
|
||||
/**
|
||||
* Device
|
||||
* @description Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.
|
||||
* @description Preferred execution device. `auto` will choose the device depending on the hardware platform and the installed torch capabilities.<br>Valid values: `auto`, `cpu`, `cuda`, `mps`, `cuda:N` (where N is a device number)
|
||||
* @default auto
|
||||
* @enum {string}
|
||||
*/
|
||||
device?: "auto" | "cpu" | "cuda" | "cuda:1" | "mps";
|
||||
device?: string;
|
||||
/**
|
||||
* Precision
|
||||
* @description Floating point precision. `float16` will consume half the memory of `float32` but produce slightly lower-quality images. The `auto` setting will guess the proper precision based on your video card and operating system.
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__ = "5.14.0"
|
||||
__version__ = "5.15.0"
|
||||
|
||||
Reference in New Issue
Block a user