test fixes

fix

test

fix 2

fix 3

fix 4

yet another

attempt new fix

pray

more pray

lol
This commit is contained in:
Kent Keirsey
2025-07-03 00:01:19 -04:00
committed by psychedelicious
parent e73150c3e6
commit 71e6f00e10
5 changed files with 108 additions and 57 deletions

View File

@@ -391,28 +391,29 @@ class FluxDenoiseInvocation(BaseInvocation):
raise ValueError("A VAE (e.g., controlnet_vae) must be provided to use Kontext conditioning.")
kontext_extension = KontextExtension(
kontext_field=self.kontext_conditioning,
context=context,
kontext_conditioning=self.kontext_conditioning,
vae_field=self.controlnet_vae,
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
)
final_img, final_img_ids = x, img_ids
original_seq_len = x.shape[1]
# Prepare Kontext conditioning if provided
img_cond_seq = None
img_cond_seq_ids = None
if kontext_extension is not None:
final_img, final_img_ids = kontext_extension.apply(final_img, final_img_ids)
# Ensure batch sizes match
kontext_extension.ensure_batch_size(x.shape[0])
img_cond_seq, img_cond_seq_ids = kontext_extension.kontext_latents, kontext_extension.kontext_ids
x = denoise(
model=transformer,
img=final_img,
img_ids=final_img_ids,
img=x,
img_ids=img_ids,
pos_regional_prompting_extension=pos_regional_prompting_extension,
neg_regional_prompting_extension=neg_regional_prompting_extension,
timesteps=timesteps,
step_callback=self._build_step_callback(
context, original_seq_len if kontext_extension is not None else None
),
step_callback=self._build_step_callback(context),
guidance=self.guidance,
cfg_scale=cfg_scale,
inpaint_extension=inpaint_extension,
@@ -420,11 +421,10 @@ class FluxDenoiseInvocation(BaseInvocation):
pos_ip_adapter_extensions=pos_ip_adapter_extensions,
neg_ip_adapter_extensions=neg_ip_adapter_extensions,
img_cond=img_cond,
img_cond_seq=img_cond_seq,
img_cond_seq_ids=img_cond_seq_ids,
)
if kontext_extension is not None:
x = x[:, :original_seq_len, :] # Keep only the first original_seq_len tokens
x = unpack(x.float(), self.height, self.width)
return x
@@ -896,13 +896,12 @@ class FluxDenoiseInvocation(BaseInvocation):
del lora_info
def _build_step_callback(
self, context: InvocationContext, original_seq_len: Optional[int] = None
self, context: InvocationContext
) -> Callable[[PipelineIntermediateState], None]:
def step_callback(state: PipelineIntermediateState) -> None:
# Extract only main image tokens if Kontext conditioning was applied
# The denoise function now handles Kontext conditioning correctly,
# so we don't need to slice the latents here
latents = state.latents.float()
if original_seq_len is not None:
latents = latents[:, :original_seq_len, :]
state.latents = unpack(latents, self.height, self.width).squeeze()
context.util.flux_step_callback(state)

View File

@@ -30,8 +30,11 @@ def denoise(
controlnet_extensions: list[XLabsControlNetExtension | InstantXControlNetExtension],
pos_ip_adapter_extensions: list[XLabsIPAdapterExtension],
neg_ip_adapter_extensions: list[XLabsIPAdapterExtension],
# extra img tokens
# extra img tokens (channel-wise)
img_cond: torch.Tensor | None,
# extra img tokens (sequence-wise) - for Kontext conditioning
img_cond_seq: torch.Tensor | None = None,
img_cond_seq_ids: torch.Tensor | None = None,
):
# step 0 is the initial state
total_steps = len(timesteps) - 1
@@ -46,6 +49,10 @@ def denoise(
)
# guidance_vec is ignored for schnell.
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
# Store original sequence length for slicing predictions
original_seq_len = img.shape[1]
for step_index, (t_curr, t_prev) in tqdm(list(enumerate(zip(timesteps[:-1], timesteps[1:], strict=True)))):
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
@@ -71,10 +78,24 @@ def denoise(
# controlnet_residuals datastructure is efficient in that it likely contains multiple references to the same
# tensors. Calculating the sum materializes each tensor into its own instance.
merged_controlnet_residuals = sum_controlnet_flux_outputs(controlnet_residuals)
pred_img = torch.cat((img, img_cond), dim=-1) if img_cond is not None else img
# Prepare input for model - concatenate fresh each step
img_input = img
img_input_ids = img_ids
# Add channel-wise conditioning (for ControlNet, FLUX Fill, etc.)
if img_cond is not None:
img_input = torch.cat((img_input, img_cond), dim=-1)
# Add sequence-wise conditioning (for Kontext)
if img_cond_seq is not None:
assert img_cond_seq_ids is not None, "You need to provide either both or neither of the sequence conditioning"
img_input = torch.cat((img_input, img_cond_seq), dim=1)
img_input_ids = torch.cat((img_input_ids, img_cond_seq_ids), dim=1)
pred = model(
img=pred_img,
img_ids=img_ids,
img=img_input,
img_ids=img_input_ids,
txt=pos_regional_prompting_extension.regional_text_conditioning.t5_embeddings,
txt_ids=pos_regional_prompting_extension.regional_text_conditioning.t5_txt_ids,
y=pos_regional_prompting_extension.regional_text_conditioning.clip_embeddings,
@@ -87,6 +108,10 @@ def denoise(
ip_adapter_extensions=pos_ip_adapter_extensions,
regional_prompting_extension=pos_regional_prompting_extension,
)
# Slice prediction to only include the main image tokens
if img_input_ids is not None:
pred = pred[:, :original_seq_len]
step_cfg_scale = cfg_scale[step_index]

View File

@@ -1,13 +1,15 @@
import einops
import torch
from einops import repeat
import numpy as np
from PIL import Image
from invokeai.app.invocations.fields import FluxKontextConditioningField
from invokeai.app.invocations.flux_vae_encode import FluxVaeEncodeInvocation
from invokeai.app.invocations.model import VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.sampling_utils import pack
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
from invokeai.backend.flux.util import PREFERED_KONTEXT_RESOLUTIONS
def generate_img_ids_with_offset(
@@ -71,7 +73,7 @@ class KontextExtension:
def __init__(
self,
kontext_field: FluxKontextConditioningField,
kontext_conditioning: FluxKontextConditioningField,
context: InvocationContext,
vae_field: VAEField,
device: torch.device,
@@ -85,30 +87,53 @@ class KontextExtension:
self._device = device
self._dtype = dtype
self._vae_field = vae_field
self.kontext_field = kontext_field
self.kontext_conditioning = kontext_conditioning
# Pre-process and cache the kontext latents and ids upon initialization.
self.kontext_latents, self.kontext_ids = self._prepare_kontext()
def _prepare_kontext(self) -> tuple[torch.Tensor, torch.Tensor]:
"""Encodes the reference image and prepares its latents and IDs."""
image = self._context.images.get_pil(self.kontext_field.image.image_name)
# Reuse VAE encoding logic from FluxVaeEncodeInvocation
vae_info = self._context.models.load(self._vae_field.vae)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
image = self._context.images.get_pil(self.kontext_conditioning.image.image_name)
# Calculate aspect ratio of input image
width, height = image.size
aspect_ratio = width / height
# Find the closest preferred resolution by aspect ratio
_, target_width, target_height = min(
((abs(aspect_ratio - w / h), w, h) for w, h in PREFERED_KONTEXT_RESOLUTIONS),
key=lambda x: x[0]
)
# Apply BFL's scaling formula
# This ensures compatibility with the model's training
scaled_width = 2 * int(target_width / 16)
scaled_height = 2 * int(target_height / 16)
# Resize to the exact resolution used during training
image = image.convert("RGB")
final_width = 8 * scaled_width
final_height = 8 * scaled_height
image = image.resize((final_width, final_height), Image.Resampling.LANCZOS)
# Convert to tensor with same normalization as BFL
image_np = np.array(image)
image_tensor = torch.from_numpy(image_np).float() / 127.5 - 1.0
image_tensor = einops.rearrange(image_tensor, "h w c -> 1 c h w")
image_tensor = image_tensor.to(self._device)
kontext_latents_unpacked = FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
# Extract tensor dimensions with descriptive names
# Latent tensor shape: [batch_size, channels, latent_height, latent_width]
# Continue with VAE encoding
vae_info = self._context.models.load(self._vae_field.vae)
kontext_latents_unpacked = FluxVaeEncodeInvocation.vae_encode(
vae_info=vae_info,
image_tensor=image_tensor
)
# Extract tensor dimensions
batch_size, _, latent_height, latent_width = kontext_latents_unpacked.shape
# Pack the latents and generate IDs. The idx_offset distinguishes these
# tokens from the main image's tokens, which have an index of 0.
# Pack the latents and generate IDs
kontext_latents_packed = pack(kontext_latents_unpacked).to(self._device, self._dtype)
kontext_ids = generate_img_ids_with_offset(
latent_height=latent_height,
@@ -116,24 +141,13 @@ class KontextExtension:
batch_size=batch_size,
device=self._device,
dtype=self._dtype,
idx_offset=1, # Distinguishes reference tokens from main image tokens
idx_offset=1,
)
return kontext_latents_packed, kontext_ids
def apply(
self,
img: torch.Tensor,
img_ids: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Concatenates the pre-processed kontext data to the main image sequence."""
# Ensure batch sizes match, repeating kontext data if necessary for batch operations.
if img.shape[0] != self.kontext_latents.shape[0]:
self.kontext_latents = self.kontext_latents.repeat(img.shape[0], 1, 1)
self.kontext_ids = self.kontext_ids.repeat(img.shape[0], 1, 1)
# Concatenate along the sequence dimension (dim=1)
combined_img = torch.cat([img, self.kontext_latents], dim=1)
combined_img_ids = torch.cat([img_ids, self.kontext_ids], dim=1)
return combined_img, combined_img_ids
def ensure_batch_size(self, target_batch_size: int) -> None:
"""Ensures the kontext latents and IDs match the target batch size by repeating if necessary."""
if self.kontext_latents.shape[0] != target_batch_size:
self.kontext_latents = self.kontext_latents.repeat(target_batch_size, 1, 1)
self.kontext_ids = self.kontext_ids.repeat(target_batch_size, 1, 1)

View File

@@ -174,11 +174,13 @@ def generate_img_ids(h: int, w: int, batch_size: int, device: torch.device, dtyp
dtype = torch.float16
img_ids = torch.zeros(h // 2, w // 2, 3, device=device, dtype=dtype)
# Set batch offset to 0 for main image tokens
img_ids[..., 0] = 0
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=device, dtype=dtype)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=device, dtype=dtype)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
if device.type == "mps":
img_ids.to(orig_dtype)
img_ids = img_ids.to(orig_dtype)
return img_ids

View File

@@ -18,6 +18,17 @@ class ModelSpec:
repo_ae: str | None
# Preferred resolutions for Kontext models to avoid tiling artifacts
# These are the specific resolutions the model was trained on
PREFERED_KONTEXT_RESOLUTIONS = [
(672, 1568), (688, 1504), (720, 1456), (752, 1392),
(800, 1328), (832, 1248), (880, 1184), (944, 1104),
(1024, 1024), (1104, 944), (1184, 880), (1248, 832),
(1328, 800), (1392, 752), (1456, 720), (1504, 688),
(1568, 672),
]
max_seq_lengths: Dict[str, Literal[256, 512]] = {
"flux-dev": 512,
"flux-dev-fill": 512,