Add FLUX Kontext conditioning support for reference images

Co-authored-by: kent <kent@invoke.ai>

Fix Kontext sequence length handling in Flux denoise invocation

Co-authored-by: kent <kent@invoke.ai>

Fix Kontext step callback to handle combined token sequences

Co-authored-by: kent <kent@invoke.ai>

fix ruff

Fix Flux Kontext
This commit is contained in:
Cursor Agent
2025-06-26 18:15:42 +00:00
committed by psychedelicious
parent df8751b5a1
commit 7549c1250d
4 changed files with 207 additions and 5 deletions

View File

@@ -215,6 +215,7 @@ class FieldDescriptions:
flux_redux_conditioning = "FLUX Redux conditioning tensor"
vllm_model = "The VLLM model to use"
flux_fill_conditioning = "FLUX Fill conditioning tensor"
flux_kontext_conditioning = "FLUX Kontext conditioning (reference image)"
class ImageField(BaseModel):
@@ -291,6 +292,12 @@ class FluxFillConditioningField(BaseModel):
mask: TensorField = Field(description="The FLUX Fill inpaint mask.")
class FluxKontextConditioningField(BaseModel):
"""A conditioning field for FLUX Kontext (reference image)."""
image: ImageField = Field(description="The Kontext reference image.")
class SD3ConditioningField(BaseModel):
"""A conditioning tensor primitive value"""

View File

@@ -16,6 +16,7 @@ from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxConditioningField,
FluxFillConditioningField,
FluxKontextConditioningField,
FluxReduxConditioningField,
ImageField,
Input,
@@ -34,6 +35,7 @@ from invokeai.backend.flux.controlnet.instantx_controlnet_flux import InstantXCo
from invokeai.backend.flux.controlnet.xlabs_controlnet_flux import XLabsControlNetFlux
from invokeai.backend.flux.denoise import denoise
from invokeai.backend.flux.extensions.instantx_controlnet_extension import InstantXControlNetExtension
from invokeai.backend.flux.extensions.kontext_extension import KontextExtension
from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension
from invokeai.backend.flux.extensions.xlabs_controlnet_extension import XLabsControlNetExtension
from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension
@@ -150,6 +152,12 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
description=FieldDescriptions.ip_adapter, title="IP-Adapter", default=None, input=Input.Connection
)
kontext_conditioning: Optional[FluxKontextConditioningField] = InputField(
default=None,
description="FLUX Kontext conditioning (reference image).",
input=Input.Connection,
)
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = self._run_diffusion(context)
@@ -376,14 +384,39 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
dtype=inference_dtype,
)
# Instantiate our new extension if the conditioning is provided
kontext_extension = None
if self.kontext_conditioning is not None:
# We need a VAE to encode the reference image. We can reuse the
# controlnet_vae field as it serves a similar purpose (image to latents).
if not self.controlnet_vae:
raise ValueError("A VAE (e.g., controlnet_vae) must be provided to use Kontext conditioning.")
kontext_extension = KontextExtension(
kontext_field=self.kontext_conditioning,
context=context,
vae_field=self.controlnet_vae, # Pass the VAE field
device=TorchDevice.choose_torch_device(),
dtype=inference_dtype,
)
# THE CRITICAL INTEGRATION POINT
final_img, final_img_ids = x, img_ids
original_seq_len = x.shape[1] # Store the original sequence length
if kontext_extension is not None:
final_img, final_img_ids = kontext_extension.apply(final_img, final_img_ids)
# The denoise function will now use the combined tensors
x = denoise(
model=transformer,
img=x,
img_ids=img_ids,
img=final_img, # Pass the combined image tokens
img_ids=final_img_ids, # Pass the combined image IDs
pos_regional_prompting_extension=pos_regional_prompting_extension,
neg_regional_prompting_extension=neg_regional_prompting_extension,
timesteps=timesteps,
step_callback=self._build_step_callback(context),
step_callback=self._build_step_callback(
context, original_seq_len if kontext_extension is not None else None
),
guidance=self.guidance,
cfg_scale=cfg_scale,
inpaint_extension=inpaint_extension,
@@ -393,6 +426,10 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
img_cond=img_cond,
)
# Extract only the main image tokens if kontext was applied
if kontext_extension is not None:
x = x[:, :original_seq_len, :] # Keep only the first original_seq_len tokens
x = unpack(x.float(), self.height, self.width)
return x
@@ -863,9 +900,15 @@ class FluxDenoiseInvocation(BaseInvocation, WithMetadata, WithBoard):
yield (lora_info.model, lora.weight)
del lora_info
def _build_step_callback(self, context: InvocationContext) -> Callable[[PipelineIntermediateState], None]:
def _build_step_callback(
self, context: InvocationContext, original_seq_len: Optional[int] = None
) -> Callable[[PipelineIntermediateState], None]:
def step_callback(state: PipelineIntermediateState) -> None:
state.latents = unpack(state.latents.float(), self.height, self.width).squeeze()
# Extract only main image tokens if Kontext conditioning was applied
latents = state.latents.float()
if original_seq_len is not None:
latents = latents[:, :original_seq_len, :]
state.latents = unpack(latents, self.height, self.width).squeeze()
context.util.flux_step_callback(state)
return step_callback

View File

@@ -0,0 +1,40 @@
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import (
FieldDescriptions,
FluxKontextConditioningField,
InputField,
OutputField,
)
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.services.shared.invocation_context import InvocationContext
@invocation_output("flux_kontext_output")
class FluxKontextOutput(BaseInvocationOutput):
"""The conditioning output of a FLUX Kontext invocation."""
kontext_cond: FluxKontextConditioningField = OutputField(
description=FieldDescriptions.flux_kontext_conditioning, title="Kontext Conditioning"
)
@invocation(
"flux_kontext",
title="Kontext Conditioning - FLUX",
tags=["conditioning", "kontext", "flux"],
category="conditioning",
version="1.0.0",
)
class FluxKontextInvocation(BaseInvocation):
"""Prepares a reference image for FLUX Kontext conditioning."""
image: ImageField = InputField(description="The Kontext reference image.")
def invoke(self, context: InvocationContext) -> FluxKontextOutput:
"""Packages the provided image into a Kontext conditioning field."""
return FluxKontextOutput(kontext_cond=FluxKontextConditioningField(image=self.image))

View File

@@ -0,0 +1,112 @@
import einops
import torch
from einops import repeat
from invokeai.app.invocations.fields import FluxKontextConditioningField
from invokeai.app.invocations.flux_vae_encode import FluxVaeEncodeInvocation
from invokeai.app.invocations.model import VAEField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.flux.sampling_utils import pack
from invokeai.backend.stable_diffusion.diffusers_pipeline import image_resized_to_grid_as_tensor
def generate_img_ids_with_offset(
h: int, w: int, batch_size: int, device: torch.device, dtype: torch.dtype, idx_offset: int = 0
) -> torch.Tensor:
"""Generate tensor of image position ids with an optional offset.
Args:
h (int): Height of image in latent space.
w (int): Width of image in latent space.
batch_size (int): Batch size.
device (torch.device): Device.
dtype (torch.dtype): dtype.
idx_offset (int): Offset to add to the first dimension of the image ids.
Returns:
torch.Tensor: Image position ids.
"""
if device.type == "mps":
orig_dtype = dtype
dtype = torch.float16
img_ids = torch.zeros(h // 2, w // 2, 3, device=device, dtype=dtype)
img_ids[..., 0] = idx_offset # Set the offset for the first dimension
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=device, dtype=dtype)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=device, dtype=dtype)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
if device.type == "mps":
img_ids = img_ids.to(orig_dtype)
return img_ids
class KontextExtension:
"""Applies FLUX Kontext (reference image) conditioning."""
def __init__(
self,
kontext_field: FluxKontextConditioningField,
context: InvocationContext,
vae_field: VAEField,
device: torch.device,
dtype: torch.dtype,
):
"""
Initializes the KontextExtension, pre-processing the reference image
into latents and positional IDs.
"""
self._context = context
self._device = device
self._dtype = dtype
self._vae_field = vae_field
self.kontext_field = kontext_field
# Pre-process and cache the kontext latents and ids upon initialization.
self.kontext_latents, self.kontext_ids = self._prepare_kontext()
def _prepare_kontext(self) -> tuple[torch.Tensor, torch.Tensor]:
"""Encodes the reference image and prepares its latents and IDs."""
image = self._context.images.get_pil(self.kontext_field.image.image_name)
# Reuse VAE encoding logic from FluxVaeEncodeInvocation
vae_info = self._context.models.load(self._vae_field.vae)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
image_tensor = image_tensor.to(self._device)
kontext_latents_unpacked = FluxVaeEncodeInvocation.vae_encode(vae_info=vae_info, image_tensor=image_tensor)
# Pack the latents and generate IDs. The idx_offset distinguishes these
# tokens from the main image's tokens, which have an index of 0.
kontext_latents_packed = pack(kontext_latents_unpacked).to(self._device, self._dtype)
kontext_ids = generate_img_ids_with_offset(
h=kontext_latents_unpacked.shape[2],
w=kontext_latents_unpacked.shape[3],
batch_size=kontext_latents_unpacked.shape[0],
device=self._device,
dtype=self._dtype,
idx_offset=1, # Distinguishes reference tokens from main image tokens
)
return kontext_latents_packed, kontext_ids
def apply(
self,
img: torch.Tensor,
img_ids: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Concatenates the pre-processed kontext data to the main image sequence."""
# Ensure batch sizes match, repeating kontext data if necessary for batch operations.
if img.shape[0] != self.kontext_latents.shape[0]:
self.kontext_latents = self.kontext_latents.repeat(img.shape[0], 1, 1)
self.kontext_ids = self.kontext_ids.repeat(img.shape[0], 1, 1)
# Concatenate along the sequence dimension (dim=1)
combined_img = torch.cat([img, self.kontext_latents], dim=1)
combined_img_ids = torch.cat([img_ids, self.kontext_ids], dim=1)
return combined_img, combined_img_ids