Use top-level torch import for all torch stuff.

This commit is contained in:
Ryan Dick
2024-10-04 16:16:01 +00:00
committed by Kent Keirsey
parent 704e7479b2
commit 83f4700f5a

View File

@@ -4,7 +4,6 @@
import torch
from einops import rearrange
from torch import Tensor, nn
from invokeai.backend.flux.model import FluxParams
from invokeai.backend.flux.modules.layers import DoubleStreamBlock, EmbedND, MLPEmbedder, timestep_embedding
@@ -13,11 +12,11 @@ from invokeai.backend.flux.modules.layers import DoubleStreamBlock, EmbedND, MLP
def _zero_module(module: torch.nn.Module) -> torch.nn.Module:
"""Initialize the parameters of a module to zero."""
for p in module.parameters():
nn.init.zeros_(p)
torch.nn.init.zeros_(p)
return module
class XLabsControlNetFlux(nn.Module):
class XLabsControlNetFlux(torch.nn.Module):
"""A ControlNet model for FLUX.
The architecture is very similar to the base FLUX model, with the following differences:
@@ -40,15 +39,15 @@ class XLabsControlNetFlux(nn.Module):
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.img_in = torch.nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else torch.nn.Identity()
)
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
self.txt_in = torch.nn.Linear(params.context_in_dim, self.hidden_size)
self.double_blocks = nn.ModuleList(
self.double_blocks = torch.nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
@@ -61,41 +60,41 @@ class XLabsControlNetFlux(nn.Module):
)
# Add ControlNet blocks.
self.controlnet_blocks = nn.ModuleList([])
self.controlnet_blocks = torch.nn.ModuleList([])
for _ in range(controlnet_depth):
controlnet_block = nn.Linear(self.hidden_size, self.hidden_size)
controlnet_block = torch.nn.Linear(self.hidden_size, self.hidden_size)
controlnet_block = _zero_module(controlnet_block)
self.controlnet_blocks.append(controlnet_block)
self.pos_embed_input = nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.input_hint_block = nn.Sequential(
nn.Conv2d(3, 16, 3, padding=1),
nn.SiLU(),
nn.Conv2d(16, 16, 3, padding=1),
nn.SiLU(),
nn.Conv2d(16, 16, 3, padding=1, stride=2),
nn.SiLU(),
nn.Conv2d(16, 16, 3, padding=1),
nn.SiLU(),
nn.Conv2d(16, 16, 3, padding=1, stride=2),
nn.SiLU(),
nn.Conv2d(16, 16, 3, padding=1),
nn.SiLU(),
nn.Conv2d(16, 16, 3, padding=1, stride=2),
nn.SiLU(),
_zero_module(nn.Conv2d(16, 16, 3, padding=1)),
self.pos_embed_input = torch.nn.Linear(self.in_channels, self.hidden_size, bias=True)
self.input_hint_block = torch.nn.Sequential(
torch.nn.Conv2d(3, 16, 3, padding=1),
torch.nn.SiLU(),
torch.nn.Conv2d(16, 16, 3, padding=1),
torch.nn.SiLU(),
torch.nn.Conv2d(16, 16, 3, padding=1, stride=2),
torch.nn.SiLU(),
torch.nn.Conv2d(16, 16, 3, padding=1),
torch.nn.SiLU(),
torch.nn.Conv2d(16, 16, 3, padding=1, stride=2),
torch.nn.SiLU(),
torch.nn.Conv2d(16, 16, 3, padding=1),
torch.nn.SiLU(),
torch.nn.Conv2d(16, 16, 3, padding=1, stride=2),
torch.nn.SiLU(),
_zero_module(torch.nn.Conv2d(16, 16, 3, padding=1)),
)
def forward(
self,
img: Tensor,
img_ids: Tensor,
controlnet_cond: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor | None = None,
) -> list[Tensor]:
img: torch.Tensor,
img_ids: torch.Tensor,
controlnet_cond: torch.Tensor,
txt: torch.Tensor,
txt_ids: torch.Tensor,
timesteps: torch.Tensor,
y: torch.Tensor,
guidance: torch.Tensor | None = None,
) -> list[torch.Tensor]:
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")