move all models into subdirectories of ./models

- this required an update to the invoke-ai fork of gfpgan
- simultaneously reverted consolidation of environment and
  requirements files, as their presence in a directory
  triggered setup.py to try to install a sub-package.
This commit is contained in:
Lincoln Stein
2022-11-08 05:30:20 +00:00
parent abd6407394
commit 8cd5d95b8a
20 changed files with 34 additions and 31 deletions

View File

@@ -415,7 +415,7 @@ def download_kornia():
#---------------------------------------------
def download_clip():
print('Loading CLIP model...',end='')
print('Loading CLIP model (ignore deprecation errors)...',end='')
sys.stdout.flush()
version = 'openai/clip-vit-large-patch14'
tokenizer = CLIPTokenizer.from_pretrained(version)
@@ -424,7 +424,7 @@ def download_clip():
#---------------------------------------------
def download_gfpgan():
print('Installing models from RealESRGAN and facexlib...',end='')
print('Installing models from RealESRGAN and facexlib (ignore deprecation errors)...',end='')
try:
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
@@ -442,19 +442,19 @@ def download_gfpgan():
print('Error loading ESRGAN:')
print(traceback.format_exc())
print('Loading models from GFPGAN')
print('Loading models from GFPGAN...',end='')
for model in (
[
'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth',
'src/gfpgan/experiments/pretrained_models/GFPGANv1.4.pth'
'models/gfpgan/GFPGANv1.4.pth'
],
[
'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth',
'./gfpgan/weights/detection_Resnet50_Final.pth'
'models/gfpgan/weights/detection_Resnet50_Final.pth'
],
[
'https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth',
'./gfpgan/weights/parsing_parsenet.pth'
'models/gfpgan/weights/parsing_parsenet.pth'
],
):
model_url,model_dest = model
@@ -489,22 +489,23 @@ def download_clipseg():
import zipfile
try:
model_url = 'https://owncloud.gwdg.de/index.php/s/ioHbRzFx6th32hn/download'
model_dest = 'src/clipseg/clipseg_weights.zip'
weights_dir = 'src/clipseg/weights'
if not os.path.exists(weights_dir):
model_dest = 'models/clipseg/clipseg_weights'
weights_zip = 'models/clipseg/weights.zip'
if not os.path.exists(model_dest):
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
if not os.path.exists('src/clipseg/weights/rd64-uni-refined.pth'):
request.urlretrieve(model_url,model_dest)
with zipfile.ZipFile(model_dest,'r') as zip:
zip.extractall('src/clipseg')
os.rename('src/clipseg/clipseg_weights','src/clipseg/weights')
os.remove(model_dest)
from clipseg_models.clipseg import CLIPDensePredT
if not os.path.exists(f'{model_dest}/rd64-uni-refined.pth'):
request.urlretrieve(model_url,weights_zip)
with zipfile.ZipFile(weights_zip,'r') as zip:
zip.extractall('models/clipseg')
os.remove(weights_zip)
from clipseg.clipseg import CLIPDensePredT
model = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, )
model.eval()
model.load_state_dict(
torch.load(
'src/clipseg/weights/rd64-uni-refined.pth',
'models/clipseg/clipseg_weights/rd64-uni-refined.pth',
map_location=torch.device('cpu')
),
strict=False,