mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-02-18 20:54:31 -05:00
Squashed commit of the following:
commit1c649e4663Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Mon Sep 12 13:29:16 2022 -0400 fix torchvision dependency version #511 commit4d197f699eMerge:a3e07fb190ba78Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Mon Sep 12 07:29:19 2022 -0400 Merge branch 'development' of github.com:lstein/stable-diffusion into development commita3e07fb84aAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Mon Sep 12 07:28:58 2022 -0400 fix grid crash commit9fa1f31bf2Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Mon Sep 12 07:07:05 2022 -0400 fix opencv and realesrgan dependencies in mac install commit190ba78960Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Mon Sep 12 01:50:58 2022 -0400 Update requirements-mac.txt Fixed dangling dash on last line. commit25d9ccc509Author: Any-Winter-4079 <50542132+Any-Winter-4079@users.noreply.github.com> Date: Mon Sep 12 03:17:29 2022 +0200 Update model.py commit9cdf3aca7dAuthor: Any-Winter-4079 <50542132+Any-Winter-4079@users.noreply.github.com> Date: Mon Sep 12 02:52:36 2022 +0200 Update attention.py Performance improvements to generate larger images in M1 #431 Update attention.py Added dtype=r1.dtype to softmax commit49a96b90d8Author: Mihai <299015+mh-dm@users.noreply.github.com> Date: Sat Sep 10 16:58:07 2022 +0300 ~7% speedup (1.57 to 1.69it/s) from switch to += in ldm.modules.attention. (#482) Tested on 8GB eGPU nvidia setup so YMMV. 512x512 output, max VRAM stays same. commitaba94b85e8Author: Niek van der Maas <mail@niekvandermaas.nl> Date: Fri Sep 9 15:01:37 2022 +0200 Fix macOS `pyenv` instructions, add code block highlight (#441) Fix: `anaconda3-latest` does not work, specify the correct virtualenv, add missing init. commitaac5102cf3Author: Henry van Megen <h.vanmegen@gmail.com> Date: Thu Sep 8 05:16:35 2022 +0200 Disabled debug output (#436) Co-authored-by: Henry van Megen <hvanmegen@gmail.com> commit0ab5a36464Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 17:19:46 2022 -0400 fix missing lines in outputs commit5e433728b5Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 16:20:14 2022 -0400 upped max_steps in v1-finetune.yaml and fixed TI docs to address #493 commit7708f4fb98Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 16:03:37 2022 -0400 slight efficiency gain by using += in attention.py commitb86a1deb00Author: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com> Date: Mon Sep 12 07:47:12 2022 +1200 Remove print statement styling (#504) Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com> commit4951e66103Author: chromaticist <mhostick@gmail.com> Date: Sun Sep 11 12:44:26 2022 -0700 Adding support for .bin files from huggingface concepts (#498) * Adding support for .bin files from huggingface concepts * Updating documentation to include huggingface .bin info commit79b445b0caMerge: a323070f7662c1Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 15:39:38 2022 -0400 Merge branch 'development' of github.com:lstein/stable-diffusion into development commita323070a4dAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 15:28:57 2022 -0400 update requirements for new location of gfpgan commitf7662c1808Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 15:00:24 2022 -0400 update requirements for changed location of gfpgan commit93c242c9fbAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 14:47:58 2022 -0400 make gfpgan_model_exists flag available to web interface commitc7c6cd7735Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 14:43:07 2022 -0400 Update UPSCALE.md New instructions needed to accommodate fact that the ESRGAN and GFPGAN packages are now installed by environment.yaml. commit77ca83e103Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 14:31:56 2022 -0400 Update CLI.md Final documentation tweak. commit0ea145d188Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 14:29:26 2022 -0400 Update CLI.md More doc fixes. commit162285ae86Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 14:28:45 2022 -0400 Update CLI.md Minor documentation fix commit37c921dfe2Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 14:26:41 2022 -0400 documentation enhancements commit4f72cb44adAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 13:05:38 2022 -0400 moved the notebook files into their own directory commit878ef2e9e0Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 12:58:06 2022 -0400 documentation tweaks commit4923118610Merge:16f6a67defafc0Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 12:51:25 2022 -0400 Merge branch 'development' of github.com:lstein/stable-diffusion into development commitdefafc0e8eAuthor: Dominic Letz <dominic@diode.io> Date: Sun Sep 11 18:51:01 2022 +0200 Enable upscaling on m1 (#474) commit16f6a6731dAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 12:47:26 2022 -0400 install GFPGAN inside SD repository in order to fix 'dark cast' issue #169 commit0881d429f2Author: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com> Date: Mon Sep 12 03:52:43 2022 +1200 Docs Update (#466) Authored-by: @blessedcoolant Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com> commit9a29d442b4Author: Gérald LONLAS <gerald@lonlas.com> Date: Sun Sep 11 23:23:18 2022 +0800 Revert "Add 3x Upscale option on the Web UI (#442)" (#488) This reverts commitf8a540881c. commitd301836fbdAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 10:52:19 2022 -0400 can select prior output for init_img using -1, -2, etc commit70aa674e9eAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 10:34:06 2022 -0400 merge PR #495 - keep using float16 in ldm.modules.attention commit8748370f44Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 10:22:32 2022 -0400 negative -S indexing recovers correct previous seed; closes issue #476 commit839e30e4b8Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 11 10:02:44 2022 -0400 improve CUDA VRAM monitoring extra check that device==cuda before getting VRAM stats commitbfb2781279Author: tildebyte <337875+tildebyte@users.noreply.github.com> Date: Sat Sep 10 10:15:56 2022 -0400 fix(readme): add note about updating env via conda (#475) commit5c43988862Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sat Sep 10 10:02:43 2022 -0400 reduce VRAM memory usage by half during model loading * This moves the call to half() before model.to(device) to avoid GPU copy of full model. Improves speed and reduces memory usage dramatically * This fix contributed by @mh-dm (Mihai) commit99122708caMerge:817c4a2ecc6b75Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sat Sep 10 09:54:34 2022 -0400 Merge branch 'development' of github.com:lstein/stable-diffusion into development commit817c4a26deAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Sat Sep 10 09:53:27 2022 -0400 remove -F option from normalized prompt; closes #483 commitecc6b75a3eAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Sat Sep 10 09:53:27 2022 -0400 remove -F option from normalized prompt commit723d074442Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Fri Sep 9 18:49:51 2022 -0400 Allow ctrl c when using --from_file (#472) * added ansi escapes to highlight key parts of CLI session * adjust exception handling so that ^C will abort when reading prompts from a file commit75f633cda8Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Fri Sep 9 12:03:45 2022 -0400 re-add new logo commit10db192cc4Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Fri Sep 9 09:26:10 2022 -0400 changes to dogettx optimizations to run on m1 * Author @any-winter-4079 * Author @dogettx Thanks to many individuals who contributed time and hardware to benchmarking and debugging these changes. commitc85ae00b33Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Thu Sep 8 23:57:45 2022 -0400 fix bug which caused seed to get "stuck" on previous image even when UI specified -1 commit1b5aae3ef3Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Thu Sep 8 22:36:47 2022 -0400 add icon to dream web server commit6abf739315Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Thu Sep 8 22:25:09 2022 -0400 add favicon to web server commitdb825b8138Merge:33874baafee7f9Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Thu Sep 8 22:17:37 2022 -0400 Merge branch 'deNULL-development' into development commit33874bae8dAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Thu Sep 8 22:16:29 2022 -0400 Squashed commit of the following: commitafee7f9ceaMerge:6531446171f8dbAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Thu Sep 8 22:14:32 2022 -0400 Merge branch 'development' of github.com:deNULL/stable-diffusion into deNULL-development commit171f8db742Author: Denis Olshin <me@denull.ru> Date: Thu Sep 8 03:15:20 2022 +0300 saving full prompt to metadata when using web ui commitd7e67b62f0Author: Denis Olshin <me@denull.ru> Date: Thu Sep 8 01:51:47 2022 +0300 better logic for clicking to make variations commitafee7f9ceaMerge:6531446171f8dbAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Thu Sep 8 22:14:32 2022 -0400 Merge branch 'development' of github.com:deNULL/stable-diffusion into deNULL-development commit653144694fAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Thu Sep 8 20:41:37 2022 -0400 work around unexplained crash when timesteps=1000 (#440) * work around unexplained crash when timesteps=1000 * this fix seems to work commitc33a84cdfdAuthor: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com> Date: Fri Sep 9 12:39:51 2022 +1200 Add New Logo (#454) * Add instructions on how to install alongside pyenv (#393) Like probably many others, I have a lot of different virtualenvs, one for each project. Most of them are handled by `pyenv`. After installing according to these instructions I had issues with ´pyenv`and `miniconda` fighting over the $PATH of my system. But then I stumbled upon this nice solution on SO: https://stackoverflow.com/a/73139031 , upon which I have based my suggested changes. It runs perfectly on my M1 setup, with the anaconda setup as a virtual environment handled by pyenv. Feel free to incorporate these instructions as you see fit. Thanks a million for all your hard work. * Disabled debug output (#436) Co-authored-by: Henry van Megen <hvanmegen@gmail.com> * Add New Logo Co-authored-by: Håvard Gulldahl <havard@lurtgjort.no> Co-authored-by: Henry van Megen <h.vanmegen@gmail.com> Co-authored-by: Henry van Megen <hvanmegen@gmail.com> Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com> commitf8a540881cAuthor: Gérald LONLAS <gerald@lonlas.com> Date: Fri Sep 9 01:45:54 2022 +0800 Add 3x Upscale option on the Web UI (#442) commit244239e5f6Author: James Reynolds <magnusviri@users.noreply.github.com> Date: Thu Sep 8 05:36:33 2022 -0600 macOS CI workflow, dream.py exits with an error, but the workflow com… (#396) * macOS CI workflow, dream.py exits with an error, but the workflow completes. * Files for testing Co-authored-by: James Reynolds <magnsuviri@me.com> Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com> commit711d49ed30Author: James Reynolds <magnusviri@users.noreply.github.com> Date: Thu Sep 8 05:35:08 2022 -0600 Cache model workflow (#394) * Add workflow that caches the model, step 1 for CI * Change name of workflow job Co-authored-by: James Reynolds <magnsuviri@me.com> Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com> commit7996a30e3aAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Thu Sep 8 07:34:03 2022 -0400 add auto-creation of mask for inpainting (#438) * now use a single init image for both image and mask * turn on debugging for now to write out mask and image * add back -M option as a fallback commita69ca31f34Author: elliotsayes <elliotsayes@gmail.com> Date: Thu Sep 8 15:30:06 2022 +1200 .gitignore WebUI temp files (#430) * Add instructions on how to install alongside pyenv (#393) Like probably many others, I have a lot of different virtualenvs, one for each project. Most of them are handled by `pyenv`. After installing according to these instructions I had issues with ´pyenv`and `miniconda` fighting over the $PATH of my system. But then I stumbled upon this nice solution on SO: https://stackoverflow.com/a/73139031 , upon which I have based my suggested changes. It runs perfectly on my M1 setup, with the anaconda setup as a virtual environment handled by pyenv. Feel free to incorporate these instructions as you see fit. Thanks a million for all your hard work. * .gitignore WebUI temp files Co-authored-by: Håvard Gulldahl <havard@lurtgjort.no> commit5c6b612a72Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Wed Sep 7 22:50:55 2022 -0400 fix bug that caused same seed to be redisplayed repeatedly commit56f155c590Author: Johan Roxendal <johan@roxendal.com> Date: Thu Sep 8 04:50:06 2022 +0200 added support for parsing run log and displaying images in the frontend init state (#410) Co-authored-by: Johan Roxendal <johan.roxendal@litteraturbanken.se> Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com> commit41687746beAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Wed Sep 7 20:24:35 2022 -0400 added missing initialization of latent_noise to None commit171f8db742Author: Denis Olshin <me@denull.ru> Date: Thu Sep 8 03:15:20 2022 +0300 saving full prompt to metadata when using web ui commitd7e67b62f0Author: Denis Olshin <me@denull.ru> Date: Thu Sep 8 01:51:47 2022 +0300 better logic for clicking to make variations commitd1d044aa87Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Wed Sep 7 17:56:59 2022 -0400 actual image seed now written into web log rather than -1 (#428) commitedada042b3Author: Arturo Mendivil <60411196+artmen1516@users.noreply.github.com> Date: Wed Sep 7 10:42:26 2022 -0700 Improve notebook and add requirements file (#422) commit29ab3c2028Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Wed Sep 7 13:28:11 2022 -0400 disable neonpixel optimizations on M1 hardware (#414) * disable neonpixel optimizations on M1 hardware * fix typo that was causing random noise images on m1 commit7670ecc63fAuthor: cody <cnmizell@gmail.com> Date: Wed Sep 7 12:24:41 2022 -0500 add more keyboard support on the web server (#391) add ability to submit prompts with the "enter" key add ability to cancel generations with the "escape" key commitdd2aedacafAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Wed Sep 7 13:23:53 2022 -0400 report VRAM usage stats during initial model loading (#419) commitf6284777e6Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Tue Sep 6 17:12:39 2022 -0400 Squashed commit of the following: commit 7d1344282d942a33dcecda4d5144fc154ec82915 Merge:caf4ea3ebeb556Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Mon Sep 5 10:07:27 2022 -0400 Merge branch 'development' of github.com:WebDev9000/stable-diffusion into WebDev9000-development commitebeb556af9Author: Web Dev 9000 <rirath@gmail.com> Date: Sun Sep 4 18:05:15 2022 -0700 Fixed unintentionally removed lines commitff2c4b9a1bAuthor: Web Dev 9000 <rirath@gmail.com> Date: Sun Sep 4 17:50:13 2022 -0700 Add ability to recreate variations via image click commitc012929cdaAuthor: Web Dev 9000 <rirath@gmail.com> Date: Sun Sep 4 14:35:33 2022 -0700 Add files via upload commit02a6018992Author: Web Dev 9000 <rirath@gmail.com> Date: Sun Sep 4 14:35:07 2022 -0700 Add files via upload commiteef788981cAuthor: Olivier Louvignes <olivier@mg-crea.com> Date: Tue Sep 6 12:41:08 2022 +0200 feat(txt2img): allow from_file to work with len(lines) < batch_size (#349) commit720e5cd651Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Mon Sep 5 20:40:10 2022 -0400 Refactoring simplet2i (#387) * start refactoring -not yet functional * first phase of refactor done - not sure weighted prompts working * Second phase of refactoring. Everything mostly working. * The refactoring has moved all the hard-core inference work into ldm.dream.generator.*, where there are submodules for txt2img and img2img. inpaint will go in there as well. * Some additional refactoring will be done soon, but relatively minor work. * fix -save_orig flag to actually work * add @neonsecret attention.py memory optimization * remove unneeded imports * move token logging into conditioning.py * add placeholder version of inpaint; porting in progress * fix crash in img2img * inpainting working; not tested on variations * fix crashes in img2img * ported attention.py memory optimization #117 from basujindal branch * added @torch_no_grad() decorators to img2img, txt2img, inpaint closures * Final commit prior to PR against development * fixup crash when generating intermediate images in web UI * rename ldm.simplet2i to ldm.generate * add backward-compatibility simplet2i shell with deprecation warning * add back in mps exception, addresses @vargol comment in #354 * replaced Conditioning class with exported functions * fix wrong type of with_variations attribute during intialization * changed "image_iterator()" to "get_make_image()" * raise NotImplementedError for calling get_make_image() in parent class * Update ldm/generate.py better error message Co-authored-by: Kevin Gibbons <bakkot@gmail.com> * minor stylistic fixes and assertion checks from code review * moved get_noise() method into img2img class * break get_noise() into two methods, one for txt2img and the other for img2img * inpainting works on non-square images now * make get_noise() an abstract method in base class * much improved inpainting Co-authored-by: Kevin Gibbons <bakkot@gmail.com> commit1ad2a8e567Author: thealanle <35761977+thealanle@users.noreply.github.com> Date: Mon Sep 5 17:35:04 2022 -0700 Fix --outdir function for web (#373) * Fix --outdir function for web * Removed unnecessary hardcoded path commit52d8bb2836Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Mon Sep 5 10:31:59 2022 -0400 Squashed commit of the following: commit 0cd48e932f1326e000c46f4140f98697eb9bdc79 Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Mon Sep 5 10:27:43 2022 -0400 resolve conflicts with development commitd7bc8c12e0Author: Scott McMillin <scott@scottmcmillin.com> Date: Sun Sep 4 18:52:09 2022 -0500 Add title attribute back to img tag commit5397c89184Author: Scott McMillin <scott@scottmcmillin.com> Date: Sun Sep 4 13:49:46 2022 -0500 Remove temp code commit1da080b509Author: Scott McMillin <scott@scottmcmillin.com> Date: Sun Sep 4 13:33:56 2022 -0500 Cleaned up HTML; small style changes; image click opens image; add seed to figcaption beneath image commitcaf4ea3d89Author: Adam Rice <adam@askadam.io> Date: Mon Sep 5 10:05:39 2022 -0400 Add a 'Remove Image' button to clear the file upload field (#382) * added "remove image" button * styled a new "remove image" button * Update index.js commit95c088b303Author: Kevin Gibbons <bakkot@gmail.com> Date: Sun Sep 4 19:04:14 2022 -0700 Revert "Add CORS headers to dream server to ease integration with third-party web interfaces" (#371) This reverts commit91e826e5f4. commita20113d5a3Author: Kevin Gibbons <bakkot@gmail.com> Date: Sun Sep 4 18:59:12 2022 -0700 put no_grad decorator on make_image closures (#375) commit0f93dadd6aAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 4 21:39:15 2022 -0400 fix several dangling references to --gfpgan option, which no longer exists commitf4004f660eAuthor: tildebyte <337875+tildebyte@users.noreply.github.com> Date: Sun Sep 4 19:43:04 2022 -0400 TOIL(requirements): Split requirements to per-platform (#355) * toil(reqs): split requirements to per-platform Signed-off-by: Ben Alkov <ben.alkov@gmail.com> * toil(reqs): fix for Win and Lin... ...allow pip to resolve latest torch, numpy Signed-off-by: Ben Alkov <ben.alkov@gmail.com> * toil(install): update reqs in Win install notebook Signed-off-by: Ben Alkov <ben.alkov@gmail.com> Signed-off-by: Ben Alkov <ben.alkov@gmail.com> commit4406fd138dMerge:5116c81fd7a72eAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 4 08:23:53 2022 -0400 Merge branch 'SebastianAigner-main' into development Add support for full CORS headers for dream server. commitfd7a72e147Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 4 08:23:11 2022 -0400 remove debugging message commit3a2be621f3Merge:91e826e5116c81Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sun Sep 4 08:15:51 2022 -0400 Merge branch 'development' into main commit5116c8178cAuthor: Justin Wong <1584142+wongjustin99@users.noreply.github.com> Date: Sun Sep 4 07:17:58 2022 -0400 fix save_original flag saving to the same filename (#360) * Update README.md with new Anaconda install steps (#347) pip3 version did not work for me and this is the recommended way to install Anaconda now it seems * fix save_original flag saving to the same filename Before this, the `--save_orig` flag was not working. The upscaled/GFPGAN would overwrite the original output image. Co-authored-by: greentext2 <112735219+greentext2@users.noreply.github.com> commit91e826e5f4Author: Sebastian Aigner <SebastianAigner@users.noreply.github.com> Date: Sun Sep 4 10:22:54 2022 +0200 Add CORS headers to dream server to ease integration with third-party web interfaces commit6266d9e8d6Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sat Sep 3 15:45:20 2022 -0400 remove stray debugging message commit138956e516Author: greentext2 <112735219+greentext2@users.noreply.github.com> Date: Sat Sep 3 13:38:57 2022 -0500 Update README.md with new Anaconda install steps (#347) pip3 version did not work for me and this is the recommended way to install Anaconda now it seems commit60be735e80Author: Cora Johnson-Roberson <cora.johnson.roberson@gmail.com> Date: Sat Sep 3 14:28:34 2022 -0400 Switch to regular pytorch channel and restore Python 3.10 for Macs. (#301) * Switch to regular pytorch channel and restore Python 3.10 for Macs. Although pytorch-nightly should in theory be faster, it is currently causing increased memory usage and slower iterations: https://github.com/lstein/stable-diffusion/pull/283#issuecomment-1234784885 This changes the environment-mac.yaml file back to the regular pytorch channel and moves the `transformers` dep into pip for now (since it cannot be satisfied until tokenizers>=0.11 is built for Python 3.10). * Specify versions for Pip packages as well. commitd0d95d3a2aAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Sat Sep 3 14:10:31 2022 -0400 make initimg appear in web log commitb90a215000Merge:1eee8116270e31Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sat Sep 3 13:47:15 2022 -0400 Merge branch 'prixt-seamless' into development commit6270e313b8Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sat Sep 3 13:46:29 2022 -0400 add credit to prixt for seamless circular tiling commita01b7bdc40Merge:1eee8119d88abeAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Sat Sep 3 13:43:04 2022 -0400 add web interface for seamless option commit1eee8111b9Merge:64eca42fb857f0Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sat Sep 3 12:33:39 2022 -0400 Merge branch 'development' of github.com:lstein/stable-diffusion into development commit64eca42610Merge:9130ad721a1f68Author: Lincoln Stein <lincoln.stein@gmail.com> Date: Sat Sep 3 12:33:05 2022 -0400 Merge branch 'main' into development * brings in small documentation fixes that were added directly to main during release tweaking. commitfb857f05baAuthor: Lincoln Stein <lincoln.stein@gmail.com> Date: Sat Sep 3 12:07:07 2022 -0400 fix typo in docs commit9d88abe2eaAuthor: prixt <paraxite@naver.com> Date: Sat Sep 3 22:42:16 2022 +0900 fixed typo commita61e49bc97Author: prixt <paraxite@naver.com> Date: Sat Sep 3 22:39:35 2022 +0900 * Removed unnecessary code * Added description about --seamless commit02bee4fdb1Author: prixt <paraxite@naver.com> Date: Sat Sep 3 16:08:03 2022 +0900 added --seamless tag logging to normalize_prompt commitd922b53c26Author: prixt <paraxite@naver.com> Date: Sat Sep 3 15:13:31 2022 +0900 added seamless tiling mode and commands
This commit is contained in:
96
ldm/dream/conditioning.py
Normal file
96
ldm/dream/conditioning.py
Normal file
@@ -0,0 +1,96 @@
|
||||
'''
|
||||
This module handles the generation of the conditioning tensors, including management of
|
||||
weighted subprompts.
|
||||
|
||||
Useful function exports:
|
||||
|
||||
get_uc_and_c() get the conditioned and unconditioned latent
|
||||
split_weighted_subpromopts() split subprompts, normalize and weight them
|
||||
log_tokenization() print out colour-coded tokens and warn if truncated
|
||||
|
||||
'''
|
||||
import re
|
||||
import torch
|
||||
|
||||
def get_uc_and_c(prompt, model, log_tokens=False, skip_normalize=False):
|
||||
uc = model.get_learned_conditioning([''])
|
||||
|
||||
# get weighted sub-prompts
|
||||
weighted_subprompts = split_weighted_subprompts(
|
||||
prompt, skip_normalize
|
||||
)
|
||||
|
||||
if len(weighted_subprompts) > 1:
|
||||
# i dont know if this is correct.. but it works
|
||||
c = torch.zeros_like(uc)
|
||||
# normalize each "sub prompt" and add it
|
||||
for subprompt, weight in weighted_subprompts:
|
||||
log_tokenization(subprompt, model, log_tokens)
|
||||
c = torch.add(
|
||||
c,
|
||||
model.get_learned_conditioning([subprompt]),
|
||||
alpha=weight,
|
||||
)
|
||||
else: # just standard 1 prompt
|
||||
log_tokenization(prompt, model, log_tokens)
|
||||
c = model.get_learned_conditioning([prompt])
|
||||
return (uc, c)
|
||||
|
||||
def split_weighted_subprompts(text, skip_normalize=False)->list:
|
||||
"""
|
||||
grabs all text up to the first occurrence of ':'
|
||||
uses the grabbed text as a sub-prompt, and takes the value following ':' as weight
|
||||
if ':' has no value defined, defaults to 1.0
|
||||
repeats until no text remaining
|
||||
"""
|
||||
prompt_parser = re.compile("""
|
||||
(?P<prompt> # capture group for 'prompt'
|
||||
(?:\\\:|[^:])+ # match one or more non ':' characters or escaped colons '\:'
|
||||
) # end 'prompt'
|
||||
(?: # non-capture group
|
||||
:+ # match one or more ':' characters
|
||||
(?P<weight> # capture group for 'weight'
|
||||
-?\d+(?:\.\d+)? # match positive or negative integer or decimal number
|
||||
)? # end weight capture group, make optional
|
||||
\s* # strip spaces after weight
|
||||
| # OR
|
||||
$ # else, if no ':' then match end of line
|
||||
) # end non-capture group
|
||||
""", re.VERBOSE)
|
||||
parsed_prompts = [(match.group("prompt").replace("\\:", ":"), float(
|
||||
match.group("weight") or 1)) for match in re.finditer(prompt_parser, text)]
|
||||
if skip_normalize:
|
||||
return parsed_prompts
|
||||
weight_sum = sum(map(lambda x: x[1], parsed_prompts))
|
||||
if weight_sum == 0:
|
||||
print(
|
||||
"Warning: Subprompt weights add up to zero. Discarding and using even weights instead.")
|
||||
equal_weight = 1 / len(parsed_prompts)
|
||||
return [(x[0], equal_weight) for x in parsed_prompts]
|
||||
return [(x[0], x[1] / weight_sum) for x in parsed_prompts]
|
||||
|
||||
# shows how the prompt is tokenized
|
||||
# usually tokens have '</w>' to indicate end-of-word,
|
||||
# but for readability it has been replaced with ' '
|
||||
def log_tokenization(text, model, log=False):
|
||||
if not log:
|
||||
return
|
||||
tokens = model.cond_stage_model.tokenizer._tokenize(text)
|
||||
tokenized = ""
|
||||
discarded = ""
|
||||
usedTokens = 0
|
||||
totalTokens = len(tokens)
|
||||
for i in range(0, totalTokens):
|
||||
token = tokens[i].replace('</w>', ' ')
|
||||
# alternate color
|
||||
s = (usedTokens % 6) + 1
|
||||
if i < model.cond_stage_model.max_length:
|
||||
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
|
||||
usedTokens += 1
|
||||
else: # over max token length
|
||||
discarded = discarded + f"\x1b[0;3{s};40m{token}"
|
||||
print(f"\n>> Tokens ({usedTokens}):\n{tokenized}\x1b[0m")
|
||||
if discarded != "":
|
||||
print(
|
||||
f">> Tokens Discarded ({totalTokens-usedTokens}):\n{discarded}\x1b[0m"
|
||||
)
|
||||
@@ -1,4 +1,6 @@
|
||||
import torch
|
||||
from torch import autocast
|
||||
from contextlib import contextmanager, nullcontext
|
||||
|
||||
def choose_torch_device() -> str:
|
||||
'''Convenience routine for guessing which GPU device to run model on'''
|
||||
@@ -8,10 +10,11 @@ def choose_torch_device() -> str:
|
||||
return 'mps'
|
||||
return 'cpu'
|
||||
|
||||
def choose_autocast_device(device) -> str:
|
||||
def choose_autocast_device(device):
|
||||
'''Returns an autocast compatible device from a torch device'''
|
||||
device_type = device.type # this returns 'mps' on M1
|
||||
# autocast only supports cuda or cpu
|
||||
if device_type not in ('cuda','cpu'):
|
||||
return 'cpu'
|
||||
return device_type
|
||||
if device_type in ('cuda','cpu'):
|
||||
return device_type,autocast
|
||||
else:
|
||||
return 'cpu',nullcontext
|
||||
|
||||
4
ldm/dream/generator/__init__.py
Normal file
4
ldm/dream/generator/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
'''
|
||||
Initialization file for the ldm.dream.generator package
|
||||
'''
|
||||
from .base import Generator
|
||||
158
ldm/dream/generator/base.py
Normal file
158
ldm/dream/generator/base.py
Normal file
@@ -0,0 +1,158 @@
|
||||
'''
|
||||
Base class for ldm.dream.generator.*
|
||||
including img2img, txt2img, and inpaint
|
||||
'''
|
||||
import torch
|
||||
import numpy as np
|
||||
import random
|
||||
from tqdm import tqdm, trange
|
||||
from PIL import Image
|
||||
from einops import rearrange, repeat
|
||||
from pytorch_lightning import seed_everything
|
||||
from ldm.dream.devices import choose_autocast_device
|
||||
|
||||
downsampling = 8
|
||||
|
||||
class Generator():
|
||||
def __init__(self,model):
|
||||
self.model = model
|
||||
self.seed = None
|
||||
self.latent_channels = model.channels
|
||||
self.downsampling_factor = downsampling # BUG: should come from model or config
|
||||
self.variation_amount = 0
|
||||
self.with_variations = []
|
||||
|
||||
# this is going to be overridden in img2img.py, txt2img.py and inpaint.py
|
||||
def get_make_image(self,prompt,**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it
|
||||
"""
|
||||
raise NotImplementedError("image_iterator() must be implemented in a descendent class")
|
||||
|
||||
def set_variation(self, seed, variation_amount, with_variations):
|
||||
self.seed = seed
|
||||
self.variation_amount = variation_amount
|
||||
self.with_variations = with_variations
|
||||
|
||||
def generate(self,prompt,init_image,width,height,iterations=1,seed=None,
|
||||
image_callback=None, step_callback=None,
|
||||
**kwargs):
|
||||
device_type,scope = choose_autocast_device(self.model.device)
|
||||
make_image = self.get_make_image(
|
||||
prompt,
|
||||
init_image = init_image,
|
||||
width = width,
|
||||
height = height,
|
||||
step_callback = step_callback,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
results = []
|
||||
seed = seed if seed else self.new_seed()
|
||||
seed, initial_noise = self.generate_initial_noise(seed, width, height)
|
||||
with scope(device_type), self.model.ema_scope():
|
||||
for n in trange(iterations, desc='Generating'):
|
||||
x_T = None
|
||||
if self.variation_amount > 0:
|
||||
seed_everything(seed)
|
||||
target_noise = self.get_noise(width,height)
|
||||
x_T = self.slerp(self.variation_amount, initial_noise, target_noise)
|
||||
elif initial_noise is not None:
|
||||
# i.e. we specified particular variations
|
||||
x_T = initial_noise
|
||||
else:
|
||||
seed_everything(seed)
|
||||
if self.model.device.type == 'mps':
|
||||
x_T = self.get_noise(width,height)
|
||||
|
||||
# make_image will do the equivalent of get_noise itself
|
||||
image = make_image(x_T)
|
||||
results.append([image, seed])
|
||||
if image_callback is not None:
|
||||
image_callback(image, seed)
|
||||
seed = self.new_seed()
|
||||
return results
|
||||
|
||||
def sample_to_image(self,samples):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it
|
||||
"""
|
||||
x_samples = self.model.decode_first_stage(samples)
|
||||
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
if len(x_samples) != 1:
|
||||
raise Exception(
|
||||
f'>> expected to get a single image, but got {len(x_samples)}')
|
||||
x_sample = 255.0 * rearrange(
|
||||
x_samples[0].cpu().numpy(), 'c h w -> h w c'
|
||||
)
|
||||
return Image.fromarray(x_sample.astype(np.uint8))
|
||||
|
||||
def generate_initial_noise(self, seed, width, height):
|
||||
initial_noise = None
|
||||
if self.variation_amount > 0 or len(self.with_variations) > 0:
|
||||
# use fixed initial noise plus random noise per iteration
|
||||
seed_everything(seed)
|
||||
initial_noise = self.get_noise(width,height)
|
||||
for v_seed, v_weight in self.with_variations:
|
||||
seed = v_seed
|
||||
seed_everything(seed)
|
||||
next_noise = self.get_noise(width,height)
|
||||
initial_noise = self.slerp(v_weight, initial_noise, next_noise)
|
||||
if self.variation_amount > 0:
|
||||
random.seed() # reset RNG to an actually random state, so we can get a random seed for variations
|
||||
seed = random.randrange(0,np.iinfo(np.uint32).max)
|
||||
return (seed, initial_noise)
|
||||
else:
|
||||
return (seed, None)
|
||||
|
||||
# returns a tensor filled with random numbers from a normal distribution
|
||||
def get_noise(self,width,height):
|
||||
"""
|
||||
Returns a tensor filled with random numbers, either form a normal distribution
|
||||
(txt2img) or from the latent image (img2img, inpaint)
|
||||
"""
|
||||
raise NotImplementedError("get_noise() must be implemented in a descendent class")
|
||||
|
||||
def new_seed(self):
|
||||
self.seed = random.randrange(0, np.iinfo(np.uint32).max)
|
||||
return self.seed
|
||||
|
||||
def slerp(self, t, v0, v1, DOT_THRESHOLD=0.9995):
|
||||
'''
|
||||
Spherical linear interpolation
|
||||
Args:
|
||||
t (float/np.ndarray): Float value between 0.0 and 1.0
|
||||
v0 (np.ndarray): Starting vector
|
||||
v1 (np.ndarray): Final vector
|
||||
DOT_THRESHOLD (float): Threshold for considering the two vectors as
|
||||
colineal. Not recommended to alter this.
|
||||
Returns:
|
||||
v2 (np.ndarray): Interpolation vector between v0 and v1
|
||||
'''
|
||||
inputs_are_torch = False
|
||||
if not isinstance(v0, np.ndarray):
|
||||
inputs_are_torch = True
|
||||
v0 = v0.detach().cpu().numpy()
|
||||
if not isinstance(v1, np.ndarray):
|
||||
inputs_are_torch = True
|
||||
v1 = v1.detach().cpu().numpy()
|
||||
|
||||
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
||||
if np.abs(dot) > DOT_THRESHOLD:
|
||||
v2 = (1 - t) * v0 + t * v1
|
||||
else:
|
||||
theta_0 = np.arccos(dot)
|
||||
sin_theta_0 = np.sin(theta_0)
|
||||
theta_t = theta_0 * t
|
||||
sin_theta_t = np.sin(theta_t)
|
||||
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
||||
s1 = sin_theta_t / sin_theta_0
|
||||
v2 = s0 * v0 + s1 * v1
|
||||
|
||||
if inputs_are_torch:
|
||||
v2 = torch.from_numpy(v2).to(self.model.device)
|
||||
|
||||
return v2
|
||||
|
||||
72
ldm/dream/generator/img2img.py
Normal file
72
ldm/dream/generator/img2img.py
Normal file
@@ -0,0 +1,72 @@
|
||||
'''
|
||||
ldm.dream.generator.txt2img descends from ldm.dream.generator
|
||||
'''
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from ldm.dream.devices import choose_autocast_device
|
||||
from ldm.dream.generator.base import Generator
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
|
||||
class Img2Img(Generator):
|
||||
def __init__(self,model):
|
||||
super().__init__(model)
|
||||
self.init_latent = None # by get_noise()
|
||||
|
||||
@torch.no_grad()
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,init_image,strength,step_callback=None,**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it.
|
||||
"""
|
||||
|
||||
# PLMS sampler not supported yet, so ignore previous sampler
|
||||
if not isinstance(sampler,DDIMSampler):
|
||||
print(
|
||||
f">> sampler '{sampler.__class__.__name__}' is not yet supported. Using DDIM sampler"
|
||||
)
|
||||
sampler = DDIMSampler(self.model, device=self.model.device)
|
||||
|
||||
sampler.make_schedule(
|
||||
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
||||
)
|
||||
|
||||
device_type,scope = choose_autocast_device(self.model.device)
|
||||
with scope(device_type):
|
||||
self.init_latent = self.model.get_first_stage_encoding(
|
||||
self.model.encode_first_stage(init_image)
|
||||
) # move to latent space
|
||||
|
||||
t_enc = int(strength * steps)
|
||||
uc, c = conditioning
|
||||
|
||||
@torch.no_grad()
|
||||
def make_image(x_T):
|
||||
# encode (scaled latent)
|
||||
z_enc = sampler.stochastic_encode(
|
||||
self.init_latent,
|
||||
torch.tensor([t_enc]).to(self.model.device),
|
||||
noise=x_T
|
||||
)
|
||||
# decode it
|
||||
samples = sampler.decode(
|
||||
z_enc,
|
||||
c,
|
||||
t_enc,
|
||||
img_callback = step_callback,
|
||||
unconditional_guidance_scale=cfg_scale,
|
||||
unconditional_conditioning=uc,
|
||||
)
|
||||
return self.sample_to_image(samples)
|
||||
|
||||
return make_image
|
||||
|
||||
def get_noise(self,width,height):
|
||||
device = self.model.device
|
||||
init_latent = self.init_latent
|
||||
assert init_latent is not None,'call to get_noise() when init_latent not set'
|
||||
if device.type == 'mps':
|
||||
return torch.randn_like(init_latent, device='cpu').to(device)
|
||||
else:
|
||||
return torch.randn_like(init_latent, device=device)
|
||||
77
ldm/dream/generator/inpaint.py
Normal file
77
ldm/dream/generator/inpaint.py
Normal file
@@ -0,0 +1,77 @@
|
||||
'''
|
||||
ldm.dream.generator.inpaint descends from ldm.dream.generator
|
||||
'''
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from einops import rearrange, repeat
|
||||
from ldm.dream.devices import choose_autocast_device
|
||||
from ldm.dream.generator.img2img import Img2Img
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
|
||||
class Inpaint(Img2Img):
|
||||
def __init__(self,model):
|
||||
self.init_latent = None
|
||||
super().__init__(model)
|
||||
|
||||
@torch.no_grad()
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,init_image,mask_image,strength,
|
||||
step_callback=None,**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and
|
||||
the initial image + mask. Return value depends on the seed at
|
||||
the time you call it. kwargs are 'init_latent' and 'strength'
|
||||
"""
|
||||
|
||||
mask_image = mask_image[0][0].unsqueeze(0).repeat(4,1,1).unsqueeze(0)
|
||||
mask_image = repeat(mask_image, '1 ... -> b ...', b=1)
|
||||
|
||||
# PLMS sampler not supported yet, so ignore previous sampler
|
||||
if not isinstance(sampler,DDIMSampler):
|
||||
print(
|
||||
f">> sampler '{sampler.__class__.__name__}' is not yet supported. Using DDIM sampler"
|
||||
)
|
||||
sampler = DDIMSampler(self.model, device=self.model.device)
|
||||
|
||||
sampler.make_schedule(
|
||||
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
||||
)
|
||||
|
||||
device_type,scope = choose_autocast_device(self.model.device)
|
||||
with scope(device_type):
|
||||
self.init_latent = self.model.get_first_stage_encoding(
|
||||
self.model.encode_first_stage(init_image)
|
||||
) # move to latent space
|
||||
|
||||
t_enc = int(strength * steps)
|
||||
uc, c = conditioning
|
||||
|
||||
print(f">> target t_enc is {t_enc} steps")
|
||||
|
||||
@torch.no_grad()
|
||||
def make_image(x_T):
|
||||
# encode (scaled latent)
|
||||
z_enc = sampler.stochastic_encode(
|
||||
self.init_latent,
|
||||
torch.tensor([t_enc]).to(self.model.device),
|
||||
noise=x_T
|
||||
)
|
||||
|
||||
# decode it
|
||||
samples = sampler.decode(
|
||||
z_enc,
|
||||
c,
|
||||
t_enc,
|
||||
img_callback = step_callback,
|
||||
unconditional_guidance_scale = cfg_scale,
|
||||
unconditional_conditioning = uc,
|
||||
mask = mask_image,
|
||||
init_latent = self.init_latent
|
||||
)
|
||||
return self.sample_to_image(samples)
|
||||
|
||||
return make_image
|
||||
|
||||
|
||||
|
||||
61
ldm/dream/generator/txt2img.py
Normal file
61
ldm/dream/generator/txt2img.py
Normal file
@@ -0,0 +1,61 @@
|
||||
'''
|
||||
ldm.dream.generator.txt2img inherits from ldm.dream.generator
|
||||
'''
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from ldm.dream.generator.base import Generator
|
||||
|
||||
class Txt2Img(Generator):
|
||||
def __init__(self,model):
|
||||
super().__init__(model)
|
||||
|
||||
@torch.no_grad()
|
||||
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
||||
conditioning,width,height,step_callback=None,**kwargs):
|
||||
"""
|
||||
Returns a function returning an image derived from the prompt and the initial image
|
||||
Return value depends on the seed at the time you call it
|
||||
kwargs are 'width' and 'height'
|
||||
"""
|
||||
uc, c = conditioning
|
||||
|
||||
@torch.no_grad()
|
||||
def make_image(x_T):
|
||||
shape = [
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor,
|
||||
]
|
||||
samples, _ = sampler.sample(
|
||||
batch_size = 1,
|
||||
S = steps,
|
||||
x_T = x_T,
|
||||
conditioning = c,
|
||||
shape = shape,
|
||||
verbose = False,
|
||||
unconditional_guidance_scale = cfg_scale,
|
||||
unconditional_conditioning = uc,
|
||||
eta = ddim_eta,
|
||||
img_callback = step_callback
|
||||
)
|
||||
return self.sample_to_image(samples)
|
||||
|
||||
return make_image
|
||||
|
||||
|
||||
# returns a tensor filled with random numbers from a normal distribution
|
||||
def get_noise(self,width,height):
|
||||
device = self.model.device
|
||||
if device.type == 'mps':
|
||||
return torch.randn([1,
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
device='cpu').to(device)
|
||||
else:
|
||||
return torch.randn([1,
|
||||
self.latent_channels,
|
||||
height // self.downsampling_factor,
|
||||
width // self.downsampling_factor],
|
||||
device=device)
|
||||
@@ -59,6 +59,10 @@ class PromptFormatter:
|
||||
switches.append(f'-H{opt.height or t2i.height}')
|
||||
switches.append(f'-C{opt.cfg_scale or t2i.cfg_scale}')
|
||||
switches.append(f'-A{opt.sampler_name or t2i.sampler_name}')
|
||||
# to do: put model name into the t2i object
|
||||
# switches.append(f'--model{t2i.model_name}')
|
||||
if opt.seamless or t2i.seamless:
|
||||
switches.append(f'--seamless')
|
||||
if opt.init_img:
|
||||
switches.append(f'-I{opt.init_img}')
|
||||
if opt.fit:
|
||||
@@ -74,6 +78,4 @@ class PromptFormatter:
|
||||
if opt.with_variations:
|
||||
formatted_variations = ','.join(f'{seed}:{weight}' for seed, weight in opt.with_variations)
|
||||
switches.append(f'-V{formatted_variations}')
|
||||
if t2i.full_precision:
|
||||
switches.append('-F')
|
||||
return ' '.join(switches)
|
||||
|
||||
@@ -22,7 +22,7 @@ class Completer:
|
||||
def complete(self, text, state):
|
||||
buffer = readline.get_line_buffer()
|
||||
|
||||
if text.startswith(('-I', '--init_img')):
|
||||
if text.startswith(('-I', '--init_img','-M','--init_mask')):
|
||||
return self._path_completions(text, state, ('.png','.jpg','.jpeg'))
|
||||
|
||||
if buffer.strip().endswith('cd') or text.startswith(('.', '/')):
|
||||
@@ -48,10 +48,15 @@ class Completer:
|
||||
|
||||
def _path_completions(self, text, state, extensions):
|
||||
# get the path so far
|
||||
# TODO: replace this mess with a regular expression match
|
||||
if text.startswith('-I'):
|
||||
path = text.replace('-I', '', 1).lstrip()
|
||||
elif text.startswith('--init_img='):
|
||||
path = text.replace('--init_img=', '', 1).lstrip()
|
||||
elif text.startswith('--init_mask='):
|
||||
path = text.replace('--init_mask=', '', 1).lstrip()
|
||||
elif text.startswith('-M'):
|
||||
path = text.replace('-M', '', 1).lstrip()
|
||||
else:
|
||||
path = text
|
||||
|
||||
@@ -94,6 +99,7 @@ if readline_available:
|
||||
'--grid','-g',
|
||||
'--individual','-i',
|
||||
'--init_img','-I',
|
||||
'--init_mask','-M',
|
||||
'--strength','-f',
|
||||
'--variants','-v',
|
||||
'--outdir','-o',
|
||||
|
||||
@@ -1,16 +1,65 @@
|
||||
import argparse
|
||||
import json
|
||||
import base64
|
||||
import mimetypes
|
||||
import os
|
||||
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
|
||||
from ldm.dream.pngwriter import PngWriter
|
||||
from ldm.dream.pngwriter import PngWriter, PromptFormatter
|
||||
from threading import Event
|
||||
|
||||
def build_opt(post_data, seed, gfpgan_model_exists):
|
||||
opt = argparse.Namespace()
|
||||
setattr(opt, 'prompt', post_data['prompt'])
|
||||
setattr(opt, 'init_img', post_data['initimg'])
|
||||
setattr(opt, 'strength', float(post_data['strength']))
|
||||
setattr(opt, 'iterations', int(post_data['iterations']))
|
||||
setattr(opt, 'steps', int(post_data['steps']))
|
||||
setattr(opt, 'width', int(post_data['width']))
|
||||
setattr(opt, 'height', int(post_data['height']))
|
||||
setattr(opt, 'seamless', 'seamless' in post_data)
|
||||
setattr(opt, 'fit', 'fit' in post_data)
|
||||
setattr(opt, 'mask', 'mask' in post_data)
|
||||
setattr(opt, 'invert_mask', 'invert_mask' in post_data)
|
||||
setattr(opt, 'cfg_scale', float(post_data['cfg_scale']))
|
||||
setattr(opt, 'sampler_name', post_data['sampler_name'])
|
||||
setattr(opt, 'gfpgan_strength', float(post_data['gfpgan_strength']) if gfpgan_model_exists else 0)
|
||||
setattr(opt, 'upscale', [int(post_data['upscale_level']), float(post_data['upscale_strength'])] if post_data['upscale_level'] != '' else None)
|
||||
setattr(opt, 'progress_images', 'progress_images' in post_data)
|
||||
setattr(opt, 'seed', None if int(post_data['seed']) == -1 else int(post_data['seed']))
|
||||
setattr(opt, 'variation_amount', float(post_data['variation_amount']) if int(post_data['seed']) != -1 else 0)
|
||||
setattr(opt, 'with_variations', [])
|
||||
|
||||
broken = False
|
||||
if int(post_data['seed']) != -1 and post_data['with_variations'] != '':
|
||||
for part in post_data['with_variations'].split(','):
|
||||
seed_and_weight = part.split(':')
|
||||
if len(seed_and_weight) != 2:
|
||||
print(f'could not parse with_variation part "{part}"')
|
||||
broken = True
|
||||
break
|
||||
try:
|
||||
seed = int(seed_and_weight[0])
|
||||
weight = float(seed_and_weight[1])
|
||||
except ValueError:
|
||||
print(f'could not parse with_variation part "{part}"')
|
||||
broken = True
|
||||
break
|
||||
opt.with_variations.append([seed, weight])
|
||||
|
||||
if broken:
|
||||
raise CanceledException
|
||||
|
||||
if len(opt.with_variations) == 0:
|
||||
opt.with_variations = None
|
||||
|
||||
return opt
|
||||
|
||||
class CanceledException(Exception):
|
||||
pass
|
||||
|
||||
class DreamServer(BaseHTTPRequestHandler):
|
||||
model = None
|
||||
outdir = None
|
||||
canceled = Event()
|
||||
|
||||
def do_GET(self):
|
||||
@@ -30,6 +79,23 @@ class DreamServer(BaseHTTPRequestHandler):
|
||||
'gfpgan_model_exists': gfpgan_model_exists
|
||||
}
|
||||
self.wfile.write(bytes("let config = " + json.dumps(config) + ";\n", "utf-8"))
|
||||
elif self.path == "/run_log.json":
|
||||
self.send_response(200)
|
||||
self.send_header("Content-type", "application/json")
|
||||
self.end_headers()
|
||||
output = []
|
||||
|
||||
log_file = os.path.join(self.outdir, "dream_web_log.txt")
|
||||
if os.path.exists(log_file):
|
||||
with open(log_file, "r") as log:
|
||||
for line in log:
|
||||
url, config = line.split(": {", maxsplit=1)
|
||||
config = json.loads("{" + config)
|
||||
config["url"] = url.lstrip(".")
|
||||
if os.path.exists(url):
|
||||
output.append(config)
|
||||
|
||||
self.wfile.write(bytes(json.dumps({"run_log": output}), "utf-8"))
|
||||
elif self.path == "/cancel":
|
||||
self.canceled.set()
|
||||
self.send_response(200)
|
||||
@@ -63,34 +129,19 @@ class DreamServer(BaseHTTPRequestHandler):
|
||||
|
||||
content_length = int(self.headers['Content-Length'])
|
||||
post_data = json.loads(self.rfile.read(content_length))
|
||||
prompt = post_data['prompt']
|
||||
initimg = post_data['initimg']
|
||||
strength = float(post_data['strength'])
|
||||
iterations = int(post_data['iterations'])
|
||||
steps = int(post_data['steps'])
|
||||
width = int(post_data['width'])
|
||||
height = int(post_data['height'])
|
||||
fit = 'fit' in post_data
|
||||
cfgscale = float(post_data['cfgscale'])
|
||||
sampler_name = post_data['sampler']
|
||||
gfpgan_strength = float(post_data['gfpgan_strength']) if gfpgan_model_exists else 0
|
||||
upscale_level = post_data['upscale_level']
|
||||
upscale_strength = post_data['upscale_strength']
|
||||
upscale = [int(upscale_level),float(upscale_strength)] if upscale_level != '' else None
|
||||
progress_images = 'progress_images' in post_data
|
||||
seed = self.model.seed if int(post_data['seed']) == -1 else int(post_data['seed'])
|
||||
opt = build_opt(post_data, self.model.seed, gfpgan_model_exists)
|
||||
|
||||
self.canceled.clear()
|
||||
print(f">> Request to generate with prompt: {prompt}")
|
||||
print(f">> Request to generate with prompt: {opt.prompt}")
|
||||
# In order to handle upscaled images, the PngWriter needs to maintain state
|
||||
# across images generated by each call to prompt2img(), so we define it in
|
||||
# the outer scope of image_done()
|
||||
config = post_data.copy() # Shallow copy
|
||||
config['initimg'] = ''
|
||||
config['initimg'] = config.pop('initimg_name', '')
|
||||
|
||||
images_generated = 0 # helps keep track of when upscaling is started
|
||||
images_upscaled = 0 # helps keep track of when upscaling is completed
|
||||
pngwriter = PngWriter("./outputs/img-samples/")
|
||||
pngwriter = PngWriter(self.outdir)
|
||||
|
||||
prefix = pngwriter.unique_prefix()
|
||||
# if upscaling is requested, then this will be called twice, once when
|
||||
@@ -99,11 +150,24 @@ class DreamServer(BaseHTTPRequestHandler):
|
||||
# entry should not be inserted into the image list.
|
||||
def image_done(image, seed, upscaled=False):
|
||||
name = f'{prefix}.{seed}.png'
|
||||
path = pngwriter.save_image_and_prompt_to_png(image, f'{prompt} -S{seed}', name)
|
||||
iter_opt = argparse.Namespace(**vars(opt)) # copy
|
||||
if opt.variation_amount > 0:
|
||||
this_variation = [[seed, opt.variation_amount]]
|
||||
if opt.with_variations is None:
|
||||
iter_opt.with_variations = this_variation
|
||||
else:
|
||||
iter_opt.with_variations = opt.with_variations + this_variation
|
||||
iter_opt.variation_amount = 0
|
||||
elif opt.with_variations is None:
|
||||
iter_opt.seed = seed
|
||||
normalized_prompt = PromptFormatter(self.model, iter_opt).normalize_prompt()
|
||||
path = pngwriter.save_image_and_prompt_to_png(image, f'{normalized_prompt} -S{iter_opt.seed}', name)
|
||||
|
||||
if int(config['seed']) == -1:
|
||||
config['seed'] = seed
|
||||
# Append post_data to log, but only once!
|
||||
if not upscaled:
|
||||
with open("./outputs/img-samples/dream_web_log.txt", "a") as log:
|
||||
with open(os.path.join(self.outdir, "dream_web_log.txt"), "a") as log:
|
||||
log.write(f"{path}: {json.dumps(config)}\n")
|
||||
|
||||
self.wfile.write(bytes(json.dumps(
|
||||
@@ -111,27 +175,27 @@ class DreamServer(BaseHTTPRequestHandler):
|
||||
) + '\n',"utf-8"))
|
||||
|
||||
# control state of the "postprocessing..." message
|
||||
upscaling_requested = upscale or gfpgan_strength>0
|
||||
upscaling_requested = opt.upscale or opt.gfpgan_strength > 0
|
||||
nonlocal images_generated # NB: Is this bad python style? It is typical usage in a perl closure.
|
||||
nonlocal images_upscaled # NB: Is this bad python style? It is typical usage in a perl closure.
|
||||
if upscaled:
|
||||
images_upscaled += 1
|
||||
else:
|
||||
images_generated +=1
|
||||
images_generated += 1
|
||||
if upscaling_requested:
|
||||
action = None
|
||||
if images_generated >= iterations:
|
||||
if images_upscaled < iterations:
|
||||
if images_generated >= opt.iterations:
|
||||
if images_upscaled < opt.iterations:
|
||||
action = 'upscaling-started'
|
||||
else:
|
||||
action = 'upscaling-done'
|
||||
if action:
|
||||
x = images_upscaled+1
|
||||
x = images_upscaled + 1
|
||||
self.wfile.write(bytes(json.dumps(
|
||||
{'event':action,'processed_file_cnt':f'{x}/{iterations}'}
|
||||
{'event': action, 'processed_file_cnt': f'{x}/{opt.iterations}'}
|
||||
) + '\n',"utf-8"))
|
||||
|
||||
step_writer = PngWriter('./outputs/intermediates/')
|
||||
step_writer = PngWriter(os.path.join(self.outdir, "intermediates"))
|
||||
step_index = 1
|
||||
def image_progress(sample, step):
|
||||
if self.canceled.is_set():
|
||||
@@ -141,10 +205,10 @@ class DreamServer(BaseHTTPRequestHandler):
|
||||
# since rendering images is moderately expensive, only render every 5th image
|
||||
# and don't bother with the last one, since it'll render anyway
|
||||
nonlocal step_index
|
||||
if progress_images and step % 5 == 0 and step < steps - 1:
|
||||
image = self.model._sample_to_image(sample)
|
||||
name = f'{prefix}.{seed}.{step_index}.png'
|
||||
metadata = f'{prompt} -S{seed} [intermediate]'
|
||||
if opt.progress_images and step % 5 == 0 and step < opt.steps - 1:
|
||||
image = self.model.sample_to_image(sample)
|
||||
name = f'{prefix}.{opt.seed}.{step_index}.png'
|
||||
metadata = f'{opt.prompt} -S{opt.seed} [intermediate]'
|
||||
path = step_writer.save_image_and_prompt_to_png(image, metadata, name)
|
||||
step_index += 1
|
||||
self.wfile.write(bytes(json.dumps(
|
||||
@@ -152,43 +216,20 @@ class DreamServer(BaseHTTPRequestHandler):
|
||||
) + '\n',"utf-8"))
|
||||
|
||||
try:
|
||||
if initimg is None:
|
||||
if opt.init_img is None:
|
||||
# Run txt2img
|
||||
self.model.prompt2image(prompt,
|
||||
iterations=iterations,
|
||||
cfg_scale = cfgscale,
|
||||
width = width,
|
||||
height = height,
|
||||
seed = seed,
|
||||
steps = steps,
|
||||
gfpgan_strength = gfpgan_strength,
|
||||
upscale = upscale,
|
||||
sampler_name = sampler_name,
|
||||
step_callback=image_progress,
|
||||
image_callback=image_done)
|
||||
self.model.prompt2image(**vars(opt), step_callback=image_progress, image_callback=image_done)
|
||||
else:
|
||||
# Decode initimg as base64 to temp file
|
||||
with open("./img2img-tmp.png", "wb") as f:
|
||||
initimg = initimg.split(",")[1] # Ignore mime type
|
||||
initimg = opt.init_img.split(",")[1] # Ignore mime type
|
||||
f.write(base64.b64decode(initimg))
|
||||
opt1 = argparse.Namespace(**vars(opt))
|
||||
opt1.init_img = "./img2img-tmp.png"
|
||||
|
||||
try:
|
||||
# Run img2img
|
||||
self.model.prompt2image(prompt,
|
||||
init_img = "./img2img-tmp.png",
|
||||
strength = strength,
|
||||
iterations = iterations,
|
||||
cfg_scale = cfgscale,
|
||||
seed = seed,
|
||||
steps = steps,
|
||||
sampler_name = sampler_name,
|
||||
width = width,
|
||||
height = height,
|
||||
fit = fit,
|
||||
gfpgan_strength=gfpgan_strength,
|
||||
upscale = upscale,
|
||||
step_callback=image_progress,
|
||||
image_callback=image_done)
|
||||
self.model.prompt2image(**vars(opt1), step_callback=image_progress, image_callback=image_done)
|
||||
finally:
|
||||
# Remove the temp file
|
||||
os.remove("./img2img-tmp.png")
|
||||
|
||||
Reference in New Issue
Block a user