feat(nodes): add NormalMapInvocation

Similar to the existing node, but without any resizing and with a revised model loading API that uses the model manager.

All code related to the invocation now lives in the Invoke repo. Unfortunately, this includes a whole git repo for EfficientNet. I believe we could use the package `timm` instead of this, but it's beyond me.
This commit is contained in:
psychedelicious
2024-09-10 21:00:43 +10:00
committed by Kent Keirsey
parent fd42da5a36
commit b3d60bd56a
40 changed files with 6234 additions and 0 deletions

View File

@@ -0,0 +1,31 @@
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.normal_bae import NormalMapDetector
from invokeai.backend.image_util.normal_bae.nets.NNET import NNET
@invocation(
"normal_map",
title="Normal Map",
tags=["controlnet", "normal"],
category="controlnet",
version="1.0.0",
)
class NormalMapInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates a normal map."""
image: ImageField = InputField(description="The image to process")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, "RGB")
loaded_model = context.models.load_remote_model(NormalMapDetector.get_model_url(), NormalMapDetector.load_model)
with loaded_model as model:
assert isinstance(model, NNET)
detector = NormalMapDetector(model)
normal_map = detector.run(image=image)
image_dto = context.images.save(image=normal_map)
return ImageOutput.build(image_dto)

View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2022 Caroline Chan
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,93 @@
# Adapted from https://github.com/huggingface/controlnet_aux
import pathlib
import types
import cv2
import huggingface_hub
import numpy as np
import torch
import torchvision.transforms as transforms
from einops import rearrange
from PIL import Image
from invokeai.backend.image_util.normal_bae.nets.NNET import NNET
from invokeai.backend.image_util.util import np_to_pil, pil_to_np, resize_to_multiple
class NormalMapDetector:
"""Simple wrapper around the Normal BAE model for normal map generation."""
hf_repo_id = "lllyasviel/Annotators"
hf_filename = "scannet.pt"
@classmethod
def get_model_url(cls) -> str:
"""Get the URL to download the model from the Hugging Face Hub."""
return huggingface_hub.hf_hub_url(cls.hf_repo_id, cls.hf_filename)
@classmethod
def load_model(cls, model_path: pathlib.Path) -> NNET:
"""Load the model from a file."""
args = types.SimpleNamespace()
args.mode = "client"
args.architecture = "BN"
args.pretrained = "scannet"
args.sampling_ratio = 0.4
args.importance_ratio = 0.7
model = NNET(args)
ckpt = torch.load(model_path, map_location="cpu")["model"]
load_dict = {}
for k, v in ckpt.items():
if k.startswith("module."):
k_ = k.replace("module.", "")
load_dict[k_] = v
else:
load_dict[k] = v
model.load_state_dict(load_dict)
model.eval()
return model
def __init__(self, model: NNET) -> None:
self.model = model
self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def to(self, device: torch.device):
self.model.to(device)
return self
def run(self, image: Image.Image):
"""Processes an image and returns the detected normal map."""
device = next(iter(self.model.parameters())).device
np_image = pil_to_np(image)
height, width, _channels = np_image.shape
# The model requires the image to be a multiple of 8
np_image = resize_to_multiple(np_image, 8)
image_normal = np_image
with torch.no_grad():
image_normal = torch.from_numpy(image_normal).float().to(device)
image_normal = image_normal / 255.0
image_normal = rearrange(image_normal, "h w c -> 1 c h w")
image_normal = self.norm(image_normal)
normal = self.model(image_normal)
normal = normal[0][-1][:, :3]
normal = ((normal + 1) * 0.5).clip(0, 1)
normal = rearrange(normal[0], "c h w -> h w c").cpu().numpy()
normal_image = (normal * 255.0).clip(0, 255).astype(np.uint8)
# Back to the original size
output_image = cv2.resize(normal_image, (width, height), interpolation=cv2.INTER_LINEAR)
return np_to_pil(output_image)

View File

@@ -0,0 +1,22 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from .submodules.encoder import Encoder
from .submodules.decoder import Decoder
class NNET(nn.Module):
def __init__(self, args):
super(NNET, self).__init__()
self.encoder = Encoder()
self.decoder = Decoder(args)
def get_1x_lr_params(self): # lr/10 learning rate
return self.encoder.parameters()
def get_10x_lr_params(self): # lr learning rate
return self.decoder.parameters()
def forward(self, img, **kwargs):
return self.decoder(self.encoder(img), **kwargs)

View File

@@ -0,0 +1,85 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from .submodules.submodules import UpSampleBN, norm_normalize
# This is the baseline encoder-decoder we used in the ablation study
class NNET(nn.Module):
def __init__(self, args=None):
super(NNET, self).__init__()
self.encoder = Encoder()
self.decoder = Decoder(num_classes=4)
def forward(self, x, **kwargs):
out = self.decoder(self.encoder(x), **kwargs)
# Bilinearly upsample the output to match the input resolution
up_out = F.interpolate(out, size=[x.size(2), x.size(3)], mode='bilinear', align_corners=False)
# L2-normalize the first three channels / ensure positive value for concentration parameters (kappa)
up_out = norm_normalize(up_out)
return up_out
def get_1x_lr_params(self): # lr/10 learning rate
return self.encoder.parameters()
def get_10x_lr_params(self): # lr learning rate
modules = [self.decoder]
for m in modules:
yield from m.parameters()
# Encoder
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
basemodel_name = 'tf_efficientnet_b5_ap'
basemodel = torch.hub.load('rwightman/gen-efficientnet-pytorch', basemodel_name, pretrained=True)
# Remove last layer
basemodel.global_pool = nn.Identity()
basemodel.classifier = nn.Identity()
self.original_model = basemodel
def forward(self, x):
features = [x]
for k, v in self.original_model._modules.items():
if (k == 'blocks'):
for ki, vi in v._modules.items():
features.append(vi(features[-1]))
else:
features.append(v(features[-1]))
return features
# Decoder (no pixel-wise MLP, no uncertainty-guided sampling)
class Decoder(nn.Module):
def __init__(self, num_classes=4):
super(Decoder, self).__init__()
self.conv2 = nn.Conv2d(2048, 2048, kernel_size=1, stride=1, padding=0)
self.up1 = UpSampleBN(skip_input=2048 + 176, output_features=1024)
self.up2 = UpSampleBN(skip_input=1024 + 64, output_features=512)
self.up3 = UpSampleBN(skip_input=512 + 40, output_features=256)
self.up4 = UpSampleBN(skip_input=256 + 24, output_features=128)
self.conv3 = nn.Conv2d(128, num_classes, kernel_size=3, stride=1, padding=1)
def forward(self, features):
x_block0, x_block1, x_block2, x_block3, x_block4 = features[4], features[5], features[6], features[8], features[11]
x_d0 = self.conv2(x_block4)
x_d1 = self.up1(x_d0, x_block3)
x_d2 = self.up2(x_d1, x_block2)
x_d3 = self.up3(x_d2, x_block1)
x_d4 = self.up4(x_d3, x_block0)
out = self.conv3(x_d4)
return out
if __name__ == '__main__':
model = Baseline()
x = torch.rand(2, 3, 480, 640)
out = model(x)
print(out.shape)

View File

@@ -0,0 +1,202 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from .submodules import UpSampleBN, UpSampleGN, norm_normalize, sample_points
class Decoder(nn.Module):
def __init__(self, args):
super(Decoder, self).__init__()
# hyper-parameter for sampling
self.sampling_ratio = args.sampling_ratio
self.importance_ratio = args.importance_ratio
# feature-map
self.conv2 = nn.Conv2d(2048, 2048, kernel_size=1, stride=1, padding=0)
if args.architecture == 'BN':
self.up1 = UpSampleBN(skip_input=2048 + 176, output_features=1024)
self.up2 = UpSampleBN(skip_input=1024 + 64, output_features=512)
self.up3 = UpSampleBN(skip_input=512 + 40, output_features=256)
self.up4 = UpSampleBN(skip_input=256 + 24, output_features=128)
elif args.architecture == 'GN':
self.up1 = UpSampleGN(skip_input=2048 + 176, output_features=1024)
self.up2 = UpSampleGN(skip_input=1024 + 64, output_features=512)
self.up3 = UpSampleGN(skip_input=512 + 40, output_features=256)
self.up4 = UpSampleGN(skip_input=256 + 24, output_features=128)
else:
raise Exception('invalid architecture')
# produces 1/8 res output
self.out_conv_res8 = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
# produces 1/4 res output
self.out_conv_res4 = nn.Sequential(
nn.Conv1d(512 + 4, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 4, kernel_size=1),
)
# produces 1/2 res output
self.out_conv_res2 = nn.Sequential(
nn.Conv1d(256 + 4, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 4, kernel_size=1),
)
# produces 1/1 res output
self.out_conv_res1 = nn.Sequential(
nn.Conv1d(128 + 4, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 4, kernel_size=1),
)
def forward(self, features, gt_norm_mask=None, mode='test'):
x_block0, x_block1, x_block2, x_block3, x_block4 = features[4], features[5], features[6], features[8], features[11]
# generate feature-map
x_d0 = self.conv2(x_block4) # x_d0 : [2, 2048, 15, 20] 1/32 res
x_d1 = self.up1(x_d0, x_block3) # x_d1 : [2, 1024, 30, 40] 1/16 res
x_d2 = self.up2(x_d1, x_block2) # x_d2 : [2, 512, 60, 80] 1/8 res
x_d3 = self.up3(x_d2, x_block1) # x_d3: [2, 256, 120, 160] 1/4 res
x_d4 = self.up4(x_d3, x_block0) # x_d4: [2, 128, 240, 320] 1/2 res
# 1/8 res output
out_res8 = self.out_conv_res8(x_d2) # out_res8: [2, 4, 60, 80] 1/8 res output
out_res8 = norm_normalize(out_res8) # out_res8: [2, 4, 60, 80] 1/8 res output
################################################################################################################
# out_res4
################################################################################################################
if mode == 'train':
# upsampling ... out_res8: [2, 4, 60, 80] -> out_res8_res4: [2, 4, 120, 160]
out_res8_res4 = F.interpolate(out_res8, scale_factor=2, mode='bilinear', align_corners=True)
B, _, H, W = out_res8_res4.shape
# samples: [B, 1, N, 2]
point_coords_res4, rows_int, cols_int = sample_points(out_res8_res4.detach(), gt_norm_mask,
sampling_ratio=self.sampling_ratio,
beta=self.importance_ratio)
# output (needed for evaluation / visualization)
out_res4 = out_res8_res4
# grid_sample feature-map
feat_res4 = F.grid_sample(x_d2, point_coords_res4, mode='bilinear', align_corners=True) # (B, 512, 1, N)
init_pred = F.grid_sample(out_res8, point_coords_res4, mode='bilinear', align_corners=True) # (B, 4, 1, N)
feat_res4 = torch.cat([feat_res4, init_pred], dim=1) # (B, 512+4, 1, N)
# prediction (needed to compute loss)
samples_pred_res4 = self.out_conv_res4(feat_res4[:, :, 0, :]) # (B, 4, N)
samples_pred_res4 = norm_normalize(samples_pred_res4) # (B, 4, N) - normalized
for i in range(B):
out_res4[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res4[i, :, :]
else:
# grid_sample feature-map
feat_map = F.interpolate(x_d2, scale_factor=2, mode='bilinear', align_corners=True)
init_pred = F.interpolate(out_res8, scale_factor=2, mode='bilinear', align_corners=True)
feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
B, _, H, W = feat_map.shape
# try all pixels
out_res4 = self.out_conv_res4(feat_map.view(B, 512 + 4, -1)) # (B, 4, N)
out_res4 = norm_normalize(out_res4) # (B, 4, N) - normalized
out_res4 = out_res4.view(B, 4, H, W)
samples_pred_res4 = point_coords_res4 = None
################################################################################################################
# out_res2
################################################################################################################
if mode == 'train':
# upsampling ... out_res4: [2, 4, 120, 160] -> out_res4_res2: [2, 4, 240, 320]
out_res4_res2 = F.interpolate(out_res4, scale_factor=2, mode='bilinear', align_corners=True)
B, _, H, W = out_res4_res2.shape
# samples: [B, 1, N, 2]
point_coords_res2, rows_int, cols_int = sample_points(out_res4_res2.detach(), gt_norm_mask,
sampling_ratio=self.sampling_ratio,
beta=self.importance_ratio)
# output (needed for evaluation / visualization)
out_res2 = out_res4_res2
# grid_sample feature-map
feat_res2 = F.grid_sample(x_d3, point_coords_res2, mode='bilinear', align_corners=True) # (B, 256, 1, N)
init_pred = F.grid_sample(out_res4, point_coords_res2, mode='bilinear', align_corners=True) # (B, 4, 1, N)
feat_res2 = torch.cat([feat_res2, init_pred], dim=1) # (B, 256+4, 1, N)
# prediction (needed to compute loss)
samples_pred_res2 = self.out_conv_res2(feat_res2[:, :, 0, :]) # (B, 4, N)
samples_pred_res2 = norm_normalize(samples_pred_res2) # (B, 4, N) - normalized
for i in range(B):
out_res2[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res2[i, :, :]
else:
# grid_sample feature-map
feat_map = F.interpolate(x_d3, scale_factor=2, mode='bilinear', align_corners=True)
init_pred = F.interpolate(out_res4, scale_factor=2, mode='bilinear', align_corners=True)
feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
B, _, H, W = feat_map.shape
out_res2 = self.out_conv_res2(feat_map.view(B, 256 + 4, -1)) # (B, 4, N)
out_res2 = norm_normalize(out_res2) # (B, 4, N) - normalized
out_res2 = out_res2.view(B, 4, H, W)
samples_pred_res2 = point_coords_res2 = None
################################################################################################################
# out_res1
################################################################################################################
if mode == 'train':
# upsampling ... out_res4: [2, 4, 120, 160] -> out_res4_res2: [2, 4, 240, 320]
out_res2_res1 = F.interpolate(out_res2, scale_factor=2, mode='bilinear', align_corners=True)
B, _, H, W = out_res2_res1.shape
# samples: [B, 1, N, 2]
point_coords_res1, rows_int, cols_int = sample_points(out_res2_res1.detach(), gt_norm_mask,
sampling_ratio=self.sampling_ratio,
beta=self.importance_ratio)
# output (needed for evaluation / visualization)
out_res1 = out_res2_res1
# grid_sample feature-map
feat_res1 = F.grid_sample(x_d4, point_coords_res1, mode='bilinear', align_corners=True) # (B, 128, 1, N)
init_pred = F.grid_sample(out_res2, point_coords_res1, mode='bilinear', align_corners=True) # (B, 4, 1, N)
feat_res1 = torch.cat([feat_res1, init_pred], dim=1) # (B, 128+4, 1, N)
# prediction (needed to compute loss)
samples_pred_res1 = self.out_conv_res1(feat_res1[:, :, 0, :]) # (B, 4, N)
samples_pred_res1 = norm_normalize(samples_pred_res1) # (B, 4, N) - normalized
for i in range(B):
out_res1[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res1[i, :, :]
else:
# grid_sample feature-map
feat_map = F.interpolate(x_d4, scale_factor=2, mode='bilinear', align_corners=True)
init_pred = F.interpolate(out_res2, scale_factor=2, mode='bilinear', align_corners=True)
feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
B, _, H, W = feat_map.shape
out_res1 = self.out_conv_res1(feat_map.view(B, 128 + 4, -1)) # (B, 4, N)
out_res1 = norm_normalize(out_res1) # (B, 4, N) - normalized
out_res1 = out_res1.view(B, 4, H, W)
samples_pred_res1 = point_coords_res1 = None
return [out_res8, out_res4, out_res2, out_res1], \
[out_res8, samples_pred_res4, samples_pred_res2, samples_pred_res1], \
[None, point_coords_res4, point_coords_res2, point_coords_res1]

View File

@@ -0,0 +1,109 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# pyenv
.python-version
# celery beat schedule file
celerybeat-schedule
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# pytorch stuff
*.pth
*.onnx
*.pb
trained_models/
.fuse_hidden*

View File

@@ -0,0 +1,555 @@
# Model Performance Benchmarks
All benchmarks run as per:
```
python onnx_export.py --model mobilenetv3_100 ./mobilenetv3_100.onnx
python onnx_optimize.py ./mobilenetv3_100.onnx --output mobilenetv3_100-opt.onnx
python onnx_to_caffe.py ./mobilenetv3_100.onnx --c2-prefix mobilenetv3
python onnx_to_caffe.py ./mobilenetv3_100-opt.onnx --c2-prefix mobilenetv3-opt
python caffe2_benchmark.py --c2-init ./mobilenetv3.init.pb --c2-predict ./mobilenetv3.predict.pb
python caffe2_benchmark.py --c2-init ./mobilenetv3-opt.init.pb --c2-predict ./mobilenetv3-opt.predict.pb
```
## EfficientNet-B0
### Unoptimized
```
Main run finished. Milliseconds per iter: 49.2862. Iters per second: 20.2897
Time per operator type:
29.7378 ms. 60.5145%. Conv
12.1785 ms. 24.7824%. Sigmoid
3.62811 ms. 7.38297%. SpatialBN
2.98444 ms. 6.07314%. Mul
0.326902 ms. 0.665225%. AveragePool
0.197317 ms. 0.401528%. FC
0.0852877 ms. 0.173555%. Add
0.0032607 ms. 0.00663532%. Squeeze
49.1416 ms in Total
FLOP per operator type:
0.76907 GFLOP. 95.2696%. Conv
0.0269508 GFLOP. 3.33857%. SpatialBN
0.00846444 GFLOP. 1.04855%. Mul
0.002561 GFLOP. 0.317248%. FC
0.000210112 GFLOP. 0.0260279%. Add
0.807256 GFLOP in Total
Feature Memory Read per operator type:
58.5253 MB. 43.0891%. Mul
43.2015 MB. 31.807%. Conv
27.2869 MB. 20.0899%. SpatialBN
5.12912 MB. 3.77631%. FC
1.6809 MB. 1.23756%. Add
135.824 MB in Total
Feature Memory Written per operator type:
33.8578 MB. 38.1965%. Mul
26.9881 MB. 30.4465%. Conv
26.9508 MB. 30.4044%. SpatialBN
0.840448 MB. 0.948147%. Add
0.004 MB. 0.00451258%. FC
88.6412 MB in Total
Parameter Memory per operator type:
15.8248 MB. 74.9391%. Conv
5.124 MB. 24.265%. FC
0.168064 MB. 0.795877%. SpatialBN
0 MB. 0%. Add
0 MB. 0%. Mul
21.1168 MB in Total
```
### Optimized
```
Main run finished. Milliseconds per iter: 46.0838. Iters per second: 21.6996
Time per operator type:
29.776 ms. 65.002%. Conv
12.2803 ms. 26.8084%. Sigmoid
3.15073 ms. 6.87815%. Mul
0.328651 ms. 0.717456%. AveragePool
0.186237 ms. 0.406563%. FC
0.0832429 ms. 0.181722%. Add
0.0026184 ms. 0.00571606%. Squeeze
45.8078 ms in Total
FLOP per operator type:
0.76907 GFLOP. 98.5601%. Conv
0.00846444 GFLOP. 1.08476%. Mul
0.002561 GFLOP. 0.328205%. FC
0.000210112 GFLOP. 0.0269269%. Add
0.780305 GFLOP in Total
Feature Memory Read per operator type:
58.5253 MB. 53.8803%. Mul
43.2855 MB. 39.8501%. Conv
5.12912 MB. 4.72204%. FC
1.6809 MB. 1.54749%. Add
108.621 MB in Total
Feature Memory Written per operator type:
33.8578 MB. 54.8834%. Mul
26.9881 MB. 43.7477%. Conv
0.840448 MB. 1.36237%. Add
0.004 MB. 0.00648399%. FC
61.6904 MB in Total
Parameter Memory per operator type:
15.8248 MB. 75.5403%. Conv
5.124 MB. 24.4597%. FC
0 MB. 0%. Add
0 MB. 0%. Mul
20.9488 MB in Total
```
## EfficientNet-B1
### Optimized
```
Main run finished. Milliseconds per iter: 71.8102. Iters per second: 13.9256
Time per operator type:
45.7915 ms. 66.3206%. Conv
17.8718 ms. 25.8841%. Sigmoid
4.44132 ms. 6.43244%. Mul
0.51001 ms. 0.738658%. AveragePool
0.233283 ms. 0.337868%. Add
0.194986 ms. 0.282402%. FC
0.00268255 ms. 0.00388519%. Squeeze
69.0456 ms in Total
FLOP per operator type:
1.37105 GFLOP. 98.7673%. Conv
0.0138759 GFLOP. 0.99959%. Mul
0.002561 GFLOP. 0.184489%. FC
0.000674432 GFLOP. 0.0485847%. Add
1.38816 GFLOP in Total
Feature Memory Read per operator type:
94.624 MB. 54.0789%. Mul
69.8255 MB. 39.9062%. Conv
5.39546 MB. 3.08357%. Add
5.12912 MB. 2.93136%. FC
174.974 MB in Total
Feature Memory Written per operator type:
55.5035 MB. 54.555%. Mul
43.5333 MB. 42.7894%. Conv
2.69773 MB. 2.65163%. Add
0.004 MB. 0.00393165%. FC
101.739 MB in Total
Parameter Memory per operator type:
25.7479 MB. 83.4024%. Conv
5.124 MB. 16.5976%. FC
0 MB. 0%. Add
0 MB. 0%. Mul
30.8719 MB in Total
```
## EfficientNet-B2
### Optimized
```
Main run finished. Milliseconds per iter: 92.28. Iters per second: 10.8366
Time per operator type:
61.4627 ms. 67.5845%. Conv
22.7458 ms. 25.0113%. Sigmoid
5.59931 ms. 6.15701%. Mul
0.642567 ms. 0.706568%. AveragePool
0.272795 ms. 0.299965%. Add
0.216178 ms. 0.237709%. FC
0.00268895 ms. 0.00295677%. Squeeze
90.942 ms in Total
FLOP per operator type:
1.98431 GFLOP. 98.9343%. Conv
0.0177039 GFLOP. 0.882686%. Mul
0.002817 GFLOP. 0.140451%. FC
0.000853984 GFLOP. 0.0425782%. Add
2.00568 GFLOP in Total
Feature Memory Read per operator type:
120.609 MB. 54.9637%. Mul
86.3512 MB. 39.3519%. Conv
6.83187 MB. 3.11341%. Add
5.64163 MB. 2.571%. FC
219.433 MB in Total
Feature Memory Written per operator type:
70.8155 MB. 54.6573%. Mul
55.3273 MB. 42.7031%. Conv
3.41594 MB. 2.63651%. Add
0.004 MB. 0.00308731%. FC
129.563 MB in Total
Parameter Memory per operator type:
30.4721 MB. 84.3913%. Conv
5.636 MB. 15.6087%. FC
0 MB. 0%. Add
0 MB. 0%. Mul
36.1081 MB in Total
```
## MixNet-M
### Optimized
```
Main run finished. Milliseconds per iter: 63.1122. Iters per second: 15.8448
Time per operator type:
48.1139 ms. 75.2052%. Conv
7.1341 ms. 11.1511%. Sigmoid
2.63706 ms. 4.12189%. SpatialBN
1.73186 ms. 2.70701%. Mul
1.38707 ms. 2.16809%. Split
1.29322 ms. 2.02139%. Concat
1.00093 ms. 1.56452%. Relu
0.235309 ms. 0.367803%. Add
0.221579 ms. 0.346343%. FC
0.219315 ms. 0.342803%. AveragePool
0.00250145 ms. 0.00390993%. Squeeze
63.9768 ms in Total
FLOP per operator type:
0.675273 GFLOP. 95.5827%. Conv
0.0221072 GFLOP. 3.12921%. SpatialBN
0.00538445 GFLOP. 0.762152%. Mul
0.003073 GFLOP. 0.434973%. FC
0.000642488 GFLOP. 0.0909421%. Add
0 GFLOP. 0%. Concat
0 GFLOP. 0%. Relu
0.70648 GFLOP in Total
Feature Memory Read per operator type:
46.8424 MB. 30.502%. Conv
36.8626 MB. 24.0036%. Mul
22.3152 MB. 14.5309%. SpatialBN
22.1074 MB. 14.3955%. Concat
14.1496 MB. 9.21372%. Relu
6.15414 MB. 4.00735%. FC
5.1399 MB. 3.34692%. Add
153.571 MB in Total
Feature Memory Written per operator type:
32.7672 MB. 28.4331%. Conv
22.1072 MB. 19.1831%. Concat
22.1072 MB. 19.1831%. SpatialBN
21.5378 MB. 18.689%. Mul
14.1496 MB. 12.2781%. Relu
2.56995 MB. 2.23003%. Add
0.004 MB. 0.00347092%. FC
115.243 MB in Total
Parameter Memory per operator type:
13.7059 MB. 68.674%. Conv
6.148 MB. 30.8049%. FC
0.104 MB. 0.521097%. SpatialBN
0 MB. 0%. Add
0 MB. 0%. Concat
0 MB. 0%. Mul
0 MB. 0%. Relu
19.9579 MB in Total
```
## TF MobileNet-V3 Large 1.0
### Optimized
```
Main run finished. Milliseconds per iter: 22.0495. Iters per second: 45.3525
Time per operator type:
17.437 ms. 80.0087%. Conv
1.27662 ms. 5.8577%. Add
1.12759 ms. 5.17387%. Div
0.701155 ms. 3.21721%. Mul
0.562654 ms. 2.58171%. Relu
0.431144 ms. 1.97828%. Clip
0.156902 ms. 0.719936%. FC
0.0996858 ms. 0.457402%. AveragePool
0.00112455 ms. 0.00515993%. Flatten
21.7939 ms in Total
FLOP per operator type:
0.43062 GFLOP. 98.1484%. Conv
0.002561 GFLOP. 0.583713%. FC
0.00210867 GFLOP. 0.480616%. Mul
0.00193868 GFLOP. 0.441871%. Add
0.00151532 GFLOP. 0.345377%. Div
0 GFLOP. 0%. Relu
0.438743 GFLOP in Total
Feature Memory Read per operator type:
34.7967 MB. 43.9391%. Conv
14.496 MB. 18.3046%. Mul
9.44828 MB. 11.9307%. Add
9.26157 MB. 11.6949%. Relu
6.0614 MB. 7.65395%. Div
5.12912 MB. 6.47673%. FC
79.193 MB in Total
Feature Memory Written per operator type:
17.6247 MB. 35.8656%. Conv
9.26157 MB. 18.847%. Relu
8.43469 MB. 17.1643%. Mul
7.75472 MB. 15.7806%. Add
6.06128 MB. 12.3345%. Div
0.004 MB. 0.00813985%. FC
49.1409 MB in Total
Parameter Memory per operator type:
16.6851 MB. 76.5052%. Conv
5.124 MB. 23.4948%. FC
0 MB. 0%. Add
0 MB. 0%. Div
0 MB. 0%. Mul
0 MB. 0%. Relu
21.8091 MB in Total
```
## MobileNet-V3 (RW)
### Unoptimized
```
Main run finished. Milliseconds per iter: 24.8316. Iters per second: 40.2712
Time per operator type:
15.9266 ms. 69.2624%. Conv
2.36551 ms. 10.2873%. SpatialBN
1.39102 ms. 6.04936%. Add
1.30327 ms. 5.66773%. Div
0.737014 ms. 3.20517%. Mul
0.639697 ms. 2.78195%. Relu
0.375681 ms. 1.63378%. Clip
0.153126 ms. 0.665921%. FC
0.0993787 ms. 0.432184%. AveragePool
0.0032632 ms. 0.0141912%. Squeeze
22.9946 ms in Total
FLOP per operator type:
0.430616 GFLOP. 94.4041%. Conv
0.0175992 GFLOP. 3.85829%. SpatialBN
0.002561 GFLOP. 0.561449%. FC
0.00210961 GFLOP. 0.46249%. Mul
0.00173891 GFLOP. 0.381223%. Add
0.00151626 GFLOP. 0.33241%. Div
0 GFLOP. 0%. Relu
0.456141 GFLOP in Total
Feature Memory Read per operator type:
34.7354 MB. 36.4363%. Conv
17.7944 MB. 18.6658%. SpatialBN
14.5035 MB. 15.2137%. Mul
9.25778 MB. 9.71113%. Relu
7.84641 MB. 8.23064%. Add
6.06516 MB. 6.36216%. Div
5.12912 MB. 5.38029%. FC
95.3317 MB in Total
Feature Memory Written per operator type:
17.6246 MB. 26.7264%. Conv
17.5992 MB. 26.6878%. SpatialBN
9.25778 MB. 14.0387%. Relu
8.43843 MB. 12.7962%. Mul
6.95565 MB. 10.5477%. Add
6.06502 MB. 9.19713%. Div
0.004 MB. 0.00606568%. FC
65.9447 MB in Total
Parameter Memory per operator type:
16.6778 MB. 76.1564%. Conv
5.124 MB. 23.3979%. FC
0.0976 MB. 0.445674%. SpatialBN
0 MB. 0%. Add
0 MB. 0%. Div
0 MB. 0%. Mul
0 MB. 0%. Relu
21.8994 MB in Total
```
### Optimized
```
Main run finished. Milliseconds per iter: 22.0981. Iters per second: 45.2527
Time per operator type:
17.146 ms. 78.8965%. Conv
1.38453 ms. 6.37084%. Add
1.30991 ms. 6.02749%. Div
0.685417 ms. 3.15391%. Mul
0.532589 ms. 2.45068%. Relu
0.418263 ms. 1.92461%. Clip
0.15128 ms. 0.696106%. FC
0.102065 ms. 0.469648%. AveragePool
0.0022143 ms. 0.010189%. Squeeze
21.7323 ms in Total
FLOP per operator type:
0.430616 GFLOP. 98.1927%. Conv
0.002561 GFLOP. 0.583981%. FC
0.00210961 GFLOP. 0.481051%. Mul
0.00173891 GFLOP. 0.396522%. Add
0.00151626 GFLOP. 0.34575%. Div
0 GFLOP. 0%. Relu
0.438542 GFLOP in Total
Feature Memory Read per operator type:
34.7842 MB. 44.833%. Conv
14.5035 MB. 18.6934%. Mul
9.25778 MB. 11.9323%. Relu
7.84641 MB. 10.1132%. Add
6.06516 MB. 7.81733%. Div
5.12912 MB. 6.61087%. FC
77.5861 MB in Total
Feature Memory Written per operator type:
17.6246 MB. 36.4556%. Conv
9.25778 MB. 19.1492%. Relu
8.43843 MB. 17.4544%. Mul
6.95565 MB. 14.3874%. Add
6.06502 MB. 12.5452%. Div
0.004 MB. 0.00827378%. FC
48.3455 MB in Total
Parameter Memory per operator type:
16.6778 MB. 76.4973%. Conv
5.124 MB. 23.5027%. FC
0 MB. 0%. Add
0 MB. 0%. Div
0 MB. 0%. Mul
0 MB. 0%. Relu
21.8018 MB in Total
```
## MnasNet-A1
### Unoptimized
```
Main run finished. Milliseconds per iter: 30.0892. Iters per second: 33.2345
Time per operator type:
24.4656 ms. 79.0905%. Conv
4.14958 ms. 13.4144%. SpatialBN
1.60598 ms. 5.19169%. Relu
0.295219 ms. 0.95436%. Mul
0.187609 ms. 0.606486%. FC
0.120556 ms. 0.389724%. AveragePool
0.09036 ms. 0.292109%. Add
0.015727 ms. 0.050841%. Sigmoid
0.00306205 ms. 0.00989875%. Squeeze
30.9337 ms in Total
FLOP per operator type:
0.620598 GFLOP. 95.6434%. Conv
0.0248873 GFLOP. 3.8355%. SpatialBN
0.002561 GFLOP. 0.394688%. FC
0.000597408 GFLOP. 0.0920695%. Mul
0.000222656 GFLOP. 0.0343146%. Add
0 GFLOP. 0%. Relu
0.648867 GFLOP in Total
Feature Memory Read per operator type:
35.5457 MB. 38.4109%. Conv
25.1552 MB. 27.1829%. SpatialBN
22.5235 MB. 24.339%. Relu
5.12912 MB. 5.54256%. FC
2.40586 MB. 2.59978%. Mul
1.78125 MB. 1.92483%. Add
92.5406 MB in Total
Feature Memory Written per operator type:
24.9042 MB. 32.9424%. Conv
24.8873 MB. 32.92%. SpatialBN
22.5235 MB. 29.7932%. Relu
2.38963 MB. 3.16092%. Mul
0.890624 MB. 1.17809%. Add
0.004 MB. 0.00529106%. FC
75.5993 MB in Total
Parameter Memory per operator type:
10.2732 MB. 66.1459%. Conv
5.124 MB. 32.9917%. FC
0.133952 MB. 0.86247%. SpatialBN
0 MB. 0%. Add
0 MB. 0%. Mul
0 MB. 0%. Relu
15.5312 MB in Total
```
### Optimized
```
Main run finished. Milliseconds per iter: 24.2367. Iters per second: 41.2597
Time per operator type:
22.0547 ms. 91.1375%. Conv
1.49096 ms. 6.16116%. Relu
0.253417 ms. 1.0472%. Mul
0.18506 ms. 0.76473%. FC
0.112942 ms. 0.466717%. AveragePool
0.086769 ms. 0.358559%. Add
0.0127889 ms. 0.0528479%. Sigmoid
0.0027346 ms. 0.0113003%. Squeeze
24.1994 ms in Total
FLOP per operator type:
0.620598 GFLOP. 99.4581%. Conv
0.002561 GFLOP. 0.41043%. FC
0.000597408 GFLOP. 0.0957417%. Mul
0.000222656 GFLOP. 0.0356832%. Add
0 GFLOP. 0%. Relu
0.623979 GFLOP in Total
Feature Memory Read per operator type:
35.6127 MB. 52.7968%. Conv
22.5235 MB. 33.3917%. Relu
5.12912 MB. 7.60406%. FC
2.40586 MB. 3.56675%. Mul
1.78125 MB. 2.64075%. Add
67.4524 MB in Total
Feature Memory Written per operator type:
24.9042 MB. 49.1092%. Conv
22.5235 MB. 44.4145%. Relu
2.38963 MB. 4.71216%. Mul
0.890624 MB. 1.75624%. Add
0.004 MB. 0.00788768%. FC
50.712 MB in Total
Parameter Memory per operator type:
10.2732 MB. 66.7213%. Conv
5.124 MB. 33.2787%. FC
0 MB. 0%. Add
0 MB. 0%. Mul
0 MB. 0%. Relu
15.3972 MB in Total
```
## MnasNet-B1
### Unoptimized
```
Main run finished. Milliseconds per iter: 28.3109. Iters per second: 35.322
Time per operator type:
29.1121 ms. 83.3081%. Conv
4.14959 ms. 11.8746%. SpatialBN
1.35823 ms. 3.88675%. Relu
0.186188 ms. 0.532802%. FC
0.116244 ms. 0.332647%. Add
0.018641 ms. 0.0533437%. AveragePool
0.0040904 ms. 0.0117052%. Squeeze
34.9451 ms in Total
FLOP per operator type:
0.626272 GFLOP. 96.2088%. Conv
0.0218266 GFLOP. 3.35303%. SpatialBN
0.002561 GFLOP. 0.393424%. FC
0.000291648 GFLOP. 0.0448034%. Add
0 GFLOP. 0%. Relu
0.650951 GFLOP in Total
Feature Memory Read per operator type:
34.4354 MB. 41.3788%. Conv
22.1299 MB. 26.5921%. SpatialBN
19.1923 MB. 23.0622%. Relu
5.12912 MB. 6.16333%. FC
2.33318 MB. 2.80364%. Add
83.2199 MB in Total
Feature Memory Written per operator type:
21.8266 MB. 34.0955%. Conv
21.8266 MB. 34.0955%. SpatialBN
19.1923 MB. 29.9805%. Relu
1.16659 MB. 1.82234%. Add
0.004 MB. 0.00624844%. FC
64.016 MB in Total
Parameter Memory per operator type:
12.2576 MB. 69.9104%. Conv
5.124 MB. 29.2245%. FC
0.15168 MB. 0.865099%. SpatialBN
0 MB. 0%. Add
0 MB. 0%. Relu
17.5332 MB in Total
```
### Optimized
```
Main run finished. Milliseconds per iter: 26.6364. Iters per second: 37.5426
Time per operator type:
24.9888 ms. 94.0962%. Conv
1.26147 ms. 4.75011%. Relu
0.176234 ms. 0.663619%. FC
0.113309 ms. 0.426672%. Add
0.0138708 ms. 0.0522311%. AveragePool
0.00295685 ms. 0.0111341%. Squeeze
26.5566 ms in Total
FLOP per operator type:
0.626272 GFLOP. 99.5466%. Conv
0.002561 GFLOP. 0.407074%. FC
0.000291648 GFLOP. 0.0463578%. Add
0 GFLOP. 0%. Relu
0.629124 GFLOP in Total
Feature Memory Read per operator type:
34.5112 MB. 56.4224%. Conv
19.1923 MB. 31.3775%. Relu
5.12912 MB. 8.3856%. FC
2.33318 MB. 3.81452%. Add
61.1658 MB in Total
Feature Memory Written per operator type:
21.8266 MB. 51.7346%. Conv
19.1923 MB. 45.4908%. Relu
1.16659 MB. 2.76513%. Add
0.004 MB. 0.00948104%. FC
42.1895 MB in Total
Parameter Memory per operator type:
12.2576 MB. 70.5205%. Conv
5.124 MB. 29.4795%. FC
0 MB. 0%. Add
0 MB. 0%. Relu
17.3816 MB in Total
```

View File

@@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2020 Ross Wightman
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@@ -0,0 +1,323 @@
# (Generic) EfficientNets for PyTorch
A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter efficient architectures derived from the MobileNet V1/V2 block sequence, including those found via automated neural architecture search.
All models are implemented by GenEfficientNet or MobileNetV3 classes, with string based architecture definitions to configure the block layouts (idea from [here](https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py))
## What's New
### Aug 19, 2020
* Add updated PyTorch trained EfficientNet-B3 weights trained by myself with `timm` (82.1 top-1)
* Add PyTorch trained EfficientNet-Lite0 contributed by [@hal-314](https://github.com/hal-314) (75.5 top-1)
* Update ONNX and Caffe2 export / utility scripts to work with latest PyTorch / ONNX
* ONNX runtime based validation script added
* activations (mostly) brought in sync with `timm` equivalents
### April 5, 2020
* Add some newly trained MobileNet-V2 models trained with latest h-params, rand augment. They compare quite favourably to EfficientNet-Lite
* 3.5M param MobileNet-V2 100 @ 73%
* 4.5M param MobileNet-V2 110d @ 75%
* 6.1M param MobileNet-V2 140 @ 76.5%
* 5.8M param MobileNet-V2 120d @ 77.3%
### March 23, 2020
* Add EfficientNet-Lite models w/ weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite)
* Add PyTorch trained MobileNet-V3 Large weights with 75.77% top-1
* IMPORTANT CHANGE (if training from scratch) - weight init changed to better match Tensorflow impl, set `fix_group_fanout=False` in `initialize_weight_goog` for old behavior
### Feb 12, 2020
* Add EfficientNet-L2 and B0-B7 NoisyStudent weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet)
* Port new EfficientNet-B8 (RandAugment) weights from TF TPU, these are different than the B8 AdvProp, different input normalization.
* Add RandAugment PyTorch trained EfficientNet-ES (EdgeTPU-Small) weights with 78.1 top-1. Trained by [Andrew Lavin](https://github.com/andravin)
### Jan 22, 2020
* Update weights for EfficientNet B0, B2, B3 and MixNet-XL with latest RandAugment trained weights. Trained with (https://github.com/rwightman/pytorch-image-models)
* Fix torchscript compatibility for PyTorch 1.4, add torchscript support for MixedConv2d using ModuleDict
* Test models, torchscript, onnx export with PyTorch 1.4 -- no issues
### Nov 22, 2019
* New top-1 high! Ported official TF EfficientNet AdvProp (https://arxiv.org/abs/1911.09665) weights and B8 model spec. Created a new set of `ap` models since they use a different
preprocessing (Inception mean/std) from the original EfficientNet base/AA/RA weights.
### Nov 15, 2019
* Ported official TF MobileNet-V3 float32 large/small/minimalistic weights
* Modifications to MobileNet-V3 model and components to support some additional config needed for differences between TF MobileNet-V3 and mine
### Oct 30, 2019
* Many of the models will now work with torch.jit.script, MixNet being the biggest exception
* Improved interface for enabling torchscript or ONNX export compatible modes (via config)
* Add JIT optimized mem-efficient Swish/Mish autograd.fn in addition to memory-efficient autgrad.fn
* Activation factory to select best version of activation by name or override one globally
* Add pretrained checkpoint load helper that handles input conv and classifier changes
### Oct 27, 2019
* Add CondConv EfficientNet variants ported from https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/condconv
* Add RandAug weights for TF EfficientNet B5 and B7 from https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
* Bring over MixNet-XL model and depth scaling algo from my pytorch-image-models code base
* Switch activations and global pooling to modules
* Add memory-efficient Swish/Mish impl
* Add as_sequential() method to all models and allow as an argument in entrypoint fns
* Move MobileNetV3 into own file since it has a different head
* Remove ChamNet, MobileNet V2/V1 since they will likely never be used here
## Models
Implemented models include:
* EfficientNet NoisyStudent (B0-B7, L2) (https://arxiv.org/abs/1911.04252)
* EfficientNet AdvProp (B0-B8) (https://arxiv.org/abs/1911.09665)
* EfficientNet (B0-B8) (https://arxiv.org/abs/1905.11946)
* EfficientNet-EdgeTPU (S, M, L) (https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html)
* EfficientNet-CondConv (https://arxiv.org/abs/1904.04971)
* EfficientNet-Lite (https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite)
* MixNet (https://arxiv.org/abs/1907.09595)
* MNASNet B1, A1 (Squeeze-Excite), and Small (https://arxiv.org/abs/1807.11626)
* MobileNet-V3 (https://arxiv.org/abs/1905.02244)
* FBNet-C (https://arxiv.org/abs/1812.03443)
* Single-Path NAS (https://arxiv.org/abs/1904.02877)
I originally implemented and trained some these models with code [here](https://github.com/rwightman/pytorch-image-models), this repository contains just the GenEfficientNet models, validation, and associated ONNX/Caffe2 export code.
## Pretrained
I've managed to train several of the models to accuracies close to or above the originating papers and official impl. My training code is here: https://github.com/rwightman/pytorch-image-models
|Model | Prec@1 (Err) | Prec@5 (Err) | Param#(M) | MAdds(M) | Image Scaling | Resolution | Crop |
|---|---|---|---|---|---|---|---|
| efficientnet_b3 | 82.240 (17.760) | 96.116 (3.884) | 12.23 | TBD | bicubic | 320 | 1.0 |
| efficientnet_b3 | 82.076 (17.924) | 96.020 (3.980) | 12.23 | TBD | bicubic | 300 | 0.904 |
| mixnet_xl | 81.074 (18.926) | 95.282 (4.718) | 11.90 | TBD | bicubic | 256 | 1.0 |
| efficientnet_b2 | 80.612 (19.388) | 95.318 (4.682) | 9.1 | TBD | bicubic | 288 | 1.0 |
| mixnet_xl | 80.476 (19.524) | 94.936 (5.064) | 11.90 | TBD | bicubic | 224 | 0.875 |
| efficientnet_b2 | 80.288 (19.712) | 95.166 (4.834) | 9.1 | 1003 | bicubic | 260 | 0.890 |
| mixnet_l | 78.976 (21.024 | 94.184 (5.816) | 7.33 | TBD | bicubic | 224 | 0.875 |
| efficientnet_b1 | 78.692 (21.308) | 94.086 (5.914) | 7.8 | 694 | bicubic | 240 | 0.882 |
| efficientnet_es | 78.066 (21.934) | 93.926 (6.074) | 5.44 | TBD | bicubic | 224 | 0.875 |
| efficientnet_b0 | 77.698 (22.302) | 93.532 (6.468) | 5.3 | 390 | bicubic | 224 | 0.875 |
| mobilenetv2_120d | 77.294 (22.706 | 93.502 (6.498) | 5.8 | TBD | bicubic | 224 | 0.875 |
| mixnet_m | 77.256 (22.744) | 93.418 (6.582) | 5.01 | 353 | bicubic | 224 | 0.875 |
| mobilenetv2_140 | 76.524 (23.476) | 92.990 (7.010) | 6.1 | TBD | bicubic | 224 | 0.875 |
| mixnet_s | 75.988 (24.012) | 92.794 (7.206) | 4.13 | TBD | bicubic | 224 | 0.875 |
| mobilenetv3_large_100 | 75.766 (24.234) | 92.542 (7.458) | 5.5 | TBD | bicubic | 224 | 0.875 |
| mobilenetv3_rw | 75.634 (24.366) | 92.708 (7.292) | 5.5 | 219 | bicubic | 224 | 0.875 |
| efficientnet_lite0 | 75.472 (24.528) | 92.520 (7.480) | 4.65 | TBD | bicubic | 224 | 0.875 |
| mnasnet_a1 | 75.448 (24.552) | 92.604 (7.396) | 3.9 | 312 | bicubic | 224 | 0.875 |
| fbnetc_100 | 75.124 (24.876) | 92.386 (7.614) | 5.6 | 385 | bilinear | 224 | 0.875 |
| mobilenetv2_110d | 75.052 (24.948) | 92.180 (7.820) | 4.5 | TBD | bicubic | 224 | 0.875 |
| mnasnet_b1 | 74.658 (25.342) | 92.114 (7.886) | 4.4 | 315 | bicubic | 224 | 0.875 |
| spnasnet_100 | 74.084 (25.916) | 91.818 (8.182) | 4.4 | TBD | bilinear | 224 | 0.875 |
| mobilenetv2_100 | 72.978 (27.022) | 91.016 (8.984) | 3.5 | TBD | bicubic | 224 | 0.875 |
More pretrained models to come...
## Ported Weights
The weights ported from Tensorflow checkpoints for the EfficientNet models do pretty much match accuracy in Tensorflow once a SAME convolution padding equivalent is added, and the same crop factors, image scaling, etc (see table) are used via cmd line args.
**IMPORTANT:**
* Tensorflow ported weights for EfficientNet AdvProp (AP), EfficientNet EdgeTPU, EfficientNet-CondConv, EfficientNet-Lite, and MobileNet-V3 models use Inception style (0.5, 0.5, 0.5) for mean and std.
* Enabling the Tensorflow preprocessing pipeline with `--tf-preprocessing` at validation time will improve scores by 0.1-0.5%, very close to original TF impl.
To run validation for tf_efficientnet_b5:
`python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b5 -b 64 --img-size 456 --crop-pct 0.934 --interpolation bicubic`
To run validation w/ TF preprocessing for tf_efficientnet_b5:
`python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b5 -b 64 --img-size 456 --tf-preprocessing`
To run validation for a model with Inception preprocessing, ie EfficientNet-B8 AdvProp:
`python validate.py /path/to/imagenet/validation/ --model tf_efficientnet_b8_ap -b 48 --num-gpu 2 --img-size 672 --crop-pct 0.954 --mean 0.5 --std 0.5`
|Model | Prec@1 (Err) | Prec@5 (Err) | Param # | Image Scaling | Image Size | Crop |
|---|---|---|---|---|---|---|
| tf_efficientnet_l2_ns *tfp | 88.352 (11.648) | 98.652 (1.348) | 480 | bicubic | 800 | N/A |
| tf_efficientnet_l2_ns | TBD | TBD | 480 | bicubic | 800 | 0.961 |
| tf_efficientnet_l2_ns_475 | 88.234 (11.766) | 98.546 (1.454) | 480 | bicubic | 475 | 0.936 |
| tf_efficientnet_l2_ns_475 *tfp | 88.172 (11.828) | 98.566 (1.434) | 480 | bicubic | 475 | N/A |
| tf_efficientnet_b7_ns *tfp | 86.844 (13.156) | 98.084 (1.916) | 66.35 | bicubic | 600 | N/A |
| tf_efficientnet_b7_ns | 86.840 (13.160) | 98.094 (1.906) | 66.35 | bicubic | 600 | N/A |
| tf_efficientnet_b6_ns | 86.452 (13.548) | 97.882 (2.118) | 43.04 | bicubic | 528 | N/A |
| tf_efficientnet_b6_ns *tfp | 86.444 (13.556) | 97.880 (2.120) | 43.04 | bicubic | 528 | N/A |
| tf_efficientnet_b5_ns *tfp | 86.064 (13.936) | 97.746 (2.254) | 30.39 | bicubic | 456 | N/A |
| tf_efficientnet_b5_ns | 86.088 (13.912) | 97.752 (2.248) | 30.39 | bicubic | 456 | N/A |
| tf_efficientnet_b8_ap *tfp | 85.436 (14.564) | 97.272 (2.728) | 87.4 | bicubic | 672 | N/A |
| tf_efficientnet_b8 *tfp | 85.384 (14.616) | 97.394 (2.606) | 87.4 | bicubic | 672 | N/A |
| tf_efficientnet_b8 | 85.370 (14.630) | 97.390 (2.610) | 87.4 | bicubic | 672 | 0.954 |
| tf_efficientnet_b8_ap | 85.368 (14.632) | 97.294 (2.706) | 87.4 | bicubic | 672 | 0.954 |
| tf_efficientnet_b4_ns *tfp | 85.298 (14.702) | 97.504 (2.496) | 19.34 | bicubic | 380 | N/A |
| tf_efficientnet_b4_ns | 85.162 (14.838) | 97.470 (2.530) | 19.34 | bicubic | 380 | 0.922 |
| tf_efficientnet_b7_ap *tfp | 85.154 (14.846) | 97.244 (2.756) | 66.35 | bicubic | 600 | N/A |
| tf_efficientnet_b7_ap | 85.118 (14.882) | 97.252 (2.748) | 66.35 | bicubic | 600 | 0.949 |
| tf_efficientnet_b7 *tfp | 84.940 (15.060) | 97.214 (2.786) | 66.35 | bicubic | 600 | N/A |
| tf_efficientnet_b7 | 84.932 (15.068) | 97.208 (2.792) | 66.35 | bicubic | 600 | 0.949 |
| tf_efficientnet_b6_ap | 84.786 (15.214) | 97.138 (2.862) | 43.04 | bicubic | 528 | 0.942 |
| tf_efficientnet_b6_ap *tfp | 84.760 (15.240) | 97.124 (2.876) | 43.04 | bicubic | 528 | N/A |
| tf_efficientnet_b5_ap *tfp | 84.276 (15.724) | 96.932 (3.068) | 30.39 | bicubic | 456 | N/A |
| tf_efficientnet_b5_ap | 84.254 (15.746) | 96.976 (3.024) | 30.39 | bicubic | 456 | 0.934 |
| tf_efficientnet_b6 *tfp | 84.140 (15.860) | 96.852 (3.148) | 43.04 | bicubic | 528 | N/A |
| tf_efficientnet_b6 | 84.110 (15.890) | 96.886 (3.114) | 43.04 | bicubic | 528 | 0.942 |
| tf_efficientnet_b3_ns *tfp | 84.054 (15.946) | 96.918 (3.082) | 12.23 | bicubic | 300 | N/A |
| tf_efficientnet_b3_ns | 84.048 (15.952) | 96.910 (3.090) | 12.23 | bicubic | 300 | .904 |
| tf_efficientnet_b5 *tfp | 83.822 (16.178) | 96.756 (3.244) | 30.39 | bicubic | 456 | N/A |
| tf_efficientnet_b5 | 83.812 (16.188) | 96.748 (3.252) | 30.39 | bicubic | 456 | 0.934 |
| tf_efficientnet_b4_ap *tfp | 83.278 (16.722) | 96.376 (3.624) | 19.34 | bicubic | 380 | N/A |
| tf_efficientnet_b4_ap | 83.248 (16.752) | 96.388 (3.612) | 19.34 | bicubic | 380 | 0.922 |
| tf_efficientnet_b4 | 83.022 (16.978) | 96.300 (3.700) | 19.34 | bicubic | 380 | 0.922 |
| tf_efficientnet_b4 *tfp | 82.948 (17.052) | 96.308 (3.692) | 19.34 | bicubic | 380 | N/A |
| tf_efficientnet_b2_ns *tfp | 82.436 (17.564) | 96.268 (3.732) | 9.11 | bicubic | 260 | N/A |
| tf_efficientnet_b2_ns | 82.380 (17.620) | 96.248 (3.752) | 9.11 | bicubic | 260 | 0.89 |
| tf_efficientnet_b3_ap *tfp | 81.882 (18.118) | 95.662 (4.338) | 12.23 | bicubic | 300 | N/A |
| tf_efficientnet_b3_ap | 81.828 (18.172) | 95.624 (4.376) | 12.23 | bicubic | 300 | 0.904 |
| tf_efficientnet_b3 | 81.636 (18.364) | 95.718 (4.282) | 12.23 | bicubic | 300 | 0.904 |
| tf_efficientnet_b3 *tfp | 81.576 (18.424) | 95.662 (4.338) | 12.23 | bicubic | 300 | N/A |
| tf_efficientnet_lite4 | 81.528 (18.472) | 95.668 (4.332) | 13.00 | bilinear | 380 | 0.92 |
| tf_efficientnet_b1_ns *tfp | 81.514 (18.486) | 95.776 (4.224) | 7.79 | bicubic | 240 | N/A |
| tf_efficientnet_lite4 *tfp | 81.502 (18.498) | 95.676 (4.324) | 13.00 | bilinear | 380 | N/A |
| tf_efficientnet_b1_ns | 81.388 (18.612) | 95.738 (4.262) | 7.79 | bicubic | 240 | 0.88 |
| tf_efficientnet_el | 80.534 (19.466) | 95.190 (4.810) | 10.59 | bicubic | 300 | 0.904 |
| tf_efficientnet_el *tfp | 80.476 (19.524) | 95.200 (4.800) | 10.59 | bicubic | 300 | N/A |
| tf_efficientnet_b2_ap *tfp | 80.420 (19.580) | 95.040 (4.960) | 9.11 | bicubic | 260 | N/A |
| tf_efficientnet_b2_ap | 80.306 (19.694) | 95.028 (4.972) | 9.11 | bicubic | 260 | 0.890 |
| tf_efficientnet_b2 *tfp | 80.188 (19.812) | 94.974 (5.026) | 9.11 | bicubic | 260 | N/A |
| tf_efficientnet_b2 | 80.086 (19.914) | 94.908 (5.092) | 9.11 | bicubic | 260 | 0.890 |
| tf_efficientnet_lite3 | 79.812 (20.188) | 94.914 (5.086) | 8.20 | bilinear | 300 | 0.904 |
| tf_efficientnet_lite3 *tfp | 79.734 (20.266) | 94.838 (5.162) | 8.20 | bilinear | 300 | N/A |
| tf_efficientnet_b1_ap *tfp | 79.532 (20.468) | 94.378 (5.622) | 7.79 | bicubic | 240 | N/A |
| tf_efficientnet_cc_b1_8e *tfp | 79.464 (20.536)| 94.492 (5.508) | 39.7 | bicubic | 240 | 0.88 |
| tf_efficientnet_cc_b1_8e | 79.298 (20.702) | 94.364 (5.636) | 39.7 | bicubic | 240 | 0.88 |
| tf_efficientnet_b1_ap | 79.278 (20.722) | 94.308 (5.692) | 7.79 | bicubic | 240 | 0.88 |
| tf_efficientnet_b1 *tfp | 79.172 (20.828) | 94.450 (5.550) | 7.79 | bicubic | 240 | N/A |
| tf_efficientnet_em *tfp | 78.958 (21.042) | 94.458 (5.542) | 6.90 | bicubic | 240 | N/A |
| tf_efficientnet_b0_ns *tfp | 78.806 (21.194) | 94.496 (5.504) | 5.29 | bicubic | 224 | N/A |
| tf_mixnet_l *tfp | 78.846 (21.154) | 94.212 (5.788) | 7.33 | bilinear | 224 | N/A |
| tf_efficientnet_b1 | 78.826 (21.174) | 94.198 (5.802) | 7.79 | bicubic | 240 | 0.88 |
| tf_mixnet_l | 78.770 (21.230) | 94.004 (5.996) | 7.33 | bicubic | 224 | 0.875 |
| tf_efficientnet_em | 78.742 (21.258) | 94.332 (5.668) | 6.90 | bicubic | 240 | 0.875 |
| tf_efficientnet_b0_ns | 78.658 (21.342) | 94.376 (5.624) | 5.29 | bicubic | 224 | 0.875 |
| tf_efficientnet_cc_b0_8e *tfp | 78.314 (21.686) | 93.790 (6.210) | 24.0 | bicubic | 224 | 0.875 |
| tf_efficientnet_cc_b0_8e | 77.908 (22.092) | 93.656 (6.344) | 24.0 | bicubic | 224 | 0.875 |
| tf_efficientnet_cc_b0_4e *tfp | 77.746 (22.254) | 93.552 (6.448) | 13.3 | bicubic | 224 | 0.875 |
| tf_efficientnet_cc_b0_4e | 77.304 (22.696) | 93.332 (6.668) | 13.3 | bicubic | 224 | 0.875 |
| tf_efficientnet_es *tfp | 77.616 (22.384) | 93.750 (6.250) | 5.44 | bicubic | 224 | N/A |
| tf_efficientnet_lite2 *tfp | 77.544 (22.456) | 93.800 (6.200) | 6.09 | bilinear | 260 | N/A |
| tf_efficientnet_lite2 | 77.460 (22.540) | 93.746 (6.254) | 6.09 | bicubic | 260 | 0.89 |
| tf_efficientnet_b0_ap *tfp | 77.514 (22.486) | 93.576 (6.424) | 5.29 | bicubic | 224 | N/A |
| tf_efficientnet_es | 77.264 (22.736) | 93.600 (6.400) | 5.44 | bicubic | 224 | N/A |
| tf_efficientnet_b0 *tfp | 77.258 (22.742) | 93.478 (6.522) | 5.29 | bicubic | 224 | N/A |
| tf_efficientnet_b0_ap | 77.084 (22.916) | 93.254 (6.746) | 5.29 | bicubic | 224 | 0.875 |
| tf_mixnet_m *tfp | 77.072 (22.928) | 93.368 (6.632) | 5.01 | bilinear | 224 | N/A |
| tf_mixnet_m | 76.950 (23.050) | 93.156 (6.844) | 5.01 | bicubic | 224 | 0.875 |
| tf_efficientnet_b0 | 76.848 (23.152) | 93.228 (6.772) | 5.29 | bicubic | 224 | 0.875 |
| tf_efficientnet_lite1 *tfp | 76.764 (23.236) | 93.326 (6.674) | 5.42 | bilinear | 240 | N/A |
| tf_efficientnet_lite1 | 76.638 (23.362) | 93.232 (6.768) | 5.42 | bicubic | 240 | 0.882 |
| tf_mixnet_s *tfp | 75.800 (24.200) | 92.788 (7.212) | 4.13 | bilinear | 224 | N/A |
| tf_mobilenetv3_large_100 *tfp | 75.768 (24.232) | 92.710 (7.290) | 5.48 | bilinear | 224 | N/A |
| tf_mixnet_s | 75.648 (24.352) | 92.636 (7.364) | 4.13 | bicubic | 224 | 0.875 |
| tf_mobilenetv3_large_100 | 75.516 (24.484) | 92.600 (7.400) | 5.48 | bilinear | 224 | 0.875 |
| tf_efficientnet_lite0 *tfp | 75.074 (24.926) | 92.314 (7.686) | 4.65 | bilinear | 224 | N/A |
| tf_efficientnet_lite0 | 74.842 (25.158) | 92.170 (7.830) | 4.65 | bicubic | 224 | 0.875 |
| tf_mobilenetv3_large_075 *tfp | 73.730 (26.270) | 91.616 (8.384) | 3.99 | bilinear | 224 |N/A |
| tf_mobilenetv3_large_075 | 73.442 (26.558) | 91.352 (8.648) | 3.99 | bilinear | 224 | 0.875 |
| tf_mobilenetv3_large_minimal_100 *tfp | 72.678 (27.322) | 90.860 (9.140) | 3.92 | bilinear | 224 | N/A |
| tf_mobilenetv3_large_minimal_100 | 72.244 (27.756) | 90.636 (9.364) | 3.92 | bilinear | 224 | 0.875 |
| tf_mobilenetv3_small_100 *tfp | 67.918 (32.082) | 87.958 (12.042 | 2.54 | bilinear | 224 | N/A |
| tf_mobilenetv3_small_100 | 67.918 (32.082) | 87.662 (12.338) | 2.54 | bilinear | 224 | 0.875 |
| tf_mobilenetv3_small_075 *tfp | 66.142 (33.858) | 86.498 (13.502) | 2.04 | bilinear | 224 | N/A |
| tf_mobilenetv3_small_075 | 65.718 (34.282) | 86.136 (13.864) | 2.04 | bilinear | 224 | 0.875 |
| tf_mobilenetv3_small_minimal_100 *tfp | 63.378 (36.622) | 84.802 (15.198) | 2.04 | bilinear | 224 | N/A |
| tf_mobilenetv3_small_minimal_100 | 62.898 (37.102) | 84.230 (15.770) | 2.04 | bilinear | 224 | 0.875 |
*tfp models validated with `tf-preprocessing` pipeline
Google tf and tflite weights ported from official Tensorflow repositories
* https://github.com/tensorflow/tpu/tree/master/models/official/mnasnet
* https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
* https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
## Usage
### Environment
All development and testing has been done in Conda Python 3 environments on Linux x86-64 systems, specifically Python 3.6.x, 3.7.x, 3.8.x.
Users have reported that a Python 3 Anaconda install in Windows works. I have not verified this myself.
PyTorch versions 1.4, 1.5, 1.6 have been tested with this code.
I've tried to keep the dependencies minimal, the setup is as per the PyTorch default install instructions for Conda:
```
conda create -n torch-env
conda activate torch-env
conda install -c pytorch pytorch torchvision cudatoolkit=10.2
```
### PyTorch Hub
Models can be accessed via the PyTorch Hub API
```
>>> torch.hub.list('rwightman/gen-efficientnet-pytorch')
['efficientnet_b0', ...]
>>> model = torch.hub.load('rwightman/gen-efficientnet-pytorch', 'efficientnet_b0', pretrained=True)
>>> model.eval()
>>> output = model(torch.randn(1,3,224,224))
```
### Pip
This package can be installed via pip.
Install (after conda env/install):
```
pip install geffnet
```
Eval use:
```
>>> import geffnet
>>> m = geffnet.create_model('mobilenetv3_large_100', pretrained=True)
>>> m.eval()
```
Train use:
```
>>> import geffnet
>>> # models can also be created by using the entrypoint directly
>>> m = geffnet.efficientnet_b2(pretrained=True, drop_rate=0.25, drop_connect_rate=0.2)
>>> m.train()
```
Create in a nn.Sequential container, for fast.ai, etc:
```
>>> import geffnet
>>> m = geffnet.mixnet_l(pretrained=True, drop_rate=0.25, drop_connect_rate=0.2, as_sequential=True)
```
### Exporting
Scripts are included to
* export models to ONNX (`onnx_export.py`)
* optimized ONNX graph (`onnx_optimize.py` or `onnx_validate.py` w/ `--onnx-output-opt` arg)
* validate with ONNX runtime (`onnx_validate.py`)
* convert ONNX model to Caffe2 (`onnx_to_caffe.py`)
* validate in Caffe2 (`caffe2_validate.py`)
* benchmark in Caffe2 w/ FLOPs, parameters output (`caffe2_benchmark.py`)
As an example, to export the MobileNet-V3 pretrained model and then run an Imagenet validation:
```
python onnx_export.py --model mobilenetv3_large_100 ./mobilenetv3_100.onnx
python onnx_validate.py /imagenet/validation/ --onnx-input ./mobilenetv3_100.onnx
```
These scripts were tested to be working as of PyTorch 1.6 and ONNX 1.7 w/ ONNX runtime 1.4. Caffe2 compatible
export now requires additional args mentioned in the export script (not needed in earlier versions).
#### Export Notes
1. The TF ported weights with the 'SAME' conv padding activated cannot be exported to ONNX unless `_EXPORTABLE` flag in `config.py` is set to True. Use `config.set_exportable(True)` as in the `onnx_export.py` script.
2. TF ported models with 'SAME' padding will have the padding fixed at export time to the resolution used for export. Even though dynamic padding is supported in opset >= 11, I can't get it working.
3. ONNX optimize facility doesn't work reliably in PyTorch 1.6 / ONNX 1.7. Fortunately, the onnxruntime based inference is working very well now and includes on the fly optimization.
3. ONNX / Caffe2 export/import frequently breaks with different PyTorch and ONNX version releases. Please check their respective issue trackers before filing issues here.

View File

@@ -0,0 +1,65 @@
""" Caffe2 validation script
This script runs Caffe2 benchmark on exported ONNX model.
It is a useful tool for reporting model FLOPS.
Copyright 2020 Ross Wightman
"""
import argparse
from caffe2.python import core, workspace, model_helper
from caffe2.proto import caffe2_pb2
parser = argparse.ArgumentParser(description='Caffe2 Model Benchmark')
parser.add_argument('--c2-prefix', default='', type=str, metavar='NAME',
help='caffe2 model pb name prefix')
parser.add_argument('--c2-init', default='', type=str, metavar='PATH',
help='caffe2 model init .pb')
parser.add_argument('--c2-predict', default='', type=str, metavar='PATH',
help='caffe2 model predict .pb')
parser.add_argument('-b', '--batch-size', default=1, type=int,
metavar='N', help='mini-batch size (default: 1)')
parser.add_argument('--img-size', default=224, type=int,
metavar='N', help='Input image dimension, uses model default if empty')
def main():
args = parser.parse_args()
args.gpu_id = 0
if args.c2_prefix:
args.c2_init = args.c2_prefix + '.init.pb'
args.c2_predict = args.c2_prefix + '.predict.pb'
model = model_helper.ModelHelper(name="le_net", init_params=False)
# Bring in the init net from init_net.pb
init_net_proto = caffe2_pb2.NetDef()
with open(args.c2_init, "rb") as f:
init_net_proto.ParseFromString(f.read())
model.param_init_net = core.Net(init_net_proto)
# bring in the predict net from predict_net.pb
predict_net_proto = caffe2_pb2.NetDef()
with open(args.c2_predict, "rb") as f:
predict_net_proto.ParseFromString(f.read())
model.net = core.Net(predict_net_proto)
# CUDA performance not impressive
#device_opts = core.DeviceOption(caffe2_pb2.PROTO_CUDA, args.gpu_id)
#model.net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
#model.param_init_net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
input_blob = model.net.external_inputs[0]
model.param_init_net.GaussianFill(
[],
input_blob.GetUnscopedName(),
shape=(args.batch_size, 3, args.img_size, args.img_size),
mean=0.0,
std=1.0)
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net, overwrite=True)
workspace.BenchmarkNet(model.net.Proto().name, 5, 20, True)
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,138 @@
""" Caffe2 validation script
This script is created to verify exported ONNX models running in Caffe2
It utilizes the same PyTorch dataloader/processing pipeline for a
fair comparison against the originals.
Copyright 2020 Ross Wightman
"""
import argparse
import numpy as np
from caffe2.python import core, workspace, model_helper
from caffe2.proto import caffe2_pb2
from data import create_loader, resolve_data_config, Dataset
from utils import AverageMeter
import time
parser = argparse.ArgumentParser(description='Caffe2 ImageNet Validation')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--c2-prefix', default='', type=str, metavar='NAME',
help='caffe2 model pb name prefix')
parser.add_argument('--c2-init', default='', type=str, metavar='PATH',
help='caffe2 model init .pb')
parser.add_argument('--c2-predict', default='', type=str, metavar='PATH',
help='caffe2 model predict .pb')
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
help='number of data loading workers (default: 2)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--img-size', default=None, type=int,
metavar='N', help='Input image dimension, uses model default if empty')
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
help='Override std deviation of of dataset')
parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT',
help='Override default crop pct of 0.875')
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
help='Image resize interpolation type (overrides model)')
parser.add_argument('--tf-preprocessing', dest='tf_preprocessing', action='store_true',
help='use tensorflow mnasnet preporcessing')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
def main():
args = parser.parse_args()
args.gpu_id = 0
if args.c2_prefix:
args.c2_init = args.c2_prefix + '.init.pb'
args.c2_predict = args.c2_prefix + '.predict.pb'
model = model_helper.ModelHelper(name="validation_net", init_params=False)
# Bring in the init net from init_net.pb
init_net_proto = caffe2_pb2.NetDef()
with open(args.c2_init, "rb") as f:
init_net_proto.ParseFromString(f.read())
model.param_init_net = core.Net(init_net_proto)
# bring in the predict net from predict_net.pb
predict_net_proto = caffe2_pb2.NetDef()
with open(args.c2_predict, "rb") as f:
predict_net_proto.ParseFromString(f.read())
model.net = core.Net(predict_net_proto)
data_config = resolve_data_config(None, args)
loader = create_loader(
Dataset(args.data, load_bytes=args.tf_preprocessing),
input_size=data_config['input_size'],
batch_size=args.batch_size,
use_prefetcher=False,
interpolation=data_config['interpolation'],
mean=data_config['mean'],
std=data_config['std'],
num_workers=args.workers,
crop_pct=data_config['crop_pct'],
tensorflow_preprocessing=args.tf_preprocessing)
# this is so obvious, wonderful interface </sarcasm>
input_blob = model.net.external_inputs[0]
output_blob = model.net.external_outputs[0]
if True:
device_opts = None
else:
# CUDA is crashing, no idea why, awesome error message, give it a try for kicks
device_opts = core.DeviceOption(caffe2_pb2.PROTO_CUDA, args.gpu_id)
model.net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
model.param_init_net.RunAllOnGPU(gpu_id=args.gpu_id, use_cudnn=True)
model.param_init_net.GaussianFill(
[], input_blob.GetUnscopedName(),
shape=(1,) + data_config['input_size'], mean=0.0, std=1.0)
workspace.RunNetOnce(model.param_init_net)
workspace.CreateNet(model.net, overwrite=True)
batch_time = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
for i, (input, target) in enumerate(loader):
# run the net and return prediction
caffe2_in = input.data.numpy()
workspace.FeedBlob(input_blob, caffe2_in, device_opts)
workspace.RunNet(model.net, num_iter=1)
output = workspace.FetchBlob(output_blob)
# measure accuracy and record loss
prec1, prec5 = accuracy_np(output.data, target.numpy())
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {rate_avg:.3f}/s, {ms_avg:.3f} ms/sample) \t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(loader), batch_time=batch_time, rate_avg=input.size(0) / batch_time.avg,
ms_avg=100 * batch_time.avg / input.size(0), top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} ({top1a:.3f}) Prec@5 {top5.avg:.3f} ({top5a:.3f})'.format(
top1=top1, top1a=100-top1.avg, top5=top5, top5a=100.-top5.avg))
def accuracy_np(output, target):
max_indices = np.argsort(output, axis=1)[:, ::-1]
top5 = 100 * np.equal(max_indices[:, :5], target[:, np.newaxis]).sum(axis=1).mean()
top1 = 100 * np.equal(max_indices[:, 0], target).mean()
return top1, top5
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,5 @@
from .gen_efficientnet import *
from .mobilenetv3 import *
from .model_factory import create_model
from .config import is_exportable, is_scriptable, set_exportable, set_scriptable
from .activations import *

View File

@@ -0,0 +1,137 @@
from geffnet import config
from geffnet.activations.activations_me import *
from geffnet.activations.activations_jit import *
from geffnet.activations.activations import *
import torch
_has_silu = 'silu' in dir(torch.nn.functional)
_ACT_FN_DEFAULT = dict(
silu=F.silu if _has_silu else swish,
swish=F.silu if _has_silu else swish,
mish=mish,
relu=F.relu,
relu6=F.relu6,
sigmoid=sigmoid,
tanh=tanh,
hard_sigmoid=hard_sigmoid,
hard_swish=hard_swish,
)
_ACT_FN_JIT = dict(
silu=F.silu if _has_silu else swish_jit,
swish=F.silu if _has_silu else swish_jit,
mish=mish_jit,
)
_ACT_FN_ME = dict(
silu=F.silu if _has_silu else swish_me,
swish=F.silu if _has_silu else swish_me,
mish=mish_me,
hard_swish=hard_swish_me,
hard_sigmoid_jit=hard_sigmoid_me,
)
_ACT_LAYER_DEFAULT = dict(
silu=nn.SiLU if _has_silu else Swish,
swish=nn.SiLU if _has_silu else Swish,
mish=Mish,
relu=nn.ReLU,
relu6=nn.ReLU6,
sigmoid=Sigmoid,
tanh=Tanh,
hard_sigmoid=HardSigmoid,
hard_swish=HardSwish,
)
_ACT_LAYER_JIT = dict(
silu=nn.SiLU if _has_silu else SwishJit,
swish=nn.SiLU if _has_silu else SwishJit,
mish=MishJit,
)
_ACT_LAYER_ME = dict(
silu=nn.SiLU if _has_silu else SwishMe,
swish=nn.SiLU if _has_silu else SwishMe,
mish=MishMe,
hard_swish=HardSwishMe,
hard_sigmoid=HardSigmoidMe
)
_OVERRIDE_FN = dict()
_OVERRIDE_LAYER = dict()
def add_override_act_fn(name, fn):
global _OVERRIDE_FN
_OVERRIDE_FN[name] = fn
def update_override_act_fn(overrides):
assert isinstance(overrides, dict)
global _OVERRIDE_FN
_OVERRIDE_FN.update(overrides)
def clear_override_act_fn():
global _OVERRIDE_FN
_OVERRIDE_FN = dict()
def add_override_act_layer(name, fn):
_OVERRIDE_LAYER[name] = fn
def update_override_act_layer(overrides):
assert isinstance(overrides, dict)
global _OVERRIDE_LAYER
_OVERRIDE_LAYER.update(overrides)
def clear_override_act_layer():
global _OVERRIDE_LAYER
_OVERRIDE_LAYER = dict()
def get_act_fn(name='relu'):
""" Activation Function Factory
Fetching activation fns by name with this function allows export or torch script friendly
functions to be returned dynamically based on current config.
"""
if name in _OVERRIDE_FN:
return _OVERRIDE_FN[name]
use_me = not (config.is_exportable() or config.is_scriptable() or config.is_no_jit())
if use_me and name in _ACT_FN_ME:
# If not exporting or scripting the model, first look for a memory optimized version
# activation with custom autograd, then fallback to jit scripted, then a Python or Torch builtin
return _ACT_FN_ME[name]
if config.is_exportable() and name in ('silu', 'swish'):
# FIXME PyTorch SiLU doesn't ONNX export, this is a temp hack
return swish
use_jit = not (config.is_exportable() or config.is_no_jit())
# NOTE: export tracing should work with jit scripted components, but I keep running into issues
if use_jit and name in _ACT_FN_JIT: # jit scripted models should be okay for export/scripting
return _ACT_FN_JIT[name]
return _ACT_FN_DEFAULT[name]
def get_act_layer(name='relu'):
""" Activation Layer Factory
Fetching activation layers by name with this function allows export or torch script friendly
functions to be returned dynamically based on current config.
"""
if name in _OVERRIDE_LAYER:
return _OVERRIDE_LAYER[name]
use_me = not (config.is_exportable() or config.is_scriptable() or config.is_no_jit())
if use_me and name in _ACT_LAYER_ME:
return _ACT_LAYER_ME[name]
if config.is_exportable() and name in ('silu', 'swish'):
# FIXME PyTorch SiLU doesn't ONNX export, this is a temp hack
return Swish
use_jit = not (config.is_exportable() or config.is_no_jit())
# NOTE: export tracing should work with jit scripted components, but I keep running into issues
if use_jit and name in _ACT_FN_JIT: # jit scripted models should be okay for export/scripting
return _ACT_LAYER_JIT[name]
return _ACT_LAYER_DEFAULT[name]

View File

@@ -0,0 +1,102 @@
""" Activations
A collection of activations fn and modules with a common interface so that they can
easily be swapped. All have an `inplace` arg even if not used.
Copyright 2020 Ross Wightman
"""
from torch import nn as nn
from torch.nn import functional as F
def swish(x, inplace: bool = False):
"""Swish - Described originally as SiLU (https://arxiv.org/abs/1702.03118v3)
and also as Swish (https://arxiv.org/abs/1710.05941).
TODO Rename to SiLU with addition to PyTorch
"""
return x.mul_(x.sigmoid()) if inplace else x.mul(x.sigmoid())
class Swish(nn.Module):
def __init__(self, inplace: bool = False):
super(Swish, self).__init__()
self.inplace = inplace
def forward(self, x):
return swish(x, self.inplace)
def mish(x, inplace: bool = False):
"""Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
"""
return x.mul(F.softplus(x).tanh())
class Mish(nn.Module):
def __init__(self, inplace: bool = False):
super(Mish, self).__init__()
self.inplace = inplace
def forward(self, x):
return mish(x, self.inplace)
def sigmoid(x, inplace: bool = False):
return x.sigmoid_() if inplace else x.sigmoid()
# PyTorch has this, but not with a consistent inplace argmument interface
class Sigmoid(nn.Module):
def __init__(self, inplace: bool = False):
super(Sigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return x.sigmoid_() if self.inplace else x.sigmoid()
def tanh(x, inplace: bool = False):
return x.tanh_() if inplace else x.tanh()
# PyTorch has this, but not with a consistent inplace argmument interface
class Tanh(nn.Module):
def __init__(self, inplace: bool = False):
super(Tanh, self).__init__()
self.inplace = inplace
def forward(self, x):
return x.tanh_() if self.inplace else x.tanh()
def hard_swish(x, inplace: bool = False):
inner = F.relu6(x + 3.).div_(6.)
return x.mul_(inner) if inplace else x.mul(inner)
class HardSwish(nn.Module):
def __init__(self, inplace: bool = False):
super(HardSwish, self).__init__()
self.inplace = inplace
def forward(self, x):
return hard_swish(x, self.inplace)
def hard_sigmoid(x, inplace: bool = False):
if inplace:
return x.add_(3.).clamp_(0., 6.).div_(6.)
else:
return F.relu6(x + 3.) / 6.
class HardSigmoid(nn.Module):
def __init__(self, inplace: bool = False):
super(HardSigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return hard_sigmoid(x, self.inplace)

View File

@@ -0,0 +1,79 @@
""" Activations (jit)
A collection of jit-scripted activations fn and modules with a common interface so that they can
easily be swapped. All have an `inplace` arg even if not used.
All jit scripted activations are lacking in-place variations on purpose, scripted kernel fusion does not
currently work across in-place op boundaries, thus performance is equal to or less than the non-scripted
versions if they contain in-place ops.
Copyright 2020 Ross Wightman
"""
import torch
from torch import nn as nn
from torch.nn import functional as F
__all__ = ['swish_jit', 'SwishJit', 'mish_jit', 'MishJit',
'hard_sigmoid_jit', 'HardSigmoidJit', 'hard_swish_jit', 'HardSwishJit']
@torch.jit.script
def swish_jit(x, inplace: bool = False):
"""Swish - Described originally as SiLU (https://arxiv.org/abs/1702.03118v3)
and also as Swish (https://arxiv.org/abs/1710.05941).
TODO Rename to SiLU with addition to PyTorch
"""
return x.mul(x.sigmoid())
@torch.jit.script
def mish_jit(x, _inplace: bool = False):
"""Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
"""
return x.mul(F.softplus(x).tanh())
class SwishJit(nn.Module):
def __init__(self, inplace: bool = False):
super(SwishJit, self).__init__()
def forward(self, x):
return swish_jit(x)
class MishJit(nn.Module):
def __init__(self, inplace: bool = False):
super(MishJit, self).__init__()
def forward(self, x):
return mish_jit(x)
@torch.jit.script
def hard_sigmoid_jit(x, inplace: bool = False):
# return F.relu6(x + 3.) / 6.
return (x + 3).clamp(min=0, max=6).div(6.) # clamp seems ever so slightly faster?
class HardSigmoidJit(nn.Module):
def __init__(self, inplace: bool = False):
super(HardSigmoidJit, self).__init__()
def forward(self, x):
return hard_sigmoid_jit(x)
@torch.jit.script
def hard_swish_jit(x, inplace: bool = False):
# return x * (F.relu6(x + 3.) / 6)
return x * (x + 3).clamp(min=0, max=6).div(6.) # clamp seems ever so slightly faster?
class HardSwishJit(nn.Module):
def __init__(self, inplace: bool = False):
super(HardSwishJit, self).__init__()
def forward(self, x):
return hard_swish_jit(x)

View File

@@ -0,0 +1,174 @@
""" Activations (memory-efficient w/ custom autograd)
A collection of activations fn and modules with a common interface so that they can
easily be swapped. All have an `inplace` arg even if not used.
These activations are not compatible with jit scripting or ONNX export of the model, please use either
the JIT or basic versions of the activations.
Copyright 2020 Ross Wightman
"""
import torch
from torch import nn as nn
from torch.nn import functional as F
__all__ = ['swish_me', 'SwishMe', 'mish_me', 'MishMe',
'hard_sigmoid_me', 'HardSigmoidMe', 'hard_swish_me', 'HardSwishMe']
@torch.jit.script
def swish_jit_fwd(x):
return x.mul(torch.sigmoid(x))
@torch.jit.script
def swish_jit_bwd(x, grad_output):
x_sigmoid = torch.sigmoid(x)
return grad_output * (x_sigmoid * (1 + x * (1 - x_sigmoid)))
class SwishJitAutoFn(torch.autograd.Function):
""" torch.jit.script optimised Swish w/ memory-efficient checkpoint
Inspired by conversation btw Jeremy Howard & Adam Pazske
https://twitter.com/jeremyphoward/status/1188251041835315200
Swish - Described originally as SiLU (https://arxiv.org/abs/1702.03118v3)
and also as Swish (https://arxiv.org/abs/1710.05941).
TODO Rename to SiLU with addition to PyTorch
"""
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return swish_jit_fwd(x)
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
return swish_jit_bwd(x, grad_output)
def swish_me(x, inplace=False):
return SwishJitAutoFn.apply(x)
class SwishMe(nn.Module):
def __init__(self, inplace: bool = False):
super(SwishMe, self).__init__()
def forward(self, x):
return SwishJitAutoFn.apply(x)
@torch.jit.script
def mish_jit_fwd(x):
return x.mul(torch.tanh(F.softplus(x)))
@torch.jit.script
def mish_jit_bwd(x, grad_output):
x_sigmoid = torch.sigmoid(x)
x_tanh_sp = F.softplus(x).tanh()
return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp))
class MishJitAutoFn(torch.autograd.Function):
""" Mish: A Self Regularized Non-Monotonic Neural Activation Function - https://arxiv.org/abs/1908.08681
A memory efficient, jit scripted variant of Mish
"""
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return mish_jit_fwd(x)
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
return mish_jit_bwd(x, grad_output)
def mish_me(x, inplace=False):
return MishJitAutoFn.apply(x)
class MishMe(nn.Module):
def __init__(self, inplace: bool = False):
super(MishMe, self).__init__()
def forward(self, x):
return MishJitAutoFn.apply(x)
@torch.jit.script
def hard_sigmoid_jit_fwd(x, inplace: bool = False):
return (x + 3).clamp(min=0, max=6).div(6.)
@torch.jit.script
def hard_sigmoid_jit_bwd(x, grad_output):
m = torch.ones_like(x) * ((x >= -3.) & (x <= 3.)) / 6.
return grad_output * m
class HardSigmoidJitAutoFn(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return hard_sigmoid_jit_fwd(x)
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
return hard_sigmoid_jit_bwd(x, grad_output)
def hard_sigmoid_me(x, inplace: bool = False):
return HardSigmoidJitAutoFn.apply(x)
class HardSigmoidMe(nn.Module):
def __init__(self, inplace: bool = False):
super(HardSigmoidMe, self).__init__()
def forward(self, x):
return HardSigmoidJitAutoFn.apply(x)
@torch.jit.script
def hard_swish_jit_fwd(x):
return x * (x + 3).clamp(min=0, max=6).div(6.)
@torch.jit.script
def hard_swish_jit_bwd(x, grad_output):
m = torch.ones_like(x) * (x >= 3.)
m = torch.where((x >= -3.) & (x <= 3.), x / 3. + .5, m)
return grad_output * m
class HardSwishJitAutoFn(torch.autograd.Function):
"""A memory efficient, jit-scripted HardSwish activation"""
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return hard_swish_jit_fwd(x)
@staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
return hard_swish_jit_bwd(x, grad_output)
def hard_swish_me(x, inplace=False):
return HardSwishJitAutoFn.apply(x)
class HardSwishMe(nn.Module):
def __init__(self, inplace: bool = False):
super(HardSwishMe, self).__init__()
def forward(self, x):
return HardSwishJitAutoFn.apply(x)

View File

@@ -0,0 +1,123 @@
""" Global layer config state
"""
from typing import Any, Optional
__all__ = [
'is_exportable', 'is_scriptable', 'is_no_jit', 'layer_config_kwargs',
'set_exportable', 'set_scriptable', 'set_no_jit', 'set_layer_config'
]
# Set to True if prefer to have layers with no jit optimization (includes activations)
_NO_JIT = False
# Set to True if prefer to have activation layers with no jit optimization
# NOTE not currently used as no difference between no_jit and no_activation jit as only layers obeying
# the jit flags so far are activations. This will change as more layers are updated and/or added.
_NO_ACTIVATION_JIT = False
# Set to True if exporting a model with Same padding via ONNX
_EXPORTABLE = False
# Set to True if wanting to use torch.jit.script on a model
_SCRIPTABLE = False
def is_no_jit():
return _NO_JIT
class set_no_jit:
def __init__(self, mode: bool) -> None:
global _NO_JIT
self.prev = _NO_JIT
_NO_JIT = mode
def __enter__(self) -> None:
pass
def __exit__(self, *args: Any) -> bool:
global _NO_JIT
_NO_JIT = self.prev
return False
def is_exportable():
return _EXPORTABLE
class set_exportable:
def __init__(self, mode: bool) -> None:
global _EXPORTABLE
self.prev = _EXPORTABLE
_EXPORTABLE = mode
def __enter__(self) -> None:
pass
def __exit__(self, *args: Any) -> bool:
global _EXPORTABLE
_EXPORTABLE = self.prev
return False
def is_scriptable():
return _SCRIPTABLE
class set_scriptable:
def __init__(self, mode: bool) -> None:
global _SCRIPTABLE
self.prev = _SCRIPTABLE
_SCRIPTABLE = mode
def __enter__(self) -> None:
pass
def __exit__(self, *args: Any) -> bool:
global _SCRIPTABLE
_SCRIPTABLE = self.prev
return False
class set_layer_config:
""" Layer config context manager that allows setting all layer config flags at once.
If a flag arg is None, it will not change the current value.
"""
def __init__(
self,
scriptable: Optional[bool] = None,
exportable: Optional[bool] = None,
no_jit: Optional[bool] = None,
no_activation_jit: Optional[bool] = None):
global _SCRIPTABLE
global _EXPORTABLE
global _NO_JIT
global _NO_ACTIVATION_JIT
self.prev = _SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT
if scriptable is not None:
_SCRIPTABLE = scriptable
if exportable is not None:
_EXPORTABLE = exportable
if no_jit is not None:
_NO_JIT = no_jit
if no_activation_jit is not None:
_NO_ACTIVATION_JIT = no_activation_jit
def __enter__(self) -> None:
pass
def __exit__(self, *args: Any) -> bool:
global _SCRIPTABLE
global _EXPORTABLE
global _NO_JIT
global _NO_ACTIVATION_JIT
_SCRIPTABLE, _EXPORTABLE, _NO_JIT, _NO_ACTIVATION_JIT = self.prev
return False
def layer_config_kwargs(kwargs):
""" Consume config kwargs and return contextmgr obj """
return set_layer_config(
scriptable=kwargs.pop('scriptable', None),
exportable=kwargs.pop('exportable', None),
no_jit=kwargs.pop('no_jit', None))

View File

@@ -0,0 +1,304 @@
""" Conv2D w/ SAME padding, CondConv, MixedConv
A collection of conv layers and padding helpers needed by EfficientNet, MixNet, and
MobileNetV3 models that maintain weight compatibility with original Tensorflow models.
Copyright 2020 Ross Wightman
"""
import collections.abc
import math
from functools import partial
from itertools import repeat
from typing import Tuple, Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from .config import *
# From PyTorch internals
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable):
return x
return tuple(repeat(x, n))
return parse
_single = _ntuple(1)
_pair = _ntuple(2)
_triple = _ntuple(3)
_quadruple = _ntuple(4)
def _is_static_pad(kernel_size, stride=1, dilation=1, **_):
return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0
def _get_padding(kernel_size, stride=1, dilation=1, **_):
padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2
return padding
def _calc_same_pad(i: int, k: int, s: int, d: int):
return max((-(i // -s) - 1) * s + (k - 1) * d + 1 - i, 0)
def _same_pad_arg(input_size, kernel_size, stride, dilation):
ih, iw = input_size
kh, kw = kernel_size
pad_h = _calc_same_pad(ih, kh, stride[0], dilation[0])
pad_w = _calc_same_pad(iw, kw, stride[1], dilation[1])
return [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]
def _split_channels(num_chan, num_groups):
split = [num_chan // num_groups for _ in range(num_groups)]
split[0] += num_chan - sum(split)
return split
def conv2d_same(
x, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, stride: Tuple[int, int] = (1, 1),
padding: Tuple[int, int] = (0, 0), dilation: Tuple[int, int] = (1, 1), groups: int = 1):
ih, iw = x.size()[-2:]
kh, kw = weight.size()[-2:]
pad_h = _calc_same_pad(ih, kh, stride[0], dilation[0])
pad_w = _calc_same_pad(iw, kw, stride[1], dilation[1])
x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2])
return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups)
class Conv2dSame(nn.Conv2d):
""" Tensorflow like 'SAME' convolution wrapper for 2D convolutions
"""
# pylint: disable=unused-argument
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(Conv2dSame, self).__init__(
in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
def forward(self, x):
return conv2d_same(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
class Conv2dSameExport(nn.Conv2d):
""" ONNX export friendly Tensorflow like 'SAME' convolution wrapper for 2D convolutions
NOTE: This does not currently work with torch.jit.script
"""
# pylint: disable=unused-argument
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(Conv2dSameExport, self).__init__(
in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias)
self.pad = None
self.pad_input_size = (0, 0)
def forward(self, x):
input_size = x.size()[-2:]
if self.pad is None:
pad_arg = _same_pad_arg(input_size, self.weight.size()[-2:], self.stride, self.dilation)
self.pad = nn.ZeroPad2d(pad_arg)
self.pad_input_size = input_size
if self.pad is not None:
x = self.pad(x)
return F.conv2d(
x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
def get_padding_value(padding, kernel_size, **kwargs):
dynamic = False
if isinstance(padding, str):
# for any string padding, the padding will be calculated for you, one of three ways
padding = padding.lower()
if padding == 'same':
# TF compatible 'SAME' padding, has a performance and GPU memory allocation impact
if _is_static_pad(kernel_size, **kwargs):
# static case, no extra overhead
padding = _get_padding(kernel_size, **kwargs)
else:
# dynamic padding
padding = 0
dynamic = True
elif padding == 'valid':
# 'VALID' padding, same as padding=0
padding = 0
else:
# Default to PyTorch style 'same'-ish symmetric padding
padding = _get_padding(kernel_size, **kwargs)
return padding, dynamic
def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs):
padding = kwargs.pop('padding', '')
kwargs.setdefault('bias', False)
padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs)
if is_dynamic:
if is_exportable():
assert not is_scriptable()
return Conv2dSameExport(in_chs, out_chs, kernel_size, **kwargs)
else:
return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs)
else:
return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs)
class MixedConv2d(nn.ModuleDict):
""" Mixed Grouped Convolution
Based on MDConv and GroupedConv in MixNet impl:
https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mixnet/custom_layers.py
"""
def __init__(self, in_channels, out_channels, kernel_size=3,
stride=1, padding='', dilation=1, depthwise=False, **kwargs):
super(MixedConv2d, self).__init__()
kernel_size = kernel_size if isinstance(kernel_size, list) else [kernel_size]
num_groups = len(kernel_size)
in_splits = _split_channels(in_channels, num_groups)
out_splits = _split_channels(out_channels, num_groups)
self.in_channels = sum(in_splits)
self.out_channels = sum(out_splits)
for idx, (k, in_ch, out_ch) in enumerate(zip(kernel_size, in_splits, out_splits)):
conv_groups = out_ch if depthwise else 1
self.add_module(
str(idx),
create_conv2d_pad(
in_ch, out_ch, k, stride=stride,
padding=padding, dilation=dilation, groups=conv_groups, **kwargs)
)
self.splits = in_splits
def forward(self, x):
x_split = torch.split(x, self.splits, 1)
x_out = [conv(x_split[i]) for i, conv in enumerate(self.values())]
x = torch.cat(x_out, 1)
return x
def get_condconv_initializer(initializer, num_experts, expert_shape):
def condconv_initializer(weight):
"""CondConv initializer function."""
num_params = np.prod(expert_shape)
if (len(weight.shape) != 2 or weight.shape[0] != num_experts or
weight.shape[1] != num_params):
raise (ValueError(
'CondConv variables must have shape [num_experts, num_params]'))
for i in range(num_experts):
initializer(weight[i].view(expert_shape))
return condconv_initializer
class CondConv2d(nn.Module):
""" Conditional Convolution
Inspired by: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/condconv/condconv_layers.py
Grouped convolution hackery for parallel execution of the per-sample kernel filters inspired by this discussion:
https://github.com/pytorch/pytorch/issues/17983
"""
__constants__ = ['bias', 'in_channels', 'out_channels', 'dynamic_padding']
def __init__(self, in_channels, out_channels, kernel_size=3,
stride=1, padding='', dilation=1, groups=1, bias=False, num_experts=4):
super(CondConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = _pair(kernel_size)
self.stride = _pair(stride)
padding_val, is_padding_dynamic = get_padding_value(
padding, kernel_size, stride=stride, dilation=dilation)
self.dynamic_padding = is_padding_dynamic # if in forward to work with torchscript
self.padding = _pair(padding_val)
self.dilation = _pair(dilation)
self.groups = groups
self.num_experts = num_experts
self.weight_shape = (self.out_channels, self.in_channels // self.groups) + self.kernel_size
weight_num_param = 1
for wd in self.weight_shape:
weight_num_param *= wd
self.weight = torch.nn.Parameter(torch.Tensor(self.num_experts, weight_num_param))
if bias:
self.bias_shape = (self.out_channels,)
self.bias = torch.nn.Parameter(torch.Tensor(self.num_experts, self.out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
init_weight = get_condconv_initializer(
partial(nn.init.kaiming_uniform_, a=math.sqrt(5)), self.num_experts, self.weight_shape)
init_weight(self.weight)
if self.bias is not None:
fan_in = np.prod(self.weight_shape[1:])
bound = 1 / math.sqrt(fan_in)
init_bias = get_condconv_initializer(
partial(nn.init.uniform_, a=-bound, b=bound), self.num_experts, self.bias_shape)
init_bias(self.bias)
def forward(self, x, routing_weights):
B, C, H, W = x.shape
weight = torch.matmul(routing_weights, self.weight)
new_weight_shape = (B * self.out_channels, self.in_channels // self.groups) + self.kernel_size
weight = weight.view(new_weight_shape)
bias = None
if self.bias is not None:
bias = torch.matmul(routing_weights, self.bias)
bias = bias.view(B * self.out_channels)
# move batch elements with channels so each batch element can be efficiently convolved with separate kernel
x = x.view(1, B * C, H, W)
if self.dynamic_padding:
out = conv2d_same(
x, weight, bias, stride=self.stride, padding=self.padding,
dilation=self.dilation, groups=self.groups * B)
else:
out = F.conv2d(
x, weight, bias, stride=self.stride, padding=self.padding,
dilation=self.dilation, groups=self.groups * B)
out = out.permute([1, 0, 2, 3]).view(B, self.out_channels, out.shape[-2], out.shape[-1])
# Literal port (from TF definition)
# x = torch.split(x, 1, 0)
# weight = torch.split(weight, 1, 0)
# if self.bias is not None:
# bias = torch.matmul(routing_weights, self.bias)
# bias = torch.split(bias, 1, 0)
# else:
# bias = [None] * B
# out = []
# for xi, wi, bi in zip(x, weight, bias):
# wi = wi.view(*self.weight_shape)
# if bi is not None:
# bi = bi.view(*self.bias_shape)
# out.append(self.conv_fn(
# xi, wi, bi, stride=self.stride, padding=self.padding,
# dilation=self.dilation, groups=self.groups))
# out = torch.cat(out, 0)
return out
def select_conv2d(in_chs, out_chs, kernel_size, **kwargs):
assert 'groups' not in kwargs # only use 'depthwise' bool arg
if isinstance(kernel_size, list):
assert 'num_experts' not in kwargs # MixNet + CondConv combo not supported currently
# We're going to use only lists for defining the MixedConv2d kernel groups,
# ints, tuples, other iterables will continue to pass to normal conv and specify h, w.
m = MixedConv2d(in_chs, out_chs, kernel_size, **kwargs)
else:
depthwise = kwargs.pop('depthwise', False)
groups = out_chs if depthwise else 1
if 'num_experts' in kwargs and kwargs['num_experts'] > 0:
m = CondConv2d(in_chs, out_chs, kernel_size, groups=groups, **kwargs)
else:
m = create_conv2d_pad(in_chs, out_chs, kernel_size, groups=groups, **kwargs)
return m

View File

@@ -0,0 +1,683 @@
""" EfficientNet / MobileNetV3 Blocks and Builder
Copyright 2020 Ross Wightman
"""
import re
from copy import deepcopy
from .conv2d_layers import *
from geffnet.activations import *
__all__ = ['get_bn_args_tf', 'resolve_bn_args', 'resolve_se_args', 'resolve_act_layer', 'make_divisible',
'round_channels', 'drop_connect', 'SqueezeExcite', 'ConvBnAct', 'DepthwiseSeparableConv',
'InvertedResidual', 'CondConvResidual', 'EdgeResidual', 'EfficientNetBuilder', 'decode_arch_def',
'initialize_weight_default', 'initialize_weight_goog', 'BN_MOMENTUM_TF_DEFAULT', 'BN_EPS_TF_DEFAULT'
]
# Defaults used for Google/Tensorflow training of mobile networks /w RMSprop as per
# papers and TF reference implementations. PT momentum equiv for TF decay is (1 - TF decay)
# NOTE: momentum varies btw .99 and .9997 depending on source
# .99 in official TF TPU impl
# .9997 (/w .999 in search space) for paper
#
# PyTorch defaults are momentum = .1, eps = 1e-5
#
BN_MOMENTUM_TF_DEFAULT = 1 - 0.99
BN_EPS_TF_DEFAULT = 1e-3
_BN_ARGS_TF = dict(momentum=BN_MOMENTUM_TF_DEFAULT, eps=BN_EPS_TF_DEFAULT)
def get_bn_args_tf():
return _BN_ARGS_TF.copy()
def resolve_bn_args(kwargs):
bn_args = get_bn_args_tf() if kwargs.pop('bn_tf', False) else {}
bn_momentum = kwargs.pop('bn_momentum', None)
if bn_momentum is not None:
bn_args['momentum'] = bn_momentum
bn_eps = kwargs.pop('bn_eps', None)
if bn_eps is not None:
bn_args['eps'] = bn_eps
return bn_args
_SE_ARGS_DEFAULT = dict(
gate_fn=sigmoid,
act_layer=None, # None == use containing block's activation layer
reduce_mid=False,
divisor=1)
def resolve_se_args(kwargs, in_chs, act_layer=None):
se_kwargs = kwargs.copy() if kwargs is not None else {}
# fill in args that aren't specified with the defaults
for k, v in _SE_ARGS_DEFAULT.items():
se_kwargs.setdefault(k, v)
# some models, like MobilNetV3, calculate SE reduction chs from the containing block's mid_ch instead of in_ch
if not se_kwargs.pop('reduce_mid'):
se_kwargs['reduced_base_chs'] = in_chs
# act_layer override, if it remains None, the containing block's act_layer will be used
if se_kwargs['act_layer'] is None:
assert act_layer is not None
se_kwargs['act_layer'] = act_layer
return se_kwargs
def resolve_act_layer(kwargs, default='relu'):
act_layer = kwargs.pop('act_layer', default)
if isinstance(act_layer, str):
act_layer = get_act_layer(act_layer)
return act_layer
def make_divisible(v: int, divisor: int = 8, min_value: int = None):
min_value = min_value or divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v: # ensure round down does not go down by more than 10%.
new_v += divisor
return new_v
def round_channels(channels, multiplier=1.0, divisor=8, channel_min=None):
"""Round number of filters based on depth multiplier."""
if not multiplier:
return channels
channels *= multiplier
return make_divisible(channels, divisor, channel_min)
def drop_connect(inputs, training: bool = False, drop_connect_rate: float = 0.):
"""Apply drop connect."""
if not training:
return inputs
keep_prob = 1 - drop_connect_rate
random_tensor = keep_prob + torch.rand(
(inputs.size()[0], 1, 1, 1), dtype=inputs.dtype, device=inputs.device)
random_tensor.floor_() # binarize
output = inputs.div(keep_prob) * random_tensor
return output
class SqueezeExcite(nn.Module):
def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None, act_layer=nn.ReLU, gate_fn=sigmoid, divisor=1):
super(SqueezeExcite, self).__init__()
reduced_chs = make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor)
self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
self.act1 = act_layer(inplace=True)
self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
self.gate_fn = gate_fn
def forward(self, x):
x_se = x.mean((2, 3), keepdim=True)
x_se = self.conv_reduce(x_se)
x_se = self.act1(x_se)
x_se = self.conv_expand(x_se)
x = x * self.gate_fn(x_se)
return x
class ConvBnAct(nn.Module):
def __init__(self, in_chs, out_chs, kernel_size,
stride=1, pad_type='', act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, norm_kwargs=None):
super(ConvBnAct, self).__init__()
assert stride in [1, 2]
norm_kwargs = norm_kwargs or {}
self.conv = select_conv2d(in_chs, out_chs, kernel_size, stride=stride, padding=pad_type)
self.bn1 = norm_layer(out_chs, **norm_kwargs)
self.act1 = act_layer(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn1(x)
x = self.act1(x)
return x
class DepthwiseSeparableConv(nn.Module):
""" DepthwiseSeparable block
Used for DS convs in MobileNet-V1 and in the place of IR blocks with an expansion
factor of 1.0. This is an alternative to having a IR with optional first pw conv.
"""
def __init__(self, in_chs, out_chs, dw_kernel_size=3,
stride=1, pad_type='', act_layer=nn.ReLU, noskip=False,
pw_kernel_size=1, pw_act=False, se_ratio=0., se_kwargs=None,
norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_connect_rate=0.):
super(DepthwiseSeparableConv, self).__init__()
assert stride in [1, 2]
norm_kwargs = norm_kwargs or {}
self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip
self.drop_connect_rate = drop_connect_rate
self.conv_dw = select_conv2d(
in_chs, in_chs, dw_kernel_size, stride=stride, padding=pad_type, depthwise=True)
self.bn1 = norm_layer(in_chs, **norm_kwargs)
self.act1 = act_layer(inplace=True)
# Squeeze-and-excitation
if se_ratio is not None and se_ratio > 0.:
se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer)
self.se = SqueezeExcite(in_chs, se_ratio=se_ratio, **se_kwargs)
else:
self.se = nn.Identity()
self.conv_pw = select_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type)
self.bn2 = norm_layer(out_chs, **norm_kwargs)
self.act2 = act_layer(inplace=True) if pw_act else nn.Identity()
def forward(self, x):
residual = x
x = self.conv_dw(x)
x = self.bn1(x)
x = self.act1(x)
x = self.se(x)
x = self.conv_pw(x)
x = self.bn2(x)
x = self.act2(x)
if self.has_residual:
if self.drop_connect_rate > 0.:
x = drop_connect(x, self.training, self.drop_connect_rate)
x += residual
return x
class InvertedResidual(nn.Module):
""" Inverted residual block w/ optional SE"""
def __init__(self, in_chs, out_chs, dw_kernel_size=3,
stride=1, pad_type='', act_layer=nn.ReLU, noskip=False,
exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1,
se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None,
conv_kwargs=None, drop_connect_rate=0.):
super(InvertedResidual, self).__init__()
norm_kwargs = norm_kwargs or {}
conv_kwargs = conv_kwargs or {}
mid_chs: int = make_divisible(in_chs * exp_ratio)
self.has_residual = (in_chs == out_chs and stride == 1) and not noskip
self.drop_connect_rate = drop_connect_rate
# Point-wise expansion
self.conv_pw = select_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs)
self.bn1 = norm_layer(mid_chs, **norm_kwargs)
self.act1 = act_layer(inplace=True)
# Depth-wise convolution
self.conv_dw = select_conv2d(
mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=pad_type, depthwise=True, **conv_kwargs)
self.bn2 = norm_layer(mid_chs, **norm_kwargs)
self.act2 = act_layer(inplace=True)
# Squeeze-and-excitation
if se_ratio is not None and se_ratio > 0.:
se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer)
self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs)
else:
self.se = nn.Identity() # for jit.script compat
# Point-wise linear projection
self.conv_pwl = select_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs)
self.bn3 = norm_layer(out_chs, **norm_kwargs)
def forward(self, x):
residual = x
# Point-wise expansion
x = self.conv_pw(x)
x = self.bn1(x)
x = self.act1(x)
# Depth-wise convolution
x = self.conv_dw(x)
x = self.bn2(x)
x = self.act2(x)
# Squeeze-and-excitation
x = self.se(x)
# Point-wise linear projection
x = self.conv_pwl(x)
x = self.bn3(x)
if self.has_residual:
if self.drop_connect_rate > 0.:
x = drop_connect(x, self.training, self.drop_connect_rate)
x += residual
return x
class CondConvResidual(InvertedResidual):
""" Inverted residual block w/ CondConv routing"""
def __init__(self, in_chs, out_chs, dw_kernel_size=3,
stride=1, pad_type='', act_layer=nn.ReLU, noskip=False,
exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1,
se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None,
num_experts=0, drop_connect_rate=0.):
self.num_experts = num_experts
conv_kwargs = dict(num_experts=self.num_experts)
super(CondConvResidual, self).__init__(
in_chs, out_chs, dw_kernel_size=dw_kernel_size, stride=stride, pad_type=pad_type,
act_layer=act_layer, noskip=noskip, exp_ratio=exp_ratio, exp_kernel_size=exp_kernel_size,
pw_kernel_size=pw_kernel_size, se_ratio=se_ratio, se_kwargs=se_kwargs,
norm_layer=norm_layer, norm_kwargs=norm_kwargs, conv_kwargs=conv_kwargs,
drop_connect_rate=drop_connect_rate)
self.routing_fn = nn.Linear(in_chs, self.num_experts)
def forward(self, x):
residual = x
# CondConv routing
pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1)
routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs))
# Point-wise expansion
x = self.conv_pw(x, routing_weights)
x = self.bn1(x)
x = self.act1(x)
# Depth-wise convolution
x = self.conv_dw(x, routing_weights)
x = self.bn2(x)
x = self.act2(x)
# Squeeze-and-excitation
x = self.se(x)
# Point-wise linear projection
x = self.conv_pwl(x, routing_weights)
x = self.bn3(x)
if self.has_residual:
if self.drop_connect_rate > 0.:
x = drop_connect(x, self.training, self.drop_connect_rate)
x += residual
return x
class EdgeResidual(nn.Module):
""" EdgeTPU Residual block with expansion convolution followed by pointwise-linear w/ stride"""
def __init__(self, in_chs, out_chs, exp_kernel_size=3, exp_ratio=1.0, fake_in_chs=0,
stride=1, pad_type='', act_layer=nn.ReLU, noskip=False, pw_kernel_size=1,
se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_connect_rate=0.):
super(EdgeResidual, self).__init__()
norm_kwargs = norm_kwargs or {}
mid_chs = make_divisible(fake_in_chs * exp_ratio) if fake_in_chs > 0 else make_divisible(in_chs * exp_ratio)
self.has_residual = (in_chs == out_chs and stride == 1) and not noskip
self.drop_connect_rate = drop_connect_rate
# Expansion convolution
self.conv_exp = select_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type)
self.bn1 = norm_layer(mid_chs, **norm_kwargs)
self.act1 = act_layer(inplace=True)
# Squeeze-and-excitation
if se_ratio is not None and se_ratio > 0.:
se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer)
self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs)
else:
self.se = nn.Identity()
# Point-wise linear projection
self.conv_pwl = select_conv2d(mid_chs, out_chs, pw_kernel_size, stride=stride, padding=pad_type)
self.bn2 = nn.BatchNorm2d(out_chs, **norm_kwargs)
def forward(self, x):
residual = x
# Expansion convolution
x = self.conv_exp(x)
x = self.bn1(x)
x = self.act1(x)
# Squeeze-and-excitation
x = self.se(x)
# Point-wise linear projection
x = self.conv_pwl(x)
x = self.bn2(x)
if self.has_residual:
if self.drop_connect_rate > 0.:
x = drop_connect(x, self.training, self.drop_connect_rate)
x += residual
return x
class EfficientNetBuilder:
""" Build Trunk Blocks for Efficient/Mobile Networks
This ended up being somewhat of a cross between
https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_models.py
and
https://github.com/facebookresearch/maskrcnn-benchmark/blob/master/maskrcnn_benchmark/modeling/backbone/fbnet_builder.py
"""
def __init__(self, channel_multiplier=1.0, channel_divisor=8, channel_min=None,
pad_type='', act_layer=None, se_kwargs=None,
norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_connect_rate=0.):
self.channel_multiplier = channel_multiplier
self.channel_divisor = channel_divisor
self.channel_min = channel_min
self.pad_type = pad_type
self.act_layer = act_layer
self.se_kwargs = se_kwargs
self.norm_layer = norm_layer
self.norm_kwargs = norm_kwargs
self.drop_connect_rate = drop_connect_rate
# updated during build
self.in_chs = None
self.block_idx = 0
self.block_count = 0
def _round_channels(self, chs):
return round_channels(chs, self.channel_multiplier, self.channel_divisor, self.channel_min)
def _make_block(self, ba):
bt = ba.pop('block_type')
ba['in_chs'] = self.in_chs
ba['out_chs'] = self._round_channels(ba['out_chs'])
if 'fake_in_chs' in ba and ba['fake_in_chs']:
# FIXME this is a hack to work around mismatch in origin impl input filters for EdgeTPU
ba['fake_in_chs'] = self._round_channels(ba['fake_in_chs'])
ba['norm_layer'] = self.norm_layer
ba['norm_kwargs'] = self.norm_kwargs
ba['pad_type'] = self.pad_type
# block act fn overrides the model default
ba['act_layer'] = ba['act_layer'] if ba['act_layer'] is not None else self.act_layer
assert ba['act_layer'] is not None
if bt == 'ir':
ba['drop_connect_rate'] = self.drop_connect_rate * self.block_idx / self.block_count
ba['se_kwargs'] = self.se_kwargs
if ba.get('num_experts', 0) > 0:
block = CondConvResidual(**ba)
else:
block = InvertedResidual(**ba)
elif bt == 'ds' or bt == 'dsa':
ba['drop_connect_rate'] = self.drop_connect_rate * self.block_idx / self.block_count
ba['se_kwargs'] = self.se_kwargs
block = DepthwiseSeparableConv(**ba)
elif bt == 'er':
ba['drop_connect_rate'] = self.drop_connect_rate * self.block_idx / self.block_count
ba['se_kwargs'] = self.se_kwargs
block = EdgeResidual(**ba)
elif bt == 'cn':
block = ConvBnAct(**ba)
else:
assert False, 'Uknkown block type (%s) while building model.' % bt
self.in_chs = ba['out_chs'] # update in_chs for arg of next block
return block
def _make_stack(self, stack_args):
blocks = []
# each stack (stage) contains a list of block arguments
for i, ba in enumerate(stack_args):
if i >= 1:
# only the first block in any stack can have a stride > 1
ba['stride'] = 1
block = self._make_block(ba)
blocks.append(block)
self.block_idx += 1 # incr global idx (across all stacks)
return nn.Sequential(*blocks)
def __call__(self, in_chs, block_args):
""" Build the blocks
Args:
in_chs: Number of input-channels passed to first block
block_args: A list of lists, outer list defines stages, inner
list contains strings defining block configuration(s)
Return:
List of block stacks (each stack wrapped in nn.Sequential)
"""
self.in_chs = in_chs
self.block_count = sum([len(x) for x in block_args])
self.block_idx = 0
blocks = []
# outer list of block_args defines the stacks ('stages' by some conventions)
for stack_idx, stack in enumerate(block_args):
assert isinstance(stack, list)
stack = self._make_stack(stack)
blocks.append(stack)
return blocks
def _parse_ksize(ss):
if ss.isdigit():
return int(ss)
else:
return [int(k) for k in ss.split('.')]
def _decode_block_str(block_str):
""" Decode block definition string
Gets a list of block arg (dicts) through a string notation of arguments.
E.g. ir_r2_k3_s2_e1_i32_o16_se0.25_noskip
All args can exist in any order with the exception of the leading string which
is assumed to indicate the block type.
leading string - block type (
ir = InvertedResidual, ds = DepthwiseSep, dsa = DeptwhiseSep with pw act, cn = ConvBnAct)
r - number of repeat blocks,
k - kernel size,
s - strides (1-9),
e - expansion ratio,
c - output channels,
se - squeeze/excitation ratio
n - activation fn ('re', 'r6', 'hs', or 'sw')
Args:
block_str: a string representation of block arguments.
Returns:
A list of block args (dicts)
Raises:
ValueError: if the string def not properly specified (TODO)
"""
assert isinstance(block_str, str)
ops = block_str.split('_')
block_type = ops[0] # take the block type off the front
ops = ops[1:]
options = {}
noskip = False
for op in ops:
# string options being checked on individual basis, combine if they grow
if op == 'noskip':
noskip = True
elif op.startswith('n'):
# activation fn
key = op[0]
v = op[1:]
if v == 're':
value = get_act_layer('relu')
elif v == 'r6':
value = get_act_layer('relu6')
elif v == 'hs':
value = get_act_layer('hard_swish')
elif v == 'sw':
value = get_act_layer('swish')
else:
continue
options[key] = value
else:
# all numeric options
splits = re.split(r'(\d.*)', op)
if len(splits) >= 2:
key, value = splits[:2]
options[key] = value
# if act_layer is None, the model default (passed to model init) will be used
act_layer = options['n'] if 'n' in options else None
exp_kernel_size = _parse_ksize(options['a']) if 'a' in options else 1
pw_kernel_size = _parse_ksize(options['p']) if 'p' in options else 1
fake_in_chs = int(options['fc']) if 'fc' in options else 0 # FIXME hack to deal with in_chs issue in TPU def
num_repeat = int(options['r'])
# each type of block has different valid arguments, fill accordingly
if block_type == 'ir':
block_args = dict(
block_type=block_type,
dw_kernel_size=_parse_ksize(options['k']),
exp_kernel_size=exp_kernel_size,
pw_kernel_size=pw_kernel_size,
out_chs=int(options['c']),
exp_ratio=float(options['e']),
se_ratio=float(options['se']) if 'se' in options else None,
stride=int(options['s']),
act_layer=act_layer,
noskip=noskip,
)
if 'cc' in options:
block_args['num_experts'] = int(options['cc'])
elif block_type == 'ds' or block_type == 'dsa':
block_args = dict(
block_type=block_type,
dw_kernel_size=_parse_ksize(options['k']),
pw_kernel_size=pw_kernel_size,
out_chs=int(options['c']),
se_ratio=float(options['se']) if 'se' in options else None,
stride=int(options['s']),
act_layer=act_layer,
pw_act=block_type == 'dsa',
noskip=block_type == 'dsa' or noskip,
)
elif block_type == 'er':
block_args = dict(
block_type=block_type,
exp_kernel_size=_parse_ksize(options['k']),
pw_kernel_size=pw_kernel_size,
out_chs=int(options['c']),
exp_ratio=float(options['e']),
fake_in_chs=fake_in_chs,
se_ratio=float(options['se']) if 'se' in options else None,
stride=int(options['s']),
act_layer=act_layer,
noskip=noskip,
)
elif block_type == 'cn':
block_args = dict(
block_type=block_type,
kernel_size=int(options['k']),
out_chs=int(options['c']),
stride=int(options['s']),
act_layer=act_layer,
)
else:
assert False, 'Unknown block type (%s)' % block_type
return block_args, num_repeat
def _scale_stage_depth(stack_args, repeats, depth_multiplier=1.0, depth_trunc='ceil'):
""" Per-stage depth scaling
Scales the block repeats in each stage. This depth scaling impl maintains
compatibility with the EfficientNet scaling method, while allowing sensible
scaling for other models that may have multiple block arg definitions in each stage.
"""
# We scale the total repeat count for each stage, there may be multiple
# block arg defs per stage so we need to sum.
num_repeat = sum(repeats)
if depth_trunc == 'round':
# Truncating to int by rounding allows stages with few repeats to remain
# proportionally smaller for longer. This is a good choice when stage definitions
# include single repeat stages that we'd prefer to keep that way as long as possible
num_repeat_scaled = max(1, round(num_repeat * depth_multiplier))
else:
# The default for EfficientNet truncates repeats to int via 'ceil'.
# Any multiplier > 1.0 will result in an increased depth for every stage.
num_repeat_scaled = int(math.ceil(num_repeat * depth_multiplier))
# Proportionally distribute repeat count scaling to each block definition in the stage.
# Allocation is done in reverse as it results in the first block being less likely to be scaled.
# The first block makes less sense to repeat in most of the arch definitions.
repeats_scaled = []
for r in repeats[::-1]:
rs = max(1, round((r / num_repeat * num_repeat_scaled)))
repeats_scaled.append(rs)
num_repeat -= r
num_repeat_scaled -= rs
repeats_scaled = repeats_scaled[::-1]
# Apply the calculated scaling to each block arg in the stage
sa_scaled = []
for ba, rep in zip(stack_args, repeats_scaled):
sa_scaled.extend([deepcopy(ba) for _ in range(rep)])
return sa_scaled
def decode_arch_def(arch_def, depth_multiplier=1.0, depth_trunc='ceil', experts_multiplier=1, fix_first_last=False):
arch_args = []
for stack_idx, block_strings in enumerate(arch_def):
assert isinstance(block_strings, list)
stack_args = []
repeats = []
for block_str in block_strings:
assert isinstance(block_str, str)
ba, rep = _decode_block_str(block_str)
if ba.get('num_experts', 0) > 0 and experts_multiplier > 1:
ba['num_experts'] *= experts_multiplier
stack_args.append(ba)
repeats.append(rep)
if fix_first_last and (stack_idx == 0 or stack_idx == len(arch_def) - 1):
arch_args.append(_scale_stage_depth(stack_args, repeats, 1.0, depth_trunc))
else:
arch_args.append(_scale_stage_depth(stack_args, repeats, depth_multiplier, depth_trunc))
return arch_args
def initialize_weight_goog(m, n='', fix_group_fanout=True):
# weight init as per Tensorflow Official impl
# https://github.com/tensorflow/tpu/blob/master/models/official/mnasnet/mnasnet_model.py
if isinstance(m, CondConv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
if fix_group_fanout:
fan_out //= m.groups
init_weight_fn = get_condconv_initializer(
lambda w: w.data.normal_(0, math.sqrt(2.0 / fan_out)), m.num_experts, m.weight_shape)
init_weight_fn(m.weight)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
if fix_group_fanout:
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1.0)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
fan_out = m.weight.size(0) # fan-out
fan_in = 0
if 'routing_fn' in n:
fan_in = m.weight.size(1)
init_range = 1.0 / math.sqrt(fan_in + fan_out)
m.weight.data.uniform_(-init_range, init_range)
m.bias.data.zero_()
def initialize_weight_default(m, n=''):
if isinstance(m, CondConv2d):
init_fn = get_condconv_initializer(partial(
nn.init.kaiming_normal_, mode='fan_out', nonlinearity='relu'), m.num_experts, m.weight_shape)
init_fn(m.weight)
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1.0)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
nn.init.kaiming_uniform_(m.weight, mode='fan_in', nonlinearity='linear')

View File

@@ -0,0 +1,71 @@
""" Checkpoint loading / state_dict helpers
Copyright 2020 Ross Wightman
"""
import torch
import os
from collections import OrderedDict
try:
from torch.hub import load_state_dict_from_url
except ImportError:
from torch.utils.model_zoo import load_url as load_state_dict_from_url
def load_checkpoint(model, checkpoint_path):
if checkpoint_path and os.path.isfile(checkpoint_path):
print("=> Loading checkpoint '{}'".format(checkpoint_path))
checkpoint = torch.load(checkpoint_path)
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
if k.startswith('module'):
name = k[7:] # remove `module.`
else:
name = k
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
else:
model.load_state_dict(checkpoint)
print("=> Loaded checkpoint '{}'".format(checkpoint_path))
else:
print("=> Error: No checkpoint found at '{}'".format(checkpoint_path))
raise FileNotFoundError()
def load_pretrained(model, url, filter_fn=None, strict=True):
if not url:
print("=> Warning: Pretrained model URL is empty, using random initialization.")
return
state_dict = load_state_dict_from_url(url, progress=False, map_location='cpu')
input_conv = 'conv_stem'
classifier = 'classifier'
in_chans = getattr(model, input_conv).weight.shape[1]
num_classes = getattr(model, classifier).weight.shape[0]
input_conv_weight = input_conv + '.weight'
pretrained_in_chans = state_dict[input_conv_weight].shape[1]
if in_chans != pretrained_in_chans:
if in_chans == 1:
print('=> Converting pretrained input conv {} from {} to 1 channel'.format(
input_conv_weight, pretrained_in_chans))
conv1_weight = state_dict[input_conv_weight]
state_dict[input_conv_weight] = conv1_weight.sum(dim=1, keepdim=True)
else:
print('=> Discarding pretrained input conv {} since input channel count != {}'.format(
input_conv_weight, pretrained_in_chans))
del state_dict[input_conv_weight]
strict = False
classifier_weight = classifier + '.weight'
pretrained_num_classes = state_dict[classifier_weight].shape[0]
if num_classes != pretrained_num_classes:
print('=> Discarding pretrained classifier since num_classes != {}'.format(pretrained_num_classes))
del state_dict[classifier_weight]
del state_dict[classifier + '.bias']
strict = False
if filter_fn is not None:
state_dict = filter_fn(state_dict)
model.load_state_dict(state_dict, strict=strict)

View File

@@ -0,0 +1,364 @@
""" MobileNet-V3
A PyTorch impl of MobileNet-V3, compatible with TF weights from official impl.
Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244
Hacked together by / Copyright 2020 Ross Wightman
"""
import torch.nn as nn
import torch.nn.functional as F
from .activations import get_act_fn, get_act_layer, HardSwish
from .config import layer_config_kwargs
from .conv2d_layers import select_conv2d
from .helpers import load_pretrained
from .efficientnet_builder import *
__all__ = ['mobilenetv3_rw', 'mobilenetv3_large_075', 'mobilenetv3_large_100', 'mobilenetv3_large_minimal_100',
'mobilenetv3_small_075', 'mobilenetv3_small_100', 'mobilenetv3_small_minimal_100',
'tf_mobilenetv3_large_075', 'tf_mobilenetv3_large_100', 'tf_mobilenetv3_large_minimal_100',
'tf_mobilenetv3_small_075', 'tf_mobilenetv3_small_100', 'tf_mobilenetv3_small_minimal_100']
model_urls = {
'mobilenetv3_rw':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth',
'mobilenetv3_large_075': None,
'mobilenetv3_large_100':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth',
'mobilenetv3_large_minimal_100': None,
'mobilenetv3_small_075': None,
'mobilenetv3_small_100': None,
'mobilenetv3_small_minimal_100': None,
'tf_mobilenetv3_large_075':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth',
'tf_mobilenetv3_large_100':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth',
'tf_mobilenetv3_large_minimal_100':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth',
'tf_mobilenetv3_small_075':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth',
'tf_mobilenetv3_small_100':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth',
'tf_mobilenetv3_small_minimal_100':
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth',
}
class MobileNetV3(nn.Module):
""" MobileNet-V3
A this model utilizes the MobileNet-v3 specific 'efficient head', where global pooling is done before the
head convolution without a final batch-norm layer before the classifier.
Paper: https://arxiv.org/abs/1905.02244
"""
def __init__(self, block_args, num_classes=1000, in_chans=3, stem_size=16, num_features=1280, head_bias=True,
channel_multiplier=1.0, pad_type='', act_layer=HardSwish, drop_rate=0., drop_connect_rate=0.,
se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, weight_init='goog'):
super(MobileNetV3, self).__init__()
self.drop_rate = drop_rate
stem_size = round_channels(stem_size, channel_multiplier)
self.conv_stem = select_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type)
self.bn1 = nn.BatchNorm2d(stem_size, **norm_kwargs)
self.act1 = act_layer(inplace=True)
in_chs = stem_size
builder = EfficientNetBuilder(
channel_multiplier, pad_type=pad_type, act_layer=act_layer, se_kwargs=se_kwargs,
norm_layer=norm_layer, norm_kwargs=norm_kwargs, drop_connect_rate=drop_connect_rate)
self.blocks = nn.Sequential(*builder(in_chs, block_args))
in_chs = builder.in_chs
self.global_pool = nn.AdaptiveAvgPool2d(1)
self.conv_head = select_conv2d(in_chs, num_features, 1, padding=pad_type, bias=head_bias)
self.act2 = act_layer(inplace=True)
self.classifier = nn.Linear(num_features, num_classes)
for m in self.modules():
if weight_init == 'goog':
initialize_weight_goog(m)
else:
initialize_weight_default(m)
def as_sequential(self):
layers = [self.conv_stem, self.bn1, self.act1]
layers.extend(self.blocks)
layers.extend([
self.global_pool, self.conv_head, self.act2,
nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier])
return nn.Sequential(*layers)
def features(self, x):
x = self.conv_stem(x)
x = self.bn1(x)
x = self.act1(x)
x = self.blocks(x)
x = self.global_pool(x)
x = self.conv_head(x)
x = self.act2(x)
return x
def forward(self, x):
x = self.features(x)
x = x.flatten(1)
if self.drop_rate > 0.:
x = F.dropout(x, p=self.drop_rate, training=self.training)
return self.classifier(x)
def _create_model(model_kwargs, variant, pretrained=False):
as_sequential = model_kwargs.pop('as_sequential', False)
model = MobileNetV3(**model_kwargs)
if pretrained and model_urls[variant]:
load_pretrained(model, model_urls[variant])
if as_sequential:
model = model.as_sequential()
return model
def _gen_mobilenet_v3_rw(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
"""Creates a MobileNet-V3 model (RW variant).
Paper: https://arxiv.org/abs/1905.02244
This was my first attempt at reproducing the MobileNet-V3 from paper alone. It came close to the
eventual Tensorflow reference impl but has a few differences:
1. This model has no bias on the head convolution
2. This model forces no residual (noskip) on the first DWS block, this is different than MnasNet
3. This model always uses ReLU for the SE activation layer, other models in the family inherit their act layer
from their parent block
4. This model does not enforce divisible by 8 limitation on the SE reduction channel count
Overall the changes are fairly minor and result in a very small parameter count difference and no
top-1/5
Args:
channel_multiplier: multiplier to number of channels per layer.
"""
arch_def = [
# stage 0, 112x112 in
['ds_r1_k3_s1_e1_c16_nre_noskip'], # relu
# stage 1, 112x112 in
['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu
# stage 2, 56x56 in
['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu
# stage 3, 28x28 in
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish
# stage 4, 14x14in
['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish
# stage 5, 14x14in
['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish
# stage 6, 7x7 in
['cn_r1_k1_s1_c960'], # hard-swish
]
with layer_config_kwargs(kwargs):
model_kwargs = dict(
block_args=decode_arch_def(arch_def),
head_bias=False, # one of my mistakes
channel_multiplier=channel_multiplier,
act_layer=resolve_act_layer(kwargs, 'hard_swish'),
se_kwargs=dict(gate_fn=get_act_fn('hard_sigmoid'), reduce_mid=True),
norm_kwargs=resolve_bn_args(kwargs),
**kwargs,
)
model = _create_model(model_kwargs, variant, pretrained)
return model
def _gen_mobilenet_v3(variant, channel_multiplier=1.0, pretrained=False, **kwargs):
"""Creates a MobileNet-V3 large/small/minimal models.
Ref impl: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet_v3.py
Paper: https://arxiv.org/abs/1905.02244
Args:
channel_multiplier: multiplier to number of channels per layer.
"""
if 'small' in variant:
num_features = 1024
if 'minimal' in variant:
act_layer = 'relu'
arch_def = [
# stage 0, 112x112 in
['ds_r1_k3_s2_e1_c16'],
# stage 1, 56x56 in
['ir_r1_k3_s2_e4.5_c24', 'ir_r1_k3_s1_e3.67_c24'],
# stage 2, 28x28 in
['ir_r1_k3_s2_e4_c40', 'ir_r2_k3_s1_e6_c40'],
# stage 3, 14x14 in
['ir_r2_k3_s1_e3_c48'],
# stage 4, 14x14in
['ir_r3_k3_s2_e6_c96'],
# stage 6, 7x7 in
['cn_r1_k1_s1_c576'],
]
else:
act_layer = 'hard_swish'
arch_def = [
# stage 0, 112x112 in
['ds_r1_k3_s2_e1_c16_se0.25_nre'], # relu
# stage 1, 56x56 in
['ir_r1_k3_s2_e4.5_c24_nre', 'ir_r1_k3_s1_e3.67_c24_nre'], # relu
# stage 2, 28x28 in
['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r2_k5_s1_e6_c40_se0.25'], # hard-swish
# stage 3, 14x14 in
['ir_r2_k5_s1_e3_c48_se0.25'], # hard-swish
# stage 4, 14x14in
['ir_r3_k5_s2_e6_c96_se0.25'], # hard-swish
# stage 6, 7x7 in
['cn_r1_k1_s1_c576'], # hard-swish
]
else:
num_features = 1280
if 'minimal' in variant:
act_layer = 'relu'
arch_def = [
# stage 0, 112x112 in
['ds_r1_k3_s1_e1_c16'],
# stage 1, 112x112 in
['ir_r1_k3_s2_e4_c24', 'ir_r1_k3_s1_e3_c24'],
# stage 2, 56x56 in
['ir_r3_k3_s2_e3_c40'],
# stage 3, 28x28 in
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'],
# stage 4, 14x14in
['ir_r2_k3_s1_e6_c112'],
# stage 5, 14x14in
['ir_r3_k3_s2_e6_c160'],
# stage 6, 7x7 in
['cn_r1_k1_s1_c960'],
]
else:
act_layer = 'hard_swish'
arch_def = [
# stage 0, 112x112 in
['ds_r1_k3_s1_e1_c16_nre'], # relu
# stage 1, 112x112 in
['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu
# stage 2, 56x56 in
['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu
# stage 3, 28x28 in
['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish
# stage 4, 14x14in
['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish
# stage 5, 14x14in
['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish
# stage 6, 7x7 in
['cn_r1_k1_s1_c960'], # hard-swish
]
with layer_config_kwargs(kwargs):
model_kwargs = dict(
block_args=decode_arch_def(arch_def),
num_features=num_features,
stem_size=16,
channel_multiplier=channel_multiplier,
act_layer=resolve_act_layer(kwargs, act_layer),
se_kwargs=dict(
act_layer=get_act_layer('relu'), gate_fn=get_act_fn('hard_sigmoid'), reduce_mid=True, divisor=8),
norm_kwargs=resolve_bn_args(kwargs),
**kwargs,
)
model = _create_model(model_kwargs, variant, pretrained)
return model
def mobilenetv3_rw(pretrained=False, **kwargs):
""" MobileNet-V3 RW
Attn: See note in gen function for this variant.
"""
# NOTE for train set drop_rate=0.2
if pretrained:
# pretrained model trained with non-default BN epsilon
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
model = _gen_mobilenet_v3_rw('mobilenetv3_rw', 1.0, pretrained=pretrained, **kwargs)
return model
def mobilenetv3_large_075(pretrained=False, **kwargs):
""" MobileNet V3 Large 0.75"""
# NOTE for train set drop_rate=0.2
model = _gen_mobilenet_v3('mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs)
return model
def mobilenetv3_large_100(pretrained=False, **kwargs):
""" MobileNet V3 Large 1.0 """
# NOTE for train set drop_rate=0.2
model = _gen_mobilenet_v3('mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs)
return model
def mobilenetv3_large_minimal_100(pretrained=False, **kwargs):
""" MobileNet V3 Large (Minimalistic) 1.0 """
# NOTE for train set drop_rate=0.2
model = _gen_mobilenet_v3('mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs)
return model
def mobilenetv3_small_075(pretrained=False, **kwargs):
""" MobileNet V3 Small 0.75 """
model = _gen_mobilenet_v3('mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs)
return model
def mobilenetv3_small_100(pretrained=False, **kwargs):
""" MobileNet V3 Small 1.0 """
model = _gen_mobilenet_v3('mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs)
return model
def mobilenetv3_small_minimal_100(pretrained=False, **kwargs):
""" MobileNet V3 Small (Minimalistic) 1.0 """
model = _gen_mobilenet_v3('mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs)
return model
def tf_mobilenetv3_large_075(pretrained=False, **kwargs):
""" MobileNet V3 Large 0.75. Tensorflow compat variant. """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_mobilenet_v3('tf_mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs)
return model
def tf_mobilenetv3_large_100(pretrained=False, **kwargs):
""" MobileNet V3 Large 1.0. Tensorflow compat variant. """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_mobilenet_v3('tf_mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs)
return model
def tf_mobilenetv3_large_minimal_100(pretrained=False, **kwargs):
""" MobileNet V3 Large Minimalistic 1.0. Tensorflow compat variant. """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_mobilenet_v3('tf_mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs)
return model
def tf_mobilenetv3_small_075(pretrained=False, **kwargs):
""" MobileNet V3 Small 0.75. Tensorflow compat variant. """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_mobilenet_v3('tf_mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs)
return model
def tf_mobilenetv3_small_100(pretrained=False, **kwargs):
""" MobileNet V3 Small 1.0. Tensorflow compat variant."""
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_mobilenet_v3('tf_mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs)
return model
def tf_mobilenetv3_small_minimal_100(pretrained=False, **kwargs):
""" MobileNet V3 Small Minimalistic 1.0. Tensorflow compat variant. """
kwargs['bn_eps'] = BN_EPS_TF_DEFAULT
kwargs['pad_type'] = 'same'
model = _gen_mobilenet_v3('tf_mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs)
return model

View File

@@ -0,0 +1,27 @@
from .config import set_layer_config
from .helpers import load_checkpoint
from .gen_efficientnet import *
from .mobilenetv3 import *
def create_model(
model_name='mnasnet_100',
pretrained=None,
num_classes=1000,
in_chans=3,
checkpoint_path='',
**kwargs):
model_kwargs = dict(num_classes=num_classes, in_chans=in_chans, pretrained=pretrained, **kwargs)
if model_name in globals():
create_fn = globals()[model_name]
model = create_fn(**model_kwargs)
else:
raise RuntimeError('Unknown model (%s)' % model_name)
if checkpoint_path and not pretrained:
load_checkpoint(model, checkpoint_path)
return model

View File

@@ -0,0 +1 @@
__version__ = '1.0.2'

View File

@@ -0,0 +1,84 @@
dependencies = ['torch', 'math']
from geffnet import efficientnet_b0
from geffnet import efficientnet_b1
from geffnet import efficientnet_b2
from geffnet import efficientnet_b3
from geffnet import efficientnet_es
from geffnet import efficientnet_lite0
from geffnet import mixnet_s
from geffnet import mixnet_m
from geffnet import mixnet_l
from geffnet import mixnet_xl
from geffnet import mobilenetv2_100
from geffnet import mobilenetv2_110d
from geffnet import mobilenetv2_120d
from geffnet import mobilenetv2_140
from geffnet import mobilenetv3_large_100
from geffnet import mobilenetv3_rw
from geffnet import mnasnet_a1
from geffnet import mnasnet_b1
from geffnet import fbnetc_100
from geffnet import spnasnet_100
from geffnet import tf_efficientnet_b0
from geffnet import tf_efficientnet_b1
from geffnet import tf_efficientnet_b2
from geffnet import tf_efficientnet_b3
from geffnet import tf_efficientnet_b4
from geffnet import tf_efficientnet_b5
from geffnet import tf_efficientnet_b6
from geffnet import tf_efficientnet_b7
from geffnet import tf_efficientnet_b8
from geffnet import tf_efficientnet_b0_ap
from geffnet import tf_efficientnet_b1_ap
from geffnet import tf_efficientnet_b2_ap
from geffnet import tf_efficientnet_b3_ap
from geffnet import tf_efficientnet_b4_ap
from geffnet import tf_efficientnet_b5_ap
from geffnet import tf_efficientnet_b6_ap
from geffnet import tf_efficientnet_b7_ap
from geffnet import tf_efficientnet_b8_ap
from geffnet import tf_efficientnet_b0_ns
from geffnet import tf_efficientnet_b1_ns
from geffnet import tf_efficientnet_b2_ns
from geffnet import tf_efficientnet_b3_ns
from geffnet import tf_efficientnet_b4_ns
from geffnet import tf_efficientnet_b5_ns
from geffnet import tf_efficientnet_b6_ns
from geffnet import tf_efficientnet_b7_ns
from geffnet import tf_efficientnet_l2_ns_475
from geffnet import tf_efficientnet_l2_ns
from geffnet import tf_efficientnet_es
from geffnet import tf_efficientnet_em
from geffnet import tf_efficientnet_el
from geffnet import tf_efficientnet_cc_b0_4e
from geffnet import tf_efficientnet_cc_b0_8e
from geffnet import tf_efficientnet_cc_b1_8e
from geffnet import tf_efficientnet_lite0
from geffnet import tf_efficientnet_lite1
from geffnet import tf_efficientnet_lite2
from geffnet import tf_efficientnet_lite3
from geffnet import tf_efficientnet_lite4
from geffnet import tf_mixnet_s
from geffnet import tf_mixnet_m
from geffnet import tf_mixnet_l
from geffnet import tf_mobilenetv3_large_075
from geffnet import tf_mobilenetv3_large_100
from geffnet import tf_mobilenetv3_large_minimal_100
from geffnet import tf_mobilenetv3_small_075
from geffnet import tf_mobilenetv3_small_100
from geffnet import tf_mobilenetv3_small_minimal_100

View File

@@ -0,0 +1,120 @@
""" ONNX export script
Export PyTorch models as ONNX graphs.
This export script originally started as an adaptation of code snippets found at
https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html
The default parameters work with PyTorch 1.6 and ONNX 1.7 and produce an optimal ONNX graph
for hosting in the ONNX runtime (see onnx_validate.py). To export an ONNX model compatible
with caffe2 (see caffe2_benchmark.py and caffe2_validate.py), the --keep-init and --aten-fallback
flags are currently required.
Older versions of PyTorch/ONNX (tested PyTorch 1.4, ONNX 1.5) do not need extra flags for
caffe2 compatibility, but they produce a model that isn't as fast running on ONNX runtime.
Most new release of PyTorch and ONNX cause some sort of breakage in the export / usage of ONNX models.
Please do your research and search ONNX and PyTorch issue tracker before asking me. Thanks.
Copyright 2020 Ross Wightman
"""
import argparse
import torch
import numpy as np
import onnx
import geffnet
parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation')
parser.add_argument('output', metavar='ONNX_FILE',
help='output model filename')
parser.add_argument('--model', '-m', metavar='MODEL', default='mobilenetv3_large_100',
help='model architecture (default: mobilenetv3_large_100)')
parser.add_argument('--opset', type=int, default=10,
help='ONNX opset to use (default: 10)')
parser.add_argument('--keep-init', action='store_true', default=False,
help='Keep initializers as input. Needed for Caffe2 compatible export in newer PyTorch/ONNX.')
parser.add_argument('--aten-fallback', action='store_true', default=False,
help='Fallback to ATEN ops. Helps fix AdaptiveAvgPool issue with Caffe2 in newer PyTorch/ONNX.')
parser.add_argument('--dynamic-size', action='store_true', default=False,
help='Export model width dynamic width/height. Not recommended for "tf" models with SAME padding.')
parser.add_argument('-b', '--batch-size', default=1, type=int,
metavar='N', help='mini-batch size (default: 1)')
parser.add_argument('--img-size', default=None, type=int,
metavar='N', help='Input image dimension, uses model default if empty')
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
help='Override std deviation of of dataset')
parser.add_argument('--num-classes', type=int, default=1000,
help='Number classes in dataset')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
help='path to checkpoint (default: none)')
def main():
args = parser.parse_args()
args.pretrained = True
if args.checkpoint:
args.pretrained = False
print("==> Creating PyTorch {} model".format(args.model))
# NOTE exportable=True flag disables autofn/jit scripted activations and uses Conv2dSameExport layers
# for models using SAME padding
model = geffnet.create_model(
args.model,
num_classes=args.num_classes,
in_chans=3,
pretrained=args.pretrained,
checkpoint_path=args.checkpoint,
exportable=True)
model.eval()
example_input = torch.randn((args.batch_size, 3, args.img_size or 224, args.img_size or 224), requires_grad=True)
# Run model once before export trace, sets padding for models with Conv2dSameExport. This means
# that the padding for models with Conv2dSameExport (most models with tf_ prefix) is fixed for
# the input img_size specified in this script.
# Opset >= 11 should allow for dynamic padding, however I cannot get it to work due to
# issues in the tracing of the dynamic padding or errors attempting to export the model after jit
# scripting it (an approach that should work). Perhaps in a future PyTorch or ONNX versions...
model(example_input)
print("==> Exporting model to ONNX format at '{}'".format(args.output))
input_names = ["input0"]
output_names = ["output0"]
dynamic_axes = {'input0': {0: 'batch'}, 'output0': {0: 'batch'}}
if args.dynamic_size:
dynamic_axes['input0'][2] = 'height'
dynamic_axes['input0'][3] = 'width'
if args.aten_fallback:
export_type = torch.onnx.OperatorExportTypes.ONNX_ATEN_FALLBACK
else:
export_type = torch.onnx.OperatorExportTypes.ONNX
torch_out = torch.onnx._export(
model, example_input, args.output, export_params=True, verbose=True, input_names=input_names,
output_names=output_names, keep_initializers_as_inputs=args.keep_init, dynamic_axes=dynamic_axes,
opset_version=args.opset, operator_export_type=export_type)
print("==> Loading and checking exported model from '{}'".format(args.output))
onnx_model = onnx.load(args.output)
onnx.checker.check_model(onnx_model) # assuming throw on error
print("==> Passed")
if args.keep_init and args.aten_fallback:
import caffe2.python.onnx.backend as onnx_caffe2
# Caffe2 loading only works properly in newer PyTorch/ONNX combos when
# keep_initializers_as_inputs and aten_fallback are set to True.
print("==> Loading model into Caffe2 backend and comparing forward pass.".format(args.output))
caffe2_backend = onnx_caffe2.prepare(onnx_model)
B = {onnx_model.graph.input[0].name: x.data.numpy()}
c2_out = caffe2_backend.run(B)[0]
np.testing.assert_almost_equal(torch_out.data.numpy(), c2_out, decimal=5)
print("==> Passed")
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,84 @@
""" ONNX optimization script
Run ONNX models through the optimizer to prune unneeded nodes, fuse batchnorm layers into conv, etc.
NOTE: This isn't working consistently in recent PyTorch/ONNX combos (ie PyTorch 1.6 and ONNX 1.7),
it seems time to switch to using the onnxruntime online optimizer (can also be saved for offline).
Copyright 2020 Ross Wightman
"""
import argparse
import warnings
import onnx
from onnx import optimizer
parser = argparse.ArgumentParser(description="Optimize ONNX model")
parser.add_argument("model", help="The ONNX model")
parser.add_argument("--output", required=True, help="The optimized model output filename")
def traverse_graph(graph, prefix=''):
content = []
indent = prefix + ' '
graphs = []
num_nodes = 0
for node in graph.node:
pn, gs = onnx.helper.printable_node(node, indent, subgraphs=True)
assert isinstance(gs, list)
content.append(pn)
graphs.extend(gs)
num_nodes += 1
for g in graphs:
g_count, g_str = traverse_graph(g)
content.append('\n' + g_str)
num_nodes += g_count
return num_nodes, '\n'.join(content)
def main():
args = parser.parse_args()
onnx_model = onnx.load(args.model)
num_original_nodes, original_graph_str = traverse_graph(onnx_model.graph)
# Optimizer passes to perform
passes = [
#'eliminate_deadend',
'eliminate_identity',
'eliminate_nop_dropout',
'eliminate_nop_pad',
'eliminate_nop_transpose',
'eliminate_unused_initializer',
'extract_constant_to_initializer',
'fuse_add_bias_into_conv',
'fuse_bn_into_conv',
'fuse_consecutive_concats',
'fuse_consecutive_reduce_unsqueeze',
'fuse_consecutive_squeezes',
'fuse_consecutive_transposes',
#'fuse_matmul_add_bias_into_gemm',
'fuse_pad_into_conv',
#'fuse_transpose_into_gemm',
#'lift_lexical_references',
]
# Apply the optimization on the original serialized model
# WARNING I've had issues with optimizer in recent versions of PyTorch / ONNX causing
# 'duplicate definition of name' errors, see: https://github.com/onnx/onnx/issues/2401
# It may be better to rely on onnxruntime optimizations, see onnx_validate.py script.
warnings.warn("I've had issues with optimizer in recent versions of PyTorch / ONNX."
"Try onnxruntime optimization if this doesn't work.")
optimized_model = optimizer.optimize(onnx_model, passes)
num_optimized_nodes, optimzied_graph_str = traverse_graph(optimized_model.graph)
print('==> The model after optimization:\n{}\n'.format(optimzied_graph_str))
print('==> The optimized model has {} nodes, the original had {}.'.format(num_optimized_nodes, num_original_nodes))
# Save the ONNX model
onnx.save(optimized_model, args.output)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,27 @@
import argparse
import onnx
from caffe2.python.onnx.backend import Caffe2Backend
parser = argparse.ArgumentParser(description="Convert ONNX to Caffe2")
parser.add_argument("model", help="The ONNX model")
parser.add_argument("--c2-prefix", required=True,
help="The output file prefix for the caffe2 model init and predict file. ")
def main():
args = parser.parse_args()
onnx_model = onnx.load(args.model)
caffe2_init, caffe2_predict = Caffe2Backend.onnx_graph_to_caffe2_net(onnx_model)
caffe2_init_str = caffe2_init.SerializeToString()
with open(args.c2_prefix + '.init.pb', "wb") as f:
f.write(caffe2_init_str)
caffe2_predict_str = caffe2_predict.SerializeToString()
with open(args.c2_prefix + '.predict.pb', "wb") as f:
f.write(caffe2_predict_str)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,112 @@
""" ONNX-runtime validation script
This script was created to verify accuracy and performance of exported ONNX
models running with the onnxruntime. It utilizes the PyTorch dataloader/processing
pipeline for a fair comparison against the originals.
Copyright 2020 Ross Wightman
"""
import argparse
import numpy as np
import onnxruntime
from data import create_loader, resolve_data_config, Dataset
from utils import AverageMeter
import time
parser = argparse.ArgumentParser(description='Caffe2 ImageNet Validation')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--onnx-input', default='', type=str, metavar='PATH',
help='path to onnx model/weights file')
parser.add_argument('--onnx-output-opt', default='', type=str, metavar='PATH',
help='path to output optimized onnx graph')
parser.add_argument('--profile', action='store_true', default=False,
help='Enable profiler output.')
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
help='number of data loading workers (default: 2)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--img-size', default=None, type=int,
metavar='N', help='Input image dimension, uses model default if empty')
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
help='Override std deviation of of dataset')
parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT',
help='Override default crop pct of 0.875')
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
help='Image resize interpolation type (overrides model)')
parser.add_argument('--tf-preprocessing', dest='tf_preprocessing', action='store_true',
help='use tensorflow mnasnet preporcessing')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
def main():
args = parser.parse_args()
args.gpu_id = 0
# Set graph optimization level
sess_options = onnxruntime.SessionOptions()
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
if args.profile:
sess_options.enable_profiling = True
if args.onnx_output_opt:
sess_options.optimized_model_filepath = args.onnx_output_opt
session = onnxruntime.InferenceSession(args.onnx_input, sess_options)
data_config = resolve_data_config(None, args)
loader = create_loader(
Dataset(args.data, load_bytes=args.tf_preprocessing),
input_size=data_config['input_size'],
batch_size=args.batch_size,
use_prefetcher=False,
interpolation=data_config['interpolation'],
mean=data_config['mean'],
std=data_config['std'],
num_workers=args.workers,
crop_pct=data_config['crop_pct'],
tensorflow_preprocessing=args.tf_preprocessing)
input_name = session.get_inputs()[0].name
batch_time = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
for i, (input, target) in enumerate(loader):
# run the net and return prediction
output = session.run([], {input_name: input.data.numpy()})
output = output[0]
# measure accuracy and record loss
prec1, prec5 = accuracy_np(output, target.numpy())
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {rate_avg:.3f}/s, {ms_avg:.3f} ms/sample) \t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(loader), batch_time=batch_time, rate_avg=input.size(0) / batch_time.avg,
ms_avg=100 * batch_time.avg / input.size(0), top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} ({top1a:.3f}) Prec@5 {top5.avg:.3f} ({top5a:.3f})'.format(
top1=top1, top1a=100-top1.avg, top5=top5, top5a=100.-top5.avg))
def accuracy_np(output, target):
max_indices = np.argsort(output, axis=1)[:, ::-1]
top5 = 100 * np.equal(max_indices[:, :5], target[:, np.newaxis]).sum(axis=1).mean()
top1 = 100 * np.equal(max_indices[:, 0], target).mean()
return top1, top5
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,2 @@
torch>=1.2.0
torchvision>=0.4.0

View File

@@ -0,0 +1,47 @@
""" Setup
"""
from setuptools import setup, find_packages
from codecs import open
from os import path
here = path.abspath(path.dirname(__file__))
# Get the long description from the README file
with open(path.join(here, 'README.md'), encoding='utf-8') as f:
long_description = f.read()
exec(open('geffnet/version.py').read())
setup(
name='geffnet',
version=__version__,
description='(Generic) EfficientNets for PyTorch',
long_description=long_description,
long_description_content_type='text/markdown',
url='https://github.com/rwightman/gen-efficientnet-pytorch',
author='Ross Wightman',
author_email='hello@rwightman.com',
classifiers=[
# How mature is this project? Common values are
# 3 - Alpha
# 4 - Beta
# 5 - Production/Stable
'Development Status :: 3 - Alpha',
'Intended Audience :: Education',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Topic :: Scientific/Engineering',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Software Development',
'Topic :: Software Development :: Libraries',
'Topic :: Software Development :: Libraries :: Python Modules',
],
# Note that this is a string of words separated by whitespace, not a list.
keywords='pytorch pretrained models efficientnet mixnet mobilenetv3 mnasnet',
packages=find_packages(exclude=['data']),
install_requires=['torch >= 1.4', 'torchvision'],
python_requires='>=3.6',
)

View File

@@ -0,0 +1,52 @@
import os
class AverageMeter:
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def get_outdir(path, *paths, inc=False):
outdir = os.path.join(path, *paths)
if not os.path.exists(outdir):
os.makedirs(outdir)
elif inc:
count = 1
outdir_inc = outdir + '-' + str(count)
while os.path.exists(outdir_inc):
count = count + 1
outdir_inc = outdir + '-' + str(count)
assert count < 100
outdir = outdir_inc
os.makedirs(outdir)
return outdir

View File

@@ -0,0 +1,166 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import time
import torch
import torch.nn as nn
import torch.nn.parallel
from contextlib import suppress
import geffnet
from data import Dataset, create_loader, resolve_data_config
from utils import accuracy, AverageMeter
has_native_amp = False
try:
if getattr(torch.cuda.amp, 'autocast') is not None:
has_native_amp = True
except AttributeError:
pass
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--model', '-m', metavar='MODEL', default='spnasnet1_00',
help='model architecture (default: dpn92)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 2)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--img-size', default=None, type=int,
metavar='N', help='Input image dimension, uses model default if empty')
parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD',
help='Override std deviation of of dataset')
parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT',
help='Override default crop pct of 0.875')
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
help='Image resize interpolation type (overrides model)')
parser.add_argument('--num-classes', type=int, default=1000,
help='Number classes in dataset')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--torchscript', dest='torchscript', action='store_true',
help='convert model torchscript for inference')
parser.add_argument('--num-gpu', type=int, default=1,
help='Number of GPUS to use')
parser.add_argument('--tf-preprocessing', dest='tf_preprocessing', action='store_true',
help='use tensorflow mnasnet preporcessing')
parser.add_argument('--no-cuda', dest='no_cuda', action='store_true',
help='')
parser.add_argument('--channels-last', action='store_true', default=False,
help='Use channels_last memory layout')
parser.add_argument('--amp', action='store_true', default=False,
help='Use native Torch AMP mixed precision.')
def main():
args = parser.parse_args()
if not args.checkpoint and not args.pretrained:
args.pretrained = True
amp_autocast = suppress # do nothing
if args.amp:
if not has_native_amp:
print("Native Torch AMP is not available (requires torch >= 1.6), using FP32.")
else:
amp_autocast = torch.cuda.amp.autocast
# create model
model = geffnet.create_model(
args.model,
num_classes=args.num_classes,
in_chans=3,
pretrained=args.pretrained,
checkpoint_path=args.checkpoint,
scriptable=args.torchscript)
if args.channels_last:
model = model.to(memory_format=torch.channels_last)
if args.torchscript:
torch.jit.optimized_execution(True)
model = torch.jit.script(model)
print('Model %s created, param count: %d' %
(args.model, sum([m.numel() for m in model.parameters()])))
data_config = resolve_data_config(model, args)
criterion = nn.CrossEntropyLoss()
if not args.no_cuda:
if args.num_gpu > 1:
model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))).cuda()
else:
model = model.cuda()
criterion = criterion.cuda()
loader = create_loader(
Dataset(args.data, load_bytes=args.tf_preprocessing),
input_size=data_config['input_size'],
batch_size=args.batch_size,
use_prefetcher=not args.no_cuda,
interpolation=data_config['interpolation'],
mean=data_config['mean'],
std=data_config['std'],
num_workers=args.workers,
crop_pct=data_config['crop_pct'],
tensorflow_preprocessing=args.tf_preprocessing)
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
end = time.time()
with torch.no_grad():
for i, (input, target) in enumerate(loader):
if not args.no_cuda:
target = target.cuda()
input = input.cuda()
if args.channels_last:
input = input.contiguous(memory_format=torch.channels_last)
# compute output
with amp_autocast():
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {rate_avg:.3f}/s) \t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(loader), batch_time=batch_time,
rate_avg=input.size(0) / batch_time.avg,
loss=losses, top1=top1, top5=top5))
print(' * Prec@1 {top1.avg:.3f} ({top1a:.3f}) Prec@5 {top5.avg:.3f} ({top5a:.3f})'.format(
top1=top1, top1a=100-top1.avg, top5=top5, top5a=100.-top5.avg))
if __name__ == '__main__':
main()

View File

@@ -0,0 +1,34 @@
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
class Encoder(nn.Module):
def __init__(self):
super(Encoder, self).__init__()
basemodel_name = 'tf_efficientnet_b5_ap'
print('Loading base model ()...'.format(basemodel_name), end='')
repo_path = os.path.join(os.path.dirname(__file__), 'efficientnet_repo')
basemodel = torch.hub.load(repo_path, basemodel_name, pretrained=False, source='local')
print('Done.')
# Remove last layer
print('Removing last two layers (global_pool & classifier).')
basemodel.global_pool = nn.Identity()
basemodel.classifier = nn.Identity()
self.original_model = basemodel
def forward(self, x):
features = [x]
for k, v in self.original_model._modules.items():
if (k == 'blocks'):
for ki, vi in v._modules.items():
features.append(vi(features[-1]))
else:
features.append(v(features[-1]))
return features

View File

@@ -0,0 +1,140 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
########################################################################################################################
# Upsample + BatchNorm
class UpSampleBN(nn.Module):
def __init__(self, skip_input, output_features):
super(UpSampleBN, self).__init__()
self._net = nn.Sequential(nn.Conv2d(skip_input, output_features, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(output_features),
nn.LeakyReLU(),
nn.Conv2d(output_features, output_features, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(output_features),
nn.LeakyReLU())
def forward(self, x, concat_with):
up_x = F.interpolate(x, size=[concat_with.size(2), concat_with.size(3)], mode='bilinear', align_corners=True)
f = torch.cat([up_x, concat_with], dim=1)
return self._net(f)
# Upsample + GroupNorm + Weight Standardization
class UpSampleGN(nn.Module):
def __init__(self, skip_input, output_features):
super(UpSampleGN, self).__init__()
self._net = nn.Sequential(Conv2d(skip_input, output_features, kernel_size=3, stride=1, padding=1),
nn.GroupNorm(8, output_features),
nn.LeakyReLU(),
Conv2d(output_features, output_features, kernel_size=3, stride=1, padding=1),
nn.GroupNorm(8, output_features),
nn.LeakyReLU())
def forward(self, x, concat_with):
up_x = F.interpolate(x, size=[concat_with.size(2), concat_with.size(3)], mode='bilinear', align_corners=True)
f = torch.cat([up_x, concat_with], dim=1)
return self._net(f)
# Conv2d with weight standardization
class Conv2d(nn.Conv2d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(Conv2d, self).__init__(in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, bias)
def forward(self, x):
weight = self.weight
weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2,
keepdim=True).mean(dim=3, keepdim=True)
weight = weight - weight_mean
std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5
weight = weight / std.expand_as(weight)
return F.conv2d(x, weight, self.bias, self.stride,
self.padding, self.dilation, self.groups)
# normalize
def norm_normalize(norm_out):
min_kappa = 0.01
norm_x, norm_y, norm_z, kappa = torch.split(norm_out, 1, dim=1)
norm = torch.sqrt(norm_x ** 2.0 + norm_y ** 2.0 + norm_z ** 2.0) + 1e-10
kappa = F.elu(kappa) + 1.0 + min_kappa
final_out = torch.cat([norm_x / norm, norm_y / norm, norm_z / norm, kappa], dim=1)
return final_out
# uncertainty-guided sampling (only used during training)
@torch.no_grad()
def sample_points(init_normal, gt_norm_mask, sampling_ratio, beta):
device = init_normal.device
B, _, H, W = init_normal.shape
N = int(sampling_ratio * H * W)
beta = beta
# uncertainty map
uncertainty_map = -1 * init_normal[:, 3, :, :] # B, H, W
# gt_invalid_mask (B, H, W)
if gt_norm_mask is not None:
gt_invalid_mask = F.interpolate(gt_norm_mask.float(), size=[H, W], mode='nearest')
gt_invalid_mask = gt_invalid_mask[:, 0, :, :] < 0.5
uncertainty_map[gt_invalid_mask] = -1e4
# (B, H*W)
_, idx = uncertainty_map.view(B, -1).sort(1, descending=True)
# importance sampling
if int(beta * N) > 0:
importance = idx[:, :int(beta * N)] # B, beta*N
# remaining
remaining = idx[:, int(beta * N):] # B, H*W - beta*N
# coverage
num_coverage = N - int(beta * N)
if num_coverage <= 0:
samples = importance
else:
coverage_list = []
for i in range(B):
idx_c = torch.randperm(remaining.size()[1]) # shuffles "H*W - beta*N"
coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1)) # 1, N-beta*N
coverage = torch.cat(coverage_list, dim=0) # B, N-beta*N
samples = torch.cat((importance, coverage), dim=1) # B, N
else:
# remaining
remaining = idx[:, :] # B, H*W
# coverage
num_coverage = N
coverage_list = []
for i in range(B):
idx_c = torch.randperm(remaining.size()[1]) # shuffles "H*W - beta*N"
coverage_list.append(remaining[i, :][idx_c[:num_coverage]].view(1, -1)) # 1, N-beta*N
coverage = torch.cat(coverage_list, dim=0) # B, N-beta*N
samples = coverage
# point coordinates
rows_int = samples // W # 0 for first row, H-1 for last row
rows_float = rows_int / float(H-1) # 0 to 1.0
rows_float = (rows_float * 2.0) - 1.0 # -1.0 to 1.0
cols_int = samples % W # 0 for first column, W-1 for last column
cols_float = cols_int / float(W-1) # 0 to 1.0
cols_float = (cols_float * 2.0) - 1.0 # -1.0 to 1.0
point_coords = torch.zeros(B, 1, N, 2)
point_coords[:, 0, :, 0] = cols_float # x coord
point_coords[:, 0, :, 1] = rows_float # y coord
point_coords = point_coords.to(device)
return point_coords, rows_int, cols_int