mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-02-04 02:24:54 -05:00
improve UI of textual inversion frontend
- File selection box now accepts directories that don't exist yet. - Fixed crash when resume is selected and no files available to resume from.
This commit is contained in:
@@ -518,10 +518,10 @@ def do_textual_inversion_training(
|
||||
pretrained_model_name_or_path = model_conf.get('repo_id',None) or Path(model_conf.get('path'))
|
||||
assert pretrained_model_name_or_path, f"models.yaml error: neither 'repo_id' nor 'path' is defined for {model}"
|
||||
pipeline_args = dict(cache_dir=global_cache_dir('diffusers'))
|
||||
|
||||
|
||||
# Load tokenizer
|
||||
if tokenizer_name:
|
||||
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_name,cache_dir=global_cache_dir('transformers'))
|
||||
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_name,**pipeline_args)
|
||||
else:
|
||||
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer", **pipeline_args)
|
||||
|
||||
@@ -670,24 +670,28 @@ def do_textual_inversion_training(
|
||||
logger.info(f" Total optimization steps = {max_train_steps}")
|
||||
global_step = 0
|
||||
first_epoch = 0
|
||||
resume_step = None
|
||||
|
||||
# Potentially load in the weights and states from a previous save
|
||||
if resume_from_checkpoint:
|
||||
if resume_from_checkpoint != "latest":
|
||||
path = os.path.basename(resume_from_checkpoint)
|
||||
else:
|
||||
# Get the most recent checkpoint
|
||||
dirs = os.listdir(output_dir)
|
||||
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
||||
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
||||
path = dirs[-1]
|
||||
accelerator.print(f"Resuming from checkpoint {path}")
|
||||
accelerator.load_state(os.path.join(output_dir, path))
|
||||
global_step = int(path.split("-")[1])
|
||||
try:
|
||||
if resume_from_checkpoint != "latest":
|
||||
path = os.path.basename(resume_from_checkpoint)
|
||||
else:
|
||||
# Get the most recent checkpoint
|
||||
dirs = os.listdir(output_dir)
|
||||
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
||||
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
||||
path = dirs[-1]
|
||||
accelerator.print(f"Resuming from checkpoint {path}")
|
||||
accelerator.load_state(os.path.join(output_dir, path))
|
||||
global_step = int(path.split("-")[1])
|
||||
|
||||
resume_global_step = global_step * gradient_accumulation_steps
|
||||
first_epoch = resume_global_step // num_update_steps_per_epoch
|
||||
resume_step = resume_global_step % num_update_steps_per_epoch
|
||||
resume_global_step = global_step * gradient_accumulation_steps
|
||||
first_epoch = resume_global_step // num_update_steps_per_epoch
|
||||
resume_step = resume_global_step % num_update_steps_per_epoch
|
||||
except:
|
||||
logger.warn("No checkpoint available to resume from")
|
||||
|
||||
# Only show the progress bar once on each machine.
|
||||
progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process)
|
||||
@@ -700,7 +704,7 @@ def do_textual_inversion_training(
|
||||
text_encoder.train()
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
# Skip steps until we reach the resumed step
|
||||
if resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
||||
if resume_step and resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
||||
if step % gradient_accumulation_steps == 0:
|
||||
progress_bar.update(1)
|
||||
continue
|
||||
|
||||
Reference in New Issue
Block a user