diff --git a/invokeai/backend/flux/controlnet/diffusers_controlnet_flux.py b/invokeai/backend/flux/controlnet/diffusers_controlnet_flux.py index 6973e4a771..734eaaba8b 100644 --- a/invokeai/backend/flux/controlnet/diffusers_controlnet_flux.py +++ b/invokeai/backend/flux/controlnet/diffusers_controlnet_flux.py @@ -89,38 +89,6 @@ class DiffusersControlNetFlux(ModelMixin, ConfigMixin): self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim)) - @classmethod - def from_transformer( - cls, - transformer, - num_layers: int = 4, - num_single_layers: int = 10, - attention_head_dim: int = 128, - num_attention_heads: int = 24, - load_weights_from_transformer=True, - ): - config = transformer.config - config["num_layers"] = num_layers - config["num_single_layers"] = num_single_layers - config["attention_head_dim"] = attention_head_dim - config["num_attention_heads"] = num_attention_heads - - controlnet = cls(**config) - - if load_weights_from_transformer: - controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict()) - controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict()) - controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict()) - controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict()) - controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False) - controlnet.single_transformer_blocks.load_state_dict( - transformer.single_transformer_blocks.state_dict(), strict=False - ) - - controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder) - - return controlnet - def forward( self, hidden_states: torch.Tensor,