tidy(ui): remove unused stuff

This commit is contained in:
psychedelicious
2024-08-23 11:27:03 +10:00
parent 639304197b
commit c2be63a811
32 changed files with 24 additions and 1984 deletions

View File

@@ -1,30 +0,0 @@
import { IconButton } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { entityDeleted } from 'features/controlLayers/store/canvasV2Slice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiTrashSimpleBold } from 'react-icons/pi';
export const CanvasEntityDeleteButton = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext();
const onClick = useCallback(() => {
dispatch(entityDeleted({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
return (
<IconButton
size="sm"
colorScheme="error"
aria-label={t('common.delete')}
tooltip={t('common.delete')}
icon={<PiTrashSimpleBold />}
onClick={onClick}
variant="link"
alignSelf="stretch"
/>
);
});
CanvasEntityDeleteButton.displayName = 'CanvasEntityDeleteButton';

View File

@@ -1,18 +0,0 @@
import { IconButton, MenuButton } from '@invoke-ai/ui-library';
import { stopPropagation } from 'common/util/stopPropagation';
import { memo } from 'react';
import { PiDotsThreeVerticalBold } from 'react-icons/pi';
export const CanvasEntityMenuButton = memo(() => {
return (
<MenuButton
as={IconButton}
aria-label="Layer menu"
size="sm"
icon={<PiDotsThreeVerticalBold />}
onDoubleClick={stopPropagation} // double click expands the layer
/>
);
});
CanvasEntityMenuButton.displayName = 'CanvasEntityMenuButton';

View File

@@ -1,25 +0,0 @@
import { MenuItem } from '@invoke-ai/ui-library';
import { useAppDispatch } from 'app/store/storeHooks';
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
import { entityReset } from 'features/controlLayers/store/canvasV2Slice';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
import { PiArrowCounterClockwiseBold } from 'react-icons/pi';
export const CanvasEntityMenuItemsReset = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const entityIdentifier = useEntityIdentifierContext();
const resetEntity = useCallback(() => {
dispatch(entityReset({ entityIdentifier }));
}, [dispatch, entityIdentifier]);
return (
<MenuItem onClick={resetEntity} icon={<PiArrowCounterClockwiseBold />}>
{t('accessibility.reset')}
</MenuItem>
);
});
CanvasEntityMenuItemsReset.displayName = 'CanvasEntityMenuItemsReset';

View File

@@ -1,161 +0,0 @@
import { CanvasEntity } from 'features/controlLayers/konva/CanvasEntity';
import { CanvasImageRenderer } from 'features/controlLayers/konva/CanvasImage';
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
import { CanvasTransformer } from 'features/controlLayers/konva/CanvasTransformer';
import { type CanvasControlAdapterState, isDrawingTool } from 'features/controlLayers/store/types';
import Konva from 'konva';
export class CanvasControlAdapter extends CanvasEntity {
static NAME_PREFIX = 'control-adapter';
static LAYER_NAME = `${CanvasControlAdapter.NAME_PREFIX}_layer`;
static TRANSFORMER_NAME = `${CanvasControlAdapter.NAME_PREFIX}_transformer`;
static GROUP_NAME = `${CanvasControlAdapter.NAME_PREFIX}_group`;
static OBJECT_GROUP_NAME = `${CanvasControlAdapter.NAME_PREFIX}_object-group`;
static TYPE = 'control_adapter' as const;
type = CanvasControlAdapter.TYPE;
_state: CanvasControlAdapterState;
konva: {
layer: Konva.Layer;
group: Konva.Group;
objectGroup: Konva.Group;
};
image: CanvasImageRenderer | null;
transformer: CanvasTransformer;
constructor(state: CanvasControlAdapterState, manager: CanvasManager) {
super(state.id, manager);
this.konva = {
layer: new Konva.Layer({
name: CanvasControlAdapter.LAYER_NAME,
imageSmoothingEnabled: false,
listening: false,
}),
group: new Konva.Group({
name: CanvasControlAdapter.GROUP_NAME,
listening: false,
}),
objectGroup: new Konva.Group({ name: CanvasControlAdapter.GROUP_NAME, listening: false }),
};
this.transformer = new CanvasTransformer(this);
this.konva.group.add(this.konva.objectGroup);
this.konva.layer.add(this.konva.group);
this.konva.layer.add(this.konva.transformer);
this.image = null;
this._state = state;
}
async render(state: CanvasControlAdapterState) {
this._state = state;
// Update the layer's position and listening state
this.konva.group.setAttrs({
x: state.position.x,
y: state.position.y,
scaleX: 1,
scaleY: 1,
});
const imageObject = state.processedImageObject ?? state.imageObject;
let didDraw = false;
if (!imageObject) {
if (this.image) {
this.image.konva.group.visible(false);
didDraw = true;
}
} else if (!this.image) {
this.image = new CanvasImageRenderer(imageObject, this);
this.updateGroup(true);
this.konva.objectGroup.add(this.image.konva.group);
await this.image.updateImageSource(imageObject.image.image_name);
} else if (!this.image.isLoading && !this.image.isError) {
if (await this.image.update(imageObject)) {
didDraw = true;
}
}
this.updateGroup(didDraw);
}
updateGroup(didDraw: boolean) {
this.konva.layer.visible(this._state.isEnabled);
this.konva.group.opacity(this._state.opacity);
const isSelected = this.manager.stateApi.getIsSelected(this.id);
const selectedTool = this.manager.stateApi.getToolState().selected;
if (!this.image?.konva.image) {
// If the layer is totally empty, reset the cache and bail out.
this.konva.layer.listening(false);
this.konva.transformer.nodes([]);
if (this.konva.group.isCached()) {
this.konva.group.clearCache();
}
return;
}
if (isSelected && selectedTool === 'move') {
// When the layer is selected and being moved, we should always cache it.
// We should update the cache if we drew to the layer.
if (!this.konva.group.isCached() || didDraw) {
this.konva.group.cache();
}
// Activate the transformer
this.konva.layer.listening(true);
this.konva.transformer.nodes([this.konva.group]);
this.konva.transformer.forceUpdate();
return;
}
if (isSelected && selectedTool !== 'move') {
// If the layer is selected but not using the move tool, we don't want the layer to be listening.
this.konva.layer.listening(false);
// The transformer also does not need to be active.
this.konva.transformer.nodes([]);
if (isDrawingTool(selectedTool)) {
// We are using a drawing tool (brush, eraser, rect). These tools change the layer's rendered appearance, so we
// should never be cached.
if (this.konva.group.isCached()) {
this.konva.group.clearCache();
}
} else {
// We are using a non-drawing tool (move, view, bbox), so we should cache the layer.
// We should update the cache if we drew to the layer.
if (!this.konva.group.isCached() || didDraw) {
this.konva.group.cache();
}
}
return;
}
if (!isSelected) {
// Unselected layers should not be listening
this.konva.layer.listening(false);
// The transformer also does not need to be active.
this.konva.transformer.nodes([]);
// Update the layer's cache if it's not already cached or we drew to it.
if (!this.konva.group.isCached() || didDraw) {
this.konva.group.cache();
}
return;
}
}
destroy(): void {
this.konva.layer.destroy();
}
repr() {
return {
id: this.id,
type: this.type,
state: this._state,
};
}
}

View File

@@ -1,166 +0,0 @@
import type { RootState } from 'app/store/store';
import { deepClone } from 'common/util/deepClone';
import { roundToMultiple } from 'common/util/roundDownToMultiple';
import { selectOptimalDimension } from 'features/controlLayers/store/selectors';
import {
DENOISE_LATENTS_HRF,
ESRGAN_HRF,
IMAGE_TO_LATENTS_HRF,
LATENTS_TO_IMAGE_HRF_HR,
LATENTS_TO_IMAGE_HRF_LR,
NOISE_HRF,
RESIZE_HRF,
} from 'features/nodes/util/graph/constants';
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
import { getBoardField } from 'features/nodes/util/graph/graphBuilderUtils';
import type { Invocation } from 'services/api/types';
/**
* Calculates the new resolution for high-resolution features (HRF) based on base model type.
* Adjusts the width and height to maintain the aspect ratio and constrains them by the model's dimension limits,
* rounding down to the nearest multiple of 8.
*
* @param {number} optimalDimension The optimal dimension for the base model.
* @param {number} width The current width to be adjusted for HRF.
* @param {number} height The current height to be adjusted for HRF.
* @return {{newWidth: number, newHeight: number}} The new width and height, adjusted and rounded as needed.
*/
function calculateHrfRes(
optimalDimension: number,
width: number,
height: number
): { newWidth: number; newHeight: number } {
const aspect = width / height;
const minDimension = Math.floor(optimalDimension * 0.5);
const modelArea = optimalDimension * optimalDimension; // Assuming square images for model_area
let initWidth;
let initHeight;
if (aspect > 1.0) {
initHeight = Math.max(minDimension, Math.sqrt(modelArea / aspect));
initWidth = initHeight * aspect;
} else {
initWidth = Math.max(minDimension, Math.sqrt(modelArea * aspect));
initHeight = initWidth / aspect;
}
// Cap initial height and width to final height and width.
initWidth = Math.min(width, initWidth);
initHeight = Math.min(height, initHeight);
const newWidth = roundToMultiple(Math.floor(initWidth), 8);
const newHeight = roundToMultiple(Math.floor(initHeight), 8);
return { newWidth, newHeight };
}
/**
* Adds HRF to the graph.
* @param state The root redux state
* @param g The graph to add HRF to
* @param denoise The denoise node
* @param noise The noise node
* @param l2i The l2i node
* @param vaeSource The VAE source node (may be a model loader, VAE loader, or seamless node)
* @returns The HRF image output node.
*/
export const addHRF = (
state: RootState,
g: Graph,
denoise: Invocation<'denoise_latents'>,
noise: Invocation<'noise'>,
l2i: Invocation<'l2i'>,
vaeSource: Invocation<'vae_loader'> | Invocation<'main_model_loader'> | Invocation<'seamless'>
): Invocation<'l2i'> => {
const { hrfStrength, hrfEnabled, hrfMethod } = state.hrf;
const { width, height } = state.canvasV2.document;
const optimalDimension = selectOptimalDimension(state);
const { newWidth: hrfWidth, newHeight: hrfHeight } = calculateHrfRes(optimalDimension, width, height);
// Change height and width of original noise node to initial resolution.
if (noise) {
noise.width = hrfWidth;
noise.height = hrfHeight;
}
// Define new nodes and their connections, roughly in order of operations.
const l2iHrfLR = g.addNode({ type: 'l2i', id: LATENTS_TO_IMAGE_HRF_LR, fp32: l2i.fp32 });
g.addEdge(denoise, 'latents', l2iHrfLR, 'latents');
g.addEdge(vaeSource, 'vae', l2iHrfLR, 'vae');
const resizeHrf = g.addNode({
id: RESIZE_HRF,
type: 'img_resize',
width: width,
height: height,
});
if (hrfMethod === 'ESRGAN') {
let model_name: Invocation<'esrgan'>['model_name'] = 'RealESRGAN_x2plus.pth';
if ((width * height) / (hrfWidth * hrfHeight) > 2) {
model_name = 'RealESRGAN_x4plus.pth';
}
const esrganHrf = g.addNode({ id: ESRGAN_HRF, type: 'esrgan', model_name });
g.addEdge(l2iHrfLR, 'image', esrganHrf, 'image');
g.addEdge(esrganHrf, 'image', resizeHrf, 'image');
} else {
g.addEdge(l2iHrfLR, 'image', resizeHrf, 'image');
}
const noiseHrf = g.addNode({
type: 'noise',
id: NOISE_HRF,
seed: noise.seed,
use_cpu: noise.use_cpu,
});
g.addEdge(resizeHrf, 'height', noiseHrf, 'height');
g.addEdge(resizeHrf, 'width', noiseHrf, 'width');
const i2lHrf = g.addNode({ type: 'i2l', id: IMAGE_TO_LATENTS_HRF });
g.addEdge(vaeSource, 'vae', i2lHrf, 'vae');
g.addEdge(resizeHrf, 'image', i2lHrf, 'image');
const denoiseHrf = g.addNode({
type: 'denoise_latents',
id: DENOISE_LATENTS_HRF,
cfg_scale: denoise.cfg_scale,
scheduler: denoise.scheduler,
steps: denoise.steps,
denoising_start: 1 - hrfStrength,
denoising_end: 1,
});
g.addEdge(i2lHrf, 'latents', denoiseHrf, 'latents');
g.addEdge(noiseHrf, 'noise', denoiseHrf, 'noise');
// Copy edges to the original denoise into the new denoise
g.getEdgesTo(denoise, ['control', 'ip_adapter', 'unet', 'positive_conditioning', 'negative_conditioning']).forEach(
(edge) => {
const clone = deepClone(edge);
clone.destination.node_id = denoiseHrf.id;
g.addEdgeFromObj(clone);
}
);
// The original l2i node is unnecessary now, remove it
g.deleteNode(l2i.id);
const l2iHrfHR = g.addNode({
type: 'l2i',
id: LATENTS_TO_IMAGE_HRF_HR,
fp32: l2i.fp32,
is_intermediate: false,
board: getBoardField(state),
});
g.addEdge(vaeSource, 'vae', l2iHrfHR, 'vae');
g.addEdge(denoiseHrf, 'latents', l2iHrfHR, 'latents');
g.upsertMetadata({
hrf_strength: hrfStrength,
hrf_enabled: hrfEnabled,
hrf_method: hrfMethod,
});
g.setMetadataReceivingNode(l2iHrfHR);
return l2iHrfHR;
};

View File

@@ -1,5 +0,0 @@
import type { CanvasRasterLayerState } from 'features/controlLayers/store/types';
export const isValidLayer = (layer: CanvasRasterLayerState) => {
return layer.isEnabled && layer.objects.length > 0;
};

View File

@@ -1,197 +0,0 @@
import type { RootState } from 'app/store/store';
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
import { fetchModelConfigWithTypeGuard } from 'features/metadata/util/modelFetchingHelpers';
import {
LATENTS_TO_IMAGE,
NEGATIVE_CONDITIONING,
NEGATIVE_CONDITIONING_COLLECT,
NOISE,
POSITIVE_CONDITIONING,
POSITIVE_CONDITIONING_COLLECT,
SDXL_CONTROL_LAYERS_GRAPH,
SDXL_DENOISE_LATENTS,
SDXL_MODEL_LOADER,
VAE_LOADER,
} from 'features/nodes/util/graph/constants';
import { addControlAdapters } from 'features/nodes/util/graph/generation/addControlAdapters';
import { addIPAdapters } from 'features/nodes/util/graph/generation/addIPAdapters';
import { addNSFWChecker } from 'features/nodes/util/graph/generation/addNSFWChecker';
import { addSDXLLoRAs } from 'features/nodes/util/graph/generation/addSDXLLoRAs';
import { addSDXLRefiner } from 'features/nodes/util/graph/generation/addSDXLRefiner';
import { addSeamless } from 'features/nodes/util/graph/generation/addSeamless';
import { addWatermarker } from 'features/nodes/util/graph/generation/addWatermarker';
import { Graph } from 'features/nodes/util/graph/generation/Graph';
import { getBoardField, getPresetModifiedPrompts , getSizes } from 'features/nodes/util/graph/graphBuilderUtils';
import type { Invocation, NonNullableGraph } from 'services/api/types';
import { isNonRefinerMainModelConfig } from 'services/api/types';
import { assert } from 'tsafe';
import { addRegions } from './addRegions';
export const buildImageToImageSDXLGraph = async (
state: RootState,
manager: CanvasManager
): Promise<NonNullableGraph> => {
const { bbox, params } = state.canvasV2;
const {
model,
cfgScale: cfg_scale,
cfgRescaleMultiplier: cfg_rescale_multiplier,
scheduler,
seed,
steps,
shouldUseCpuNoise,
vaePrecision,
vae,
refinerModel,
refinerStart,
img2imgStrength,
} = params;
assert(model, 'No model found in state');
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
const { originalSize, scaledSize } = getSizes(bbox);
const g = new Graph(SDXL_CONTROL_LAYERS_GRAPH);
const modelLoader = g.addNode({
type: 'sdxl_model_loader',
id: SDXL_MODEL_LOADER,
model,
});
const posCond = g.addNode({
type: 'sdxl_compel_prompt',
id: POSITIVE_CONDITIONING,
prompt: positivePrompt,
style: positiveStylePrompt,
});
const posCondCollect = g.addNode({
type: 'collect',
id: POSITIVE_CONDITIONING_COLLECT,
});
const negCond = g.addNode({
type: 'sdxl_compel_prompt',
id: NEGATIVE_CONDITIONING,
prompt: negativePrompt,
style: negativeStylePrompt,
});
const negCondCollect = g.addNode({
type: 'collect',
id: NEGATIVE_CONDITIONING_COLLECT,
});
const noise = g.addNode({
type: 'noise',
id: NOISE,
seed,
width: scaledSize.width,
height: scaledSize.height,
use_cpu: shouldUseCpuNoise,
});
const denoise = g.addNode({
type: 'denoise_latents',
id: SDXL_DENOISE_LATENTS,
cfg_scale,
cfg_rescale_multiplier,
scheduler,
steps,
denoising_start: refinerModel ? Math.min(refinerStart, 1 - img2imgStrength) : 1 - img2imgStrength,
denoising_end: refinerModel ? refinerStart : 1,
});
const l2i = g.addNode({
type: 'l2i',
id: LATENTS_TO_IMAGE,
fp32: vaePrecision === 'fp32',
board: getBoardField(state),
// This is the terminal node and must always save to gallery.
is_intermediate: false,
use_cache: false,
});
const vaeLoader =
vae?.base === model.base
? g.addNode({
type: 'vae_loader',
id: VAE_LOADER,
vae_model: vae,
})
: null;
let imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> | Invocation<'img_resize'> =
l2i;
g.addEdge(modelLoader, 'unet', denoise, 'unet');
g.addEdge(modelLoader, 'clip', posCond, 'clip');
g.addEdge(modelLoader, 'clip', negCond, 'clip');
g.addEdge(modelLoader, 'clip2', posCond, 'clip2');
g.addEdge(modelLoader, 'clip2', negCond, 'clip2');
g.addEdge(posCond, 'conditioning', posCondCollect, 'item');
g.addEdge(negCond, 'conditioning', negCondCollect, 'item');
g.addEdge(posCondCollect, 'collection', denoise, 'positive_conditioning');
g.addEdge(negCondCollect, 'collection', denoise, 'negative_conditioning');
g.addEdge(noise, 'noise', denoise, 'noise');
g.addEdge(denoise, 'latents', l2i, 'latents');
const modelConfig = await fetchModelConfigWithTypeGuard(model.key, isNonRefinerMainModelConfig);
assert(modelConfig.base === 'sdxl');
g.upsertMetadata({
generation_mode: 'sdxl_txt2img',
cfg_scale,
cfg_rescale_multiplier,
width: scaledSize.width,
height: scaledSize.height,
positive_prompt: positivePrompt,
negative_prompt: negativePrompt,
model: Graph.getModelMetadataField(modelConfig),
seed,
steps,
rand_device: shouldUseCpuNoise ? 'cpu' : 'cuda',
scheduler,
positive_style_prompt: positiveStylePrompt,
negative_style_prompt: negativeStylePrompt,
vae: vae ?? undefined,
});
const seamless = addSeamless(state, g, denoise, modelLoader, vaeLoader);
addSDXLLoRAs(state, g, denoise, modelLoader, seamless, posCond, negCond);
// We might get the VAE from the main model, custom VAE, or seamless node.
const vaeSource = seamless ?? vaeLoader ?? modelLoader;
g.addEdge(vaeSource, 'vae', l2i, 'vae');
// Add Refiner if enabled
if (refinerModel) {
await addSDXLRefiner(state, g, denoise, seamless, posCond, negCond, l2i);
}
const _addedCAs = addControlAdapters(state.canvasV2.controlAdapters.entities, g, denoise, modelConfig.base);
const _addedIPAs = addIPAdapters(state.canvasV2.ipAdapters.entities, g, denoise, modelConfig.base);
const _addedRegions = await addRegions(
manager,
state.canvasV2.regions.entities,
g,
state.canvasV2.document,
state.canvasV2.bbox,
modelConfig.base,
denoise,
posCond,
negCond,
posCondCollect,
negCondCollect
);
if (state.system.shouldUseNSFWChecker) {
imageOutput = addNSFWChecker(g, imageOutput);
}
if (state.system.shouldUseWatermarker) {
imageOutput = addWatermarker(g, imageOutput);
}
g.setMetadataReceivingNode(imageOutput);
return g.getGraph();
};

View File

@@ -1,205 +0,0 @@
import type { RootState } from 'app/store/store';
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
import { fetchModelConfigWithTypeGuard } from 'features/metadata/util/modelFetchingHelpers';
import {
CLIP_SKIP,
CONTROL_LAYERS_GRAPH,
DENOISE_LATENTS,
LATENTS_TO_IMAGE,
MAIN_MODEL_LOADER,
NEGATIVE_CONDITIONING,
NEGATIVE_CONDITIONING_COLLECT,
NOISE,
POSITIVE_CONDITIONING,
POSITIVE_CONDITIONING_COLLECT,
VAE_LOADER,
} from 'features/nodes/util/graph/constants';
import { addControlAdapters } from 'features/nodes/util/graph/generation/addControlAdapters';
// import { addHRF } from 'features/nodes/util/graph/generation/addHRF';
import { addIPAdapters } from 'features/nodes/util/graph/generation/addIPAdapters';
import { addLoRAs } from 'features/nodes/util/graph/generation/addLoRAs';
import { addNSFWChecker } from 'features/nodes/util/graph/generation/addNSFWChecker';
import { addSeamless } from 'features/nodes/util/graph/generation/addSeamless';
import { addWatermarker } from 'features/nodes/util/graph/generation/addWatermarker';
import type { GraphType } from 'features/nodes/util/graph/generation/Graph';
import { Graph } from 'features/nodes/util/graph/generation/Graph';
import { getBoardField, getPresetModifiedPrompts , getSizes } from 'features/nodes/util/graph/graphBuilderUtils';
import { isEqual } from 'lodash-es';
import type { Invocation } from 'services/api/types';
import { isNonRefinerMainModelConfig } from 'services/api/types';
import { assert } from 'tsafe';
import { addRegions } from './addRegions';
export const buildTextToImageSD1SD2Graph = async (state: RootState, manager: CanvasManager): Promise<GraphType> => {
const { bbox, params } = state.canvasV2;
const {
model,
cfgScale: cfg_scale,
cfgRescaleMultiplier: cfg_rescale_multiplier,
scheduler,
steps,
clipSkip: skipped_layers,
shouldUseCpuNoise,
vaePrecision,
seed,
vae,
} = params;
assert(model, 'No model found in state');
const { positivePrompt, negativePrompt } = getPresetModifiedPrompts(state);
const { originalSize, scaledSize } = getSizes(bbox);
const g = new Graph(CONTROL_LAYERS_GRAPH);
const modelLoader = g.addNode({
type: 'main_model_loader',
id: MAIN_MODEL_LOADER,
model,
});
const clipSkip = g.addNode({
type: 'clip_skip',
id: CLIP_SKIP,
skipped_layers,
});
const posCond = g.addNode({
type: 'compel',
id: POSITIVE_CONDITIONING,
prompt: positivePrompt,
});
const posCondCollect = g.addNode({
type: 'collect',
id: POSITIVE_CONDITIONING_COLLECT,
});
const negCond = g.addNode({
type: 'compel',
id: NEGATIVE_CONDITIONING,
prompt: negativePrompt,
});
const negCondCollect = g.addNode({
type: 'collect',
id: NEGATIVE_CONDITIONING_COLLECT,
});
const noise = g.addNode({
type: 'noise',
id: NOISE,
seed,
width: scaledSize.width,
height: scaledSize.height,
use_cpu: shouldUseCpuNoise,
});
const denoise = g.addNode({
type: 'denoise_latents',
id: DENOISE_LATENTS,
cfg_scale,
cfg_rescale_multiplier,
scheduler,
steps,
denoising_start: 0,
denoising_end: 1,
});
const l2i = g.addNode({
type: 'l2i',
id: LATENTS_TO_IMAGE,
fp32: vaePrecision === 'fp32',
board: getBoardField(state),
// This is the terminal node and must always save to gallery.
is_intermediate: false,
use_cache: false,
});
const vaeLoader =
vae?.base === model.base
? g.addNode({
type: 'vae_loader',
id: VAE_LOADER,
vae_model: vae,
})
: null;
let imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> | Invocation<'img_resize'> =
l2i;
g.addEdge(modelLoader, 'unet', denoise, 'unet');
g.addEdge(modelLoader, 'clip', clipSkip, 'clip');
g.addEdge(clipSkip, 'clip', posCond, 'clip');
g.addEdge(clipSkip, 'clip', negCond, 'clip');
g.addEdge(posCond, 'conditioning', posCondCollect, 'item');
g.addEdge(negCond, 'conditioning', negCondCollect, 'item');
g.addEdge(posCondCollect, 'collection', denoise, 'positive_conditioning');
g.addEdge(negCondCollect, 'collection', denoise, 'negative_conditioning');
g.addEdge(noise, 'noise', denoise, 'noise');
g.addEdge(denoise, 'latents', l2i, 'latents');
const modelConfig = await fetchModelConfigWithTypeGuard(model.key, isNonRefinerMainModelConfig);
assert(modelConfig.base === 'sd-1' || modelConfig.base === 'sd-2');
g.upsertMetadata({
generation_mode: 'txt2img',
cfg_scale,
cfg_rescale_multiplier,
width: scaledSize.width,
height: scaledSize.height,
positive_prompt: positivePrompt,
negative_prompt: negativePrompt,
model: Graph.getModelMetadataField(modelConfig),
seed,
steps,
rand_device: shouldUseCpuNoise ? 'cpu' : 'cuda',
scheduler,
clip_skip: skipped_layers,
vae: vae ?? undefined,
});
const seamless = addSeamless(state, g, denoise, modelLoader, vaeLoader);
addLoRAs(state, g, denoise, modelLoader, seamless, clipSkip, posCond, negCond);
// We might get the VAE from the main model, custom VAE, or seamless node.
const vaeSource = seamless ?? vaeLoader ?? modelLoader;
g.addEdge(vaeSource, 'vae', l2i, 'vae');
if (!isEqual(scaledSize, originalSize)) {
// We are using scaled bbox and need to resize the output image back to the original size.
imageOutput = g.addNode({
id: 'img_resize',
type: 'img_resize',
...originalSize,
is_intermediate: false,
use_cache: false,
});
g.addEdge(l2i, 'image', imageOutput, 'image');
}
const _addedCAs = addControlAdapters(state.canvasV2.controlAdapters.entities, g, denoise, modelConfig.base);
const _addedIPAs = addIPAdapters(state.canvasV2.ipAdapters.entities, g, denoise, modelConfig.base);
const _addedRegions = await addRegions(
manager,
state.canvasV2.regions.entities,
g,
state.canvasV2.document,
state.canvasV2.bbox,
modelConfig.base,
denoise,
posCond,
negCond,
posCondCollect,
negCondCollect
);
// const isHRFAllowed = !addedLayers.some((l) => isInitialImageLayer(l) || isRegionalGuidanceLayer(l));
// if (isHRFAllowed && state.hrf.hrfEnabled) {
// imageOutput = addHRF(state, g, denoise, noise, l2i, vaeSource);
// }
if (state.system.shouldUseNSFWChecker) {
imageOutput = addNSFWChecker(g, imageOutput);
}
if (state.system.shouldUseWatermarker) {
imageOutput = addWatermarker(g, imageOutput);
}
g.setMetadataReceivingNode(imageOutput);
return g.getGraph();
};

View File

@@ -1,53 +0,0 @@
import { CompositeNumberInput, CompositeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { isStagingSelector } from 'features/canvas/store/canvasSelectors';
import { selectOptimalDimension } from 'features/controlLayers/store/selectors';
import { useImageSizeContext } from 'features/parameters/components/ImageSize/ImageSizeContext';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
const ParamBoundingBoxHeight = () => {
const { t } = useTranslation();
const ctx = useImageSizeContext();
const isStaging = useAppSelector(isStagingSelector);
const optimalDimension = useAppSelector(selectOptimalDimension);
const sliderMin = useAppSelector((s) => s.config.sd.boundingBoxHeight.sliderMin);
const sliderMax = useAppSelector((s) => s.config.sd.boundingBoxHeight.sliderMax);
const numberInputMin = useAppSelector((s) => s.config.sd.boundingBoxHeight.numberInputMin);
const numberInputMax = useAppSelector((s) => s.config.sd.boundingBoxHeight.numberInputMax);
const coarseStep = useAppSelector((s) => s.config.sd.boundingBoxHeight.coarseStep);
const fineStep = useAppSelector((s) => s.config.sd.boundingBoxHeight.fineStep);
const onChange = useCallback(
(v: number) => {
ctx.heightChanged(v);
},
[ctx]
);
return (
<FormControl isDisabled={isStaging}>
<FormLabel>{t('parameters.height')}</FormLabel>
<CompositeSlider
min={sliderMin}
max={sliderMax}
step={coarseStep}
fineStep={fineStep}
value={ctx.height}
defaultValue={optimalDimension}
onChange={onChange}
marks
/>
<CompositeNumberInput
min={numberInputMin}
max={numberInputMax}
step={coarseStep}
fineStep={fineStep}
value={ctx.height}
defaultValue={optimalDimension}
onChange={onChange}
/>
</FormControl>
);
};
export default memo(ParamBoundingBoxHeight);

View File

@@ -1,53 +0,0 @@
import { CompositeNumberInput, CompositeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { isStagingSelector } from 'features/canvas/store/canvasSelectors';
import { selectOptimalDimension } from 'features/controlLayers/store/selectors';
import { useImageSizeContext } from 'features/parameters/components/ImageSize/ImageSizeContext';
import { memo, useCallback } from 'react';
import { useTranslation } from 'react-i18next';
const ParamBoundingBoxWidth = () => {
const { t } = useTranslation();
const ctx = useImageSizeContext();
const isStaging = useAppSelector(isStagingSelector);
const optimalDimension = useAppSelector(selectOptimalDimension);
const sliderMin = useAppSelector((s) => s.config.sd.boundingBoxWidth.sliderMin);
const sliderMax = useAppSelector((s) => s.config.sd.boundingBoxWidth.sliderMax);
const numberInputMin = useAppSelector((s) => s.config.sd.boundingBoxWidth.numberInputMin);
const numberInputMax = useAppSelector((s) => s.config.sd.boundingBoxWidth.numberInputMax);
const coarseStep = useAppSelector((s) => s.config.sd.boundingBoxWidth.coarseStep);
const fineStep = useAppSelector((s) => s.config.sd.boundingBoxWidth.fineStep);
const onChange = useCallback(
(v: number) => {
ctx.widthChanged(v);
},
[ctx]
);
return (
<FormControl isDisabled={isStaging}>
<FormLabel>{t('parameters.width')}</FormLabel>
<CompositeSlider
min={sliderMin}
max={sliderMax}
step={coarseStep}
fineStep={fineStep}
value={ctx.width}
defaultValue={optimalDimension}
onChange={onChange}
marks
/>
<CompositeNumberInput
min={numberInputMin}
max={numberInputMax}
step={coarseStep}
fineStep={fineStep}
value={ctx.width}
defaultValue={optimalDimension}
onChange={onChange}
/>
</FormControl>
);
};
export default memo(ParamBoundingBoxWidth);

View File

@@ -1,27 +0,0 @@
import { Box } from '@invoke-ai/ui-library';
import { useCanvasGenerationMode } from 'features/canvas/hooks/useCanvasGenerationMode';
import { memo, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
const GenerationModeStatusText = () => {
const generationMode = useCanvasGenerationMode();
const { t } = useTranslation();
const GENERATION_MODE_NAME_MAP = useMemo(
() => ({
txt2img: t('common.txt2img'),
img2img: t('common.img2img'),
inpaint: t('common.inpaint'),
outpaint: t('common.outpaint'),
}),
[t]
);
return (
<Box>
{t('accessibility.mode')}: {generationMode ? GENERATION_MODE_NAME_MAP[generationMode] : '...'}
</Box>
);
};
export default memo(GenerationModeStatusText);

View File

@@ -1,21 +0,0 @@
import { useStore } from '@nanostores/react';
import { $isPreviewVisible } from 'features/controlLayers/store/canvasV2Slice';
import { AspectRatioIconPreview } from 'features/parameters/components/DocumentSize/AspectRatioIconPreview';
import { memo } from 'react';
export const AspectRatioCanvasPreview = memo(() => {
const isPreviewVisible = useStore($isPreviewVisible);
return <AspectRatioIconPreview />;
// if (!isPreviewVisible) {
// return <AspectRatioIconPreview />;
// }
// return (
// <Flex w="full" h="full" alignItems="center" justifyContent="center" position="relative">
// <StageComponent asPreview />
// </Flex>
// );
});
AspectRatioCanvasPreview.displayName = 'AspectRatioCanvasPreview';

View File

@@ -1,75 +0,0 @@
import { useSize } from '@chakra-ui/react-use-size';
import { Flex, Icon } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { AnimatePresence, motion } from 'framer-motion';
import { memo, useMemo, useRef } from 'react';
import { PiFrameCorners } from 'react-icons/pi';
import {
BOX_SIZE_CSS_CALC,
ICON_CONTAINER_STYLES,
ICON_HIGH_CUTOFF,
ICON_LOW_CUTOFF,
MOTION_ICON_ANIMATE,
MOTION_ICON_EXIT,
MOTION_ICON_INITIAL,
} from './constants';
export const AspectRatioIconPreview = memo(() => {
const bbox = useAppSelector((s) => s.canvasV2.bbox);
const containerRef = useRef<HTMLDivElement>(null);
const containerSize = useSize(containerRef);
const shouldShowIcon = useMemo(
() => bbox.aspectRatio.value < ICON_HIGH_CUTOFF && bbox.aspectRatio.value > ICON_LOW_CUTOFF,
[bbox.aspectRatio.value]
);
const { width, height } = useMemo(() => {
if (!containerSize) {
return { width: 0, height: 0 };
}
let width = bbox.rect.width;
let height = bbox.rect.height;
if (bbox.rect.width > bbox.rect.height) {
width = containerSize.width;
height = width / bbox.aspectRatio.value;
} else {
height = containerSize.height;
width = height * bbox.aspectRatio.value;
}
return { width, height };
}, [containerSize, bbox.rect.width, bbox.rect.height, bbox.aspectRatio.value]);
return (
<Flex w="full" h="full" alignItems="center" justifyContent="center" ref={containerRef}>
<Flex
bg="blackAlpha.400"
borderRadius="base"
width={`${width}px`}
height={`${height}px`}
alignItems="center"
justifyContent="center"
>
<AnimatePresence>
{shouldShowIcon && (
<Flex
as={motion.div}
initial={MOTION_ICON_INITIAL}
animate={MOTION_ICON_ANIMATE}
exit={MOTION_ICON_EXIT}
style={ICON_CONTAINER_STYLES}
>
<Icon as={PiFrameCorners} color="base.700" boxSize={BOX_SIZE_CSS_CALC} />
</Flex>
)}
</AnimatePresence>
</Flex>
</Flex>
);
});
AspectRatioIconPreview.displayName = 'AspectRatioIconPreview';

View File

@@ -1,17 +0,0 @@
import { Flex } from '@invoke-ai/ui-library';
import { SettingsDeveloperLogIsEnabled } from 'features/system/components/SettingsModal/SettingsDeveloperLogIsEnabled';
import { SettingsDeveloperLogLevel } from 'features/system/components/SettingsModal/SettingsDeveloperLogLevel';
import { SettingsDeveloperLogNamespaces } from 'features/system/components/SettingsModal/SettingsDeveloperLogNamespaces';
import { memo } from 'react';
export const SettingsDeveloperContent = memo(() => {
return (
<Flex flexDir="column" gap={4}>
<SettingsDeveloperLogIsEnabled />
<SettingsDeveloperLogLevel />
<SettingsDeveloperLogNamespaces />
</Flex>
);
});
SettingsDeveloperContent.displayName = 'SettingsDeveloperContent';

View File

@@ -1,35 +0,0 @@
import type { ComboboxOnChange } from '@invoke-ai/ui-library';
import { Combobox, FormControl, FormLabel } from '@invoke-ai/ui-library';
import { isLogLevel, zLogLevel } from 'app/logging/logger';
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
import { logLevelChanged } from 'features/system/store/systemSlice';
import { memo, useCallback, useMemo } from 'react';
import { useTranslation } from 'react-i18next';
export const SettingsLogLevelSelect = memo(() => {
const { t } = useTranslation();
const dispatch = useAppDispatch();
const logLevel = useAppSelector((s) => s.system.logLevel);
const logIsEnabled = useAppSelector((s) => s.system.logIsEnabled);
const options = useMemo(() => zLogLevel.options.map((o) => ({ label: o, value: o })), []);
const value = useMemo(() => options.find((o) => o.value === logLevel), [logLevel, options]);
const onChange = useCallback<ComboboxOnChange>(
(v) => {
if (!isLogLevel(v?.value)) {
return;
}
dispatch(logLevelChanged(v.value));
},
[dispatch]
);
return (
<FormControl isDisabled={!logIsEnabled}>
<FormLabel>{t('common.loglevel')}</FormLabel>
<Combobox value={value} options={options} onChange={onChange} />
</FormControl>
);
});
SettingsLogLevelSelect.displayName = 'SettingsLogLevelSelect';

View File

@@ -1,13 +0,0 @@
import { Box } from '@invoke-ai/ui-library';
import { CanvasEditor } from 'features/controlLayers/components/ControlLayersEditor';
import { memo } from 'react';
const TextToImageTab = () => {
return (
<Box layerStyle="first" position="relative" w="full" h="full" p={2} borderRadius="base">
<CanvasEditor />
</Box>
);
};
export default memo(TextToImageTab);

View File

@@ -1,25 +0,0 @@
import { Box } from '@invoke-ai/ui-library';
import { useAppSelector } from 'app/store/storeHooks';
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
import { memo } from 'react';
const UpscalingTab = () => {
const activeTabName = useAppSelector(activeTabNameSelector);
return (
<Box
display={activeTabName === 'upscaling' ? undefined : 'none'}
hidden={activeTabName !== 'upscaling'}
layerStyle="first"
position="relative"
w="full"
h="full"
p={2}
borderRadius="base"
>
{/* <ImageViewer /> */}
</Box>
);
};
export default memo(UpscalingTab);