Merge branch 'development' into development

This commit is contained in:
Peter Baylies
2022-09-18 22:34:00 -04:00
committed by GitHub
12 changed files with 75 additions and 21 deletions

View File

@@ -602,6 +602,16 @@ def metadata_dumps(opt,
This is intended to be turned into JSON and stored in the
"sd
'''
# top-level metadata minus `image` or `images`
metadata = {
'model' : 'stable diffusion',
'model_id' : opt.model,
'model_hash' : model_hash,
'app_id' : APP_ID,
'app_version' : APP_VERSION,
}
# add some RFC266 fields that are generated internally, and not as
# user args
image_dict = opt.to_dict(
@@ -647,22 +657,22 @@ def metadata_dumps(opt,
else:
rfc_dict['type'] = 'txt2img'
images = []
if len(seeds)==0 and opt.seed:
seeds=[seed]
for seed in seeds:
rfc_dict['seed'] = seed
images.append(copy.copy(rfc_dict))
return {
'model' : 'stable diffusion',
'model_id' : opt.model,
'model_hash' : model_hash,
'app_id' : APP_ID,
'app_version' : APP_VERSION,
'images' : images,
}
if opt.grid:
images = []
for seed in seeds:
rfc_dict['seed'] = seed
images.append(copy.copy(rfc_dict))
metadata['images'] = images
else:
# there should only ever be a single seed if we did not generate a grid
assert len(seeds) == 1, 'Expected a single seed'
rfc_dict['seed'] = seeds[0]
metadata['image'] = rfc_dict
return metadata
def metadata_loads(metadata):
'''

View File

@@ -38,14 +38,14 @@ def get_uc_and_c(prompt, model, log_tokens=False, skip_normalize=False):
c = torch.zeros_like(uc)
# normalize each "sub prompt" and add it
for subprompt, weight in weighted_subprompts:
log_tokenization(subprompt, model, log_tokens)
log_tokenization(subprompt, model, log_tokens, weight)
c = torch.add(
c,
model.get_learned_conditioning([subprompt]),
alpha=weight,
)
else: # just standard 1 prompt
log_tokenization(prompt, model, log_tokens)
log_tokenization(prompt, model, log_tokens, 1)
c = model.get_learned_conditioning([prompt])
uc = model.get_learned_conditioning([unconditioned_words])
return (uc, c)
@@ -86,7 +86,7 @@ def split_weighted_subprompts(text, skip_normalize=False)->list:
# shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
def log_tokenization(text, model, log=False):
def log_tokenization(text, model, log=False, weight=1):
if not log:
return
tokens = model.cond_stage_model.tokenizer._tokenize(text)
@@ -103,8 +103,8 @@ def log_tokenization(text, model, log=False):
usedTokens += 1
else: # over max token length
discarded = discarded + f"\x1b[0;3{s};40m{token}"
print(f"\n>> Tokens ({usedTokens}):\n{tokenized}\x1b[0m")
if discarded != "":
print(
f">> Tokens Discarded ({totalTokens-usedTokens}):\n{discarded}\x1b[0m"
)
print(f"\n>> Tokens ({usedTokens}), Weight ({weight:.2f}):\n{tokenized}\x1b[0m")
if discarded != "":
print(
f">> Tokens Discarded ({totalTokens-usedTokens}):\n{discarded}\x1b[0m"
)