In `ObjectSerializerDisk`, we use `torch.load` to load serialized objects from disk. With torch 2.6.0, torch defaults to `weights_only=True`. As a result, torch will raise when attempting to deserialize anything with an unrecognized class.
For example, our `ConditioningFieldData` class is untrusted. When we load conditioning from disk, we will get a runtime error.
Torch provides a method to add trusted classes to an allowlist. This change adds an arg to `ObjectSerializerDisk` to add a list of safe globals to the allowlist and uses it for both `ObjectSerializerDisk` instances.
Note: My first attempt inferred the class from the generic type arg that `ObjectSerializerDisk` accepts, and added that to the allowlist. Unfortunately, this doesn't work.
For example, `ConditioningFieldData` has a `conditionings` attribute that may be one some other untrusted classes representing model-specific conditioning data. So, even if we allowlist `ConditioningFieldData`, loading will fail when torch deserializes the `conditionings` attribute.
Replace `delete_on_startup: bool` & associated logic with `ephemeral: bool` and `TemporaryDirectory`.
The temp dir is created inside of `output_dir`. For example, if `output_dir` is `invokeai/outputs/tensors/`, then the temp dir might be `invokeai/outputs/tensors/tmpvj35ht7b/`.
The temp dir is cleaned up when the service is stopped, or when it is GC'd if not properly stopped.
In the event of a catastrophic crash where the temp files are not cleaned up, the user can delete the tempdir themselves.
This situation may not occur in normal use, but if you kill the process, python cannot clean up the temp dir itself. This includes running the app in a debugger and killing the debugger process - something I do relatively often.
Tests updated.
- The default is to not delete on startup - feels safer.
- The two services using this class _do_ delete on startup.
- The class has "ephemeral" removed from its name.
- Tests & app updated for this change.