Commit Graph

605 Commits

Author SHA1 Message Date
Billy
6afbf31750 Ruff formatting 2025-06-26 19:47:06 +10:00
Billy
3cd4306eec Update import path 2025-06-26 19:47:06 +10:00
Billy
827191d2fc Use definitions in config 2025-06-26 19:47:06 +10:00
Billy
aaa34f717d OMI files 2025-06-26 19:47:06 +10:00
Billy
fe83c2f81f Add OMI vendor files 2025-06-26 19:47:06 +10:00
Billy
17dead3309 Remove OMI from dependencies 2025-06-26 19:47:06 +10:00
Mary Hipp Rogers
2ad5b5cc2e Flux Kontext UI support (#8111)
* add support for flux-kontext models in nodes

* flux kontext in canvas

* add aspect ratio support

* lint

* restore aspect ratio logic

* more linting

* typegen

* fix typegen

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-06-25 09:39:57 -04:00
Billy
2832ca300f Formatting 2025-06-24 07:26:42 +10:00
Billy
de5f413440 Filter bundle_emb for all LoRAs 2025-06-24 07:12:11 +10:00
Kent Keirsey
61b049ad35 Fix to config 2025-06-23 09:52:47 -04:00
Billy
150a876c73 Formatting 2025-06-23 13:52:19 +10:00
Billy
62c3b01e4f Merge branch 'main' into OMI 2025-06-23 13:52:07 +10:00
Billy
e1157f343b Support for Flux and SDXL 2025-06-23 13:51:16 +10:00
Billy
4ee54eac1d Another attempt 2025-06-20 14:10:06 +10:00
Billy
5851c46c81 Hard code source 2025-06-19 11:05:43 +10:00
Billy
a296559e79 Ignore 2025-06-19 11:02:18 +10:00
Billy
1fd83f5e68 Import 2025-06-19 11:01:50 +10:00
Billy
637487c573 Convert FROM OMI to diffusers 2025-06-19 11:00:27 +10:00
Billy
4e98e7d0a2 Typo: dot should be comma 2025-06-19 10:47:24 +10:00
Billy
12f65d800d Formatting 2025-06-19 09:40:58 +10:00
Billy
45d09f8f51 Use OMI conversion utils 2025-06-19 09:40:49 +10:00
Billy
9b4fdb493e Loader 2025-06-18 10:53:54 +10:00
Billy
47e21d6e04 Formatting 2025-06-17 13:56:38 +10:00
Billy
84ab4a1c30 Convert from OMI to default LoRA state dict 2025-06-17 13:56:22 +10:00
Billy
85c4304efd Add OMI LoRA config 2025-06-17 13:34:03 +10:00
Billy
8f152f162b Add OMI to model format taxonomy 2025-06-17 13:33:40 +10:00
Kevin Turner
2981591c36 test: add some aitoolkit lora tests 2025-06-16 19:08:11 +10:00
Kevin Turner
ab8c739cd8 fix(LoRA): add ai-toolkit to lora loader 2025-06-16 19:08:11 +10:00
Kevin Turner
5c5108c28a feat(LoRA): support AI Toolkit LoRA for FLUX [WIP] 2025-06-16 19:08:11 +10:00
Kent Keirsey
d3ecaa740f Add Precise Reference to Starter Models 2025-06-09 22:02:11 +10:00
psychedelicious
e81579f752 fix(mm): handle invoke syntax for HF repo ids when fetching HF model metadata
Closes #8074
2025-06-04 22:27:15 +10:00
Mary Hipp
2f35d74902 backend updates 2025-05-22 13:50:15 +10:00
Billy
af41dc83f7 Make ruff happy 2025-05-20 11:19:59 +10:00
Billy
a17e771eba Re-enable classification API as fallback 2025-05-20 11:19:59 +10:00
David Burnett
6c0bd7d150 fix import ordering, remove code I reverted that the resync added back 2025-05-19 11:16:23 +10:00
David Burnett
8abcc99ced add check for state_dict, required to load TI's 2025-05-19 11:16:23 +10:00
David Burnett
73ab4b8895 fix offload device 2025-05-19 11:16:23 +10:00
David Burnett
86719f2065 revert to overload due to failing tests, use Torch futures instead 2025-05-19 11:16:23 +10:00
psychedelicious
5f12b9185f feat(mm): add cache_snapshot to model cache clear callback 2025-05-15 16:06:47 +10:00
psychedelicious
d958d2e5a0 feat(mm): iterate on cache callbacks API 2025-05-15 14:37:22 +10:00
psychedelicious
823ca214e6 feat(mm): iterate on cache callbacks API 2025-05-15 13:28:51 +10:00
psychedelicious
a33da450fd feat(mm): support cache callbacks 2025-05-15 11:23:58 +10:00
psychedelicious
518a896521 feat(mm): add usage_info to model config 2025-05-06 09:07:52 -04:00
Kent Keirsey
1f63b60021 Implementing support for Non-Standard LoRA Format (#7985)
* integrate loRA

* idk anymore tbh

* enable fused matrix for quantized models

* integrate loRA

* idk anymore tbh

* enable fused matrix for quantized models

* ruff fix

---------

Co-authored-by: Sam <bhaskarmdutt@gmail.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-05-05 09:40:38 -04:00
Mary Hipp
fb91f48722 change base model for chatGPT 4o 2025-04-29 09:12:49 +10:00
Mary Hipp
04c005284c add gpt-image to possible base model types 2025-04-28 15:39:11 -04:00
psychedelicious
14944872c4 feat(mm): add model taxonomy for API models & Imagen3 as base model type 2025-04-28 13:31:26 -04:00
psychedelicious
814406d98a feat(mm): siglip model loading supports partial loading
In the previous commit, the LLaVA model was updated to support partial loading.

In this commit, the SigLIP model is updated in the same way.

This model is used for FLUX Redux. It's <4GB and only ever run in isolation, so it won't benefit from partial loading for the vast majority of users. Regardless, I think it is best if we make _all_ models work with partial loading.

PS: I also fixed the initial load dtype issue, described in the prev commit. It's probably a non-issue for this model, but we may as well fix it.
2025-04-18 10:12:03 +10:00
psychedelicious
c054501103 feat(mm): llava model loading supports partial loading; fix OOM crash on initial load
The model manager has two types of model cache entries:
- `CachedModelOnlyFullLoad`: The model may only ever be loaded and unloaded as a single object.
- `CachedModelWithPartialLoad`: The model may be partially loaded and unloaded.

Partial loaded is enabled by overwriting certain torch layer classes, adding the ability to autocast the layer to a device on-the-fly. See `CustomLinear` for an example.

So, to take advantage of partial loading and be cached as a `CachedModelWithPartialLoad`, the model must inherit from `torch.nn.Module`.

The LLaVA classes provided by `transformers` do inherit from `torch.nn.Module`, but we wrap those classes in a separate class called `LlavaOnevisionModel`. The wrapper encapsulate both the LLaVA model and its "processor" - a lightweight class that prepares model inputs like text and images.

While it is more elegant to encapsulate both model and processor classes in a single entity, this prevents the model cache from enabling partial loading for the chunky vLLM model.

Fixing this involved a few changes.
- Update the `LlavaOnevisionModelLoader` class to operate on the vLLM model directly, instead the `LlavaOnevisionModel` wrapper class.
- Instantiate the processor directly in the node. The processor is lightweight and does its business on the CPU. We don't need to worry about caching in the model manager.
- Remove caching support code from the `LlavaOnevisionModel` wrapper class. It's not needed, because we do not cache this class. The class now only handles running the models provided to it.
- Rename `LlavaOnevisionModel` to `LlavaOnevisionPipeline` to better represent its purpose.

These changes have a bonus effect of fixing an OOM crash when initially loading the models. This was most apparent when loading LLaVA 7B, which is pretty chunky.

The initial load is onto CPU RAM. In the old version of the loaders, we ignored the loader's target dtype for the initial load. Instead, we loaded the model at `transformers`'s "default" dtype of fp32.

LLaVA 7B is fp16 and weighs ~17GB. Loading as fp32 means we need double that amount (~34GB) of CPU RAM. Many users only have 32GB RAM, so this causes a _CPU_ OOM - which is a hard crash of the whole process.

With the updated loaders, the initial load logic now uses the target dtype for the initial load. LLaVA now needs the expected ~17GB RAM for its initial load.

PS: If we didn't make the accompanying partial loading changes, we still could have solved this OOM. We'd just need to pass the initial load dtype to the wrapper class and have it load on that dtype. But we may as well fix both issues.

PPS: There are other models whose model classes are wrappers around a torch module class, and thus cannot be partially loaded. However, these models are typically fairly small and/or are run only on their own, so they don't benefit as much from partial loading. It's the really big models (like LLaVA 7B) that benefit most from the partial loading.
2025-04-18 10:12:03 +10:00
Mary Hipp
9846229e52 build graph for cogview4 2025-04-10 10:50:13 +10:00