Commit Graph

249 Commits

Author SHA1 Message Date
Kent Keirsey
1f63b60021 Implementing support for Non-Standard LoRA Format (#7985)
* integrate loRA

* idk anymore tbh

* enable fused matrix for quantized models

* integrate loRA

* idk anymore tbh

* enable fused matrix for quantized models

* ruff fix

---------

Co-authored-by: Sam <bhaskarmdutt@gmail.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2025-05-05 09:40:38 -04:00
psychedelicious
814406d98a feat(mm): siglip model loading supports partial loading
In the previous commit, the LLaVA model was updated to support partial loading.

In this commit, the SigLIP model is updated in the same way.

This model is used for FLUX Redux. It's <4GB and only ever run in isolation, so it won't benefit from partial loading for the vast majority of users. Regardless, I think it is best if we make _all_ models work with partial loading.

PS: I also fixed the initial load dtype issue, described in the prev commit. It's probably a non-issue for this model, but we may as well fix it.
2025-04-18 10:12:03 +10:00
psychedelicious
c054501103 feat(mm): llava model loading supports partial loading; fix OOM crash on initial load
The model manager has two types of model cache entries:
- `CachedModelOnlyFullLoad`: The model may only ever be loaded and unloaded as a single object.
- `CachedModelWithPartialLoad`: The model may be partially loaded and unloaded.

Partial loaded is enabled by overwriting certain torch layer classes, adding the ability to autocast the layer to a device on-the-fly. See `CustomLinear` for an example.

So, to take advantage of partial loading and be cached as a `CachedModelWithPartialLoad`, the model must inherit from `torch.nn.Module`.

The LLaVA classes provided by `transformers` do inherit from `torch.nn.Module`, but we wrap those classes in a separate class called `LlavaOnevisionModel`. The wrapper encapsulate both the LLaVA model and its "processor" - a lightweight class that prepares model inputs like text and images.

While it is more elegant to encapsulate both model and processor classes in a single entity, this prevents the model cache from enabling partial loading for the chunky vLLM model.

Fixing this involved a few changes.
- Update the `LlavaOnevisionModelLoader` class to operate on the vLLM model directly, instead the `LlavaOnevisionModel` wrapper class.
- Instantiate the processor directly in the node. The processor is lightweight and does its business on the CPU. We don't need to worry about caching in the model manager.
- Remove caching support code from the `LlavaOnevisionModel` wrapper class. It's not needed, because we do not cache this class. The class now only handles running the models provided to it.
- Rename `LlavaOnevisionModel` to `LlavaOnevisionPipeline` to better represent its purpose.

These changes have a bonus effect of fixing an OOM crash when initially loading the models. This was most apparent when loading LLaVA 7B, which is pretty chunky.

The initial load is onto CPU RAM. In the old version of the loaders, we ignored the loader's target dtype for the initial load. Instead, we loaded the model at `transformers`'s "default" dtype of fp32.

LLaVA 7B is fp16 and weighs ~17GB. Loading as fp32 means we need double that amount (~34GB) of CPU RAM. Many users only have 32GB RAM, so this causes a _CPU_ OOM - which is a hard crash of the whole process.

With the updated loaders, the initial load logic now uses the target dtype for the initial load. LLaVA now needs the expected ~17GB RAM for its initial load.

PS: If we didn't make the accompanying partial loading changes, we still could have solved this OOM. We'd just need to pass the initial load dtype to the wrapper class and have it load on that dtype. But we may as well fix both issues.

PPS: There are other models whose model classes are wrappers around a torch module class, and thus cannot be partially loaded. However, these models are typically fairly small and/or are run only on their own, so they don't benefit as much from partial loading. It's the really big models (like LLaVA 7B) that benefit most from the partial loading.
2025-04-18 10:12:03 +10:00
Ryan Dick
46316e43f0 typegen 2025-04-10 10:50:13 +10:00
Ryan Dick
321c2d358c Add CogView4 model loader. And various other fixes to get a CogView4 workflow running (though quality is still below expectations). 2025-04-10 10:50:13 +10:00
psychedelicious
8294e2cdea feat(mm): support size calculation for onnx models 2025-04-07 11:37:55 +10:00
psychedelicious
7004fde41b fix(mm): vllm model calculates its own size 2025-03-27 09:36:14 +11:00
Billy
182580ff69 Imports 2025-03-26 12:55:10 +11:00
Ryan Dick
2ef1ecf381 Fix copy-paste errors. 2025-03-18 11:53:06 +11:00
Ryan Dick
e9714fe476 Add LLaVA Onevision model loading and inference support. 2025-03-18 11:53:06 +11:00
Ryan Dick
8e28888bc4 Fix SigLipPipeline model size calculation. 2025-03-06 10:31:17 +11:00
Ryan Dick
f1fde792ee Get FLUX Redux working: model loading and inference. 2025-03-06 10:31:17 +11:00
Billy
f2689598c0 Formatting 2025-03-06 09:11:00 +11:00
Ryan Dick
cc9d215a9b Add endpoint for emptying the model cache. Also, adds a threading lock to the ModelCache to make it thread-safe. 2025-01-30 09:18:28 -05:00
Ryan Dick
f7315f0432 Make the default max RAM cache size more conservative. 2025-01-30 08:46:59 -05:00
Ryan Dick
229834a5e8 Performance optimizations for LoRAs applied on top of GGML-quantized tensors. 2025-01-28 14:51:35 +00:00
Ryan Dick
5d472ac1b8 Move quantized weight handling for patch layers up from ConcatenatedLoRALayer to CustomModuleMixin. 2025-01-28 14:51:35 +00:00
Ryan Dick
28514ba59a Update ConcatenatedLoRALayer to work with all sub-layer types. 2025-01-28 14:51:35 +00:00
Ryan Dick
0db6639b4b Add FLUX OneTrainer model probing. 2025-01-28 14:51:35 +00:00
Ryan Dick
0cf51cefe8 Revise the logic for calculating the RAM model cache limit. 2025-01-16 23:46:07 +00:00
Ryan Dick
da589b3f1f Memory optimization to load state dicts one module at a time in CachedModelWithPartialLoad when we are not storing a CPU copy of the state dict (i.e. when keep_ram_copy_of_weights=False). 2025-01-16 17:00:33 +00:00
Ryan Dick
36a3869af0 Add keep_ram_copy_of_weights config option. 2025-01-16 15:35:25 +00:00
Ryan Dick
c76d08d1fd Add keep_ram_copy option to CachedModelOnlyFullLoad. 2025-01-16 15:08:23 +00:00
Ryan Dick
04087c38ce Add keep_ram_copy option to CachedModelWithPartialLoad. 2025-01-16 14:51:44 +00:00
Ryan Dick
b2bb359d47 Update the model loading logic for several of the large FLUX-related models to ensure that the model is initialized on the meta device prior to loading the state dict into it. This helps to keep peak memory down. 2025-01-16 02:30:28 +00:00
Ryan Dick
d7ab464176 Offload the current model when locking if it is already partially loaded and we have insufficient VRAM. 2025-01-07 02:53:44 +00:00
Ryan Dick
5b42b7bd45 Add a utility to help with determining the working memory required for expensive operations. 2025-01-07 01:20:15 +00:00
Ryan Dick
b343f81644 Use torch.cuda.memory_allocated() rather than torch.cuda.memory_reserved() to be more conservative in setting dynamic VRAM cache limits. 2025-01-07 01:20:15 +00:00
Ryan Dick
fc4a22fe78 Allow expensive operations to request more working memory. 2025-01-07 01:20:13 +00:00
Ryan Dick
a167632f09 Calculate model cache size limits dynamically based on the available RAM / VRAM. 2025-01-07 01:14:20 +00:00
Ryan Dick
6a9de1fcf3 Change definition of VRAM in use for the ModelCache from sum of model weights to the total torch.cuda.memory_allocated(). 2025-01-07 00:31:53 +00:00
Ryan Dick
e5180c4e6b Add get_effective_device(...) utility to aid in determining the effective device of models that are partially loaded. 2025-01-07 00:31:00 +00:00
Ryan Dick
1b7bb70bde Improve handling of cases when application code modifies the size of a model after registering it with the model cache. 2025-01-07 00:31:00 +00:00
Ryan Dick
7127040c3a Remove unused function set_nested_attr(...). 2025-01-07 00:31:00 +00:00
Ryan Dick
ceb2498a67 Add log prefix to model cache logs. 2025-01-07 00:31:00 +00:00
Ryan Dick
d0bfa019be Add 'enable_partial_loading' config flag. 2025-01-07 00:31:00 +00:00
Ryan Dick
535e45cedf First pass at adding partial loading support to the ModelCache. 2025-01-07 00:30:58 +00:00
Ryan Dick
c579a218ef Allow models to be locked in VRAM, even if they have been dropped from the RAM cache (related: https://github.com/invoke-ai/InvokeAI/issues/7513). 2025-01-06 23:02:52 +00:00
Ryan Dick
8b4b0ff0cf Fix bug in CustomConv1d and CustomConv2d patch calculations. 2024-12-29 19:10:19 +00:00
Ryan Dick
a8bef59699 First pass at making custom layer patches work with weights streamed from the CPU to the GPU. 2024-12-29 17:01:37 +00:00
Ryan Dick
6d49ee839c Switch the LayerPatcher to use 'custom modules' to manage layer patching. 2024-12-29 01:18:30 +00:00
Ryan Dick
0525f967c2 Fix the _autocast_forward_with_patches() function for CustomConv1d and CustomConv2d. 2024-12-29 00:22:37 +00:00
Ryan Dick
2855bb6b41 Update BaseLayerPatch.get_parameters(...) to accept a dict of orig_parameters rather than orig_module. This will enable compatibility between patching and cpu->gpu streaming. 2024-12-28 21:12:53 +00:00
Ryan Dick
20acfc9a00 Raise in CustomEmbedding and CustomGroupNorm if a patch is applied. 2024-12-28 20:49:17 +00:00
Ryan Dick
918f541af8 Add unit test for a SetParameterLayer patch applied to a CustomFluxRMSNorm layer. 2024-12-28 20:44:48 +00:00
Ryan Dick
93e76b61d6 Add CustomFluxRMSNorm layer. 2024-12-28 20:33:38 +00:00
Ryan Dick
f692e217ea Add patch support to CustomConv1d and CustomConv2d (no unit tests yet). 2024-12-27 22:23:17 +00:00
Ryan Dick
f2981979f9 Get custom layer patches working with all quantized linear layer types. 2024-12-27 22:00:22 +00:00
Ryan Dick
ef970a1cdc Add support for FluxControlLoRALayer in CustomLinear layers and add a unit test for it. 2024-12-27 21:00:47 +00:00
Ryan Dick
e24e386a27 Add support for patches to CustomModuleMixin and add a single unit test (more to come). 2024-12-27 18:57:13 +00:00