* build: prevent `opencv-python` from being installed
Fixes this error: `AttributeError: module 'cv2.ximgproc' has no attribute 'thinning'`
`opencv-contrib-python` supersedes `opencv-python`, providing the same API + additional features. The two packages should not be installed at the same time to avoid conflicts and/or errors.
The `invisible-watermark` package requires `opencv-python`, but we require the contrib variant.
This change updates `pyproject.toml` to prevent `opencv-python` from ever being installed using a `uv` features called dependency overrides.
* feat(ui): data viewer supports disabling wrap
* feat(api): list _all_ pkgs in app deps endpoint
* chore(ui): typegen
* feat(ui): update about modal to display new full deps list
* chore: uv lock
When a layer is initialized, we do not yet know its bbox, so we cannot fit the stage view to the layer. We have to wait for the bbox calculation to finish. Previously, we had no way to wait unti lthat bbox calculation was complete to take an action.
For example, this means we could not fit the layers to the stage immediately after creating a new layer, bc we don't know the dimensions of the layer yet.
This callback lets us do that. When creating a new canvas from an image, we now...
- Register a bbox update callback to fit the layers to stage
- Layer is created
- Canvas initializes the layer's entity adapter module (layer's width and height are set to zero at this point)
- Canvas calculates the bbox
- Bbox is updated (width and height are now correct)
- Callback is ran, fitting layer to stage
Also change import order to ensure CLI args are handled correctly. Had to do this bc importing `InvocationRegistry` before parsing args resulted in the `--root` CLI arg being ignored.
Add `heuristic_resize_fast`, which does the same thing as `heuristic_resize`, except it's about 20x faster.
This is achieved by using opencv for the binary edge handling isntead of python, and checking only 100k pixels to determine what kind of image we are working with.
Besides being much faster, it results in cleaner lines for resized binary canny edge maps, and has results in fewer misidentified segmentation maps.
Tested against normal images, binary canny edge maps, grayscale HED edge maps, segmentation maps, and normal images.
Tested resizing up and down for each.
Besides the new utility function, I needed to swap the `opencv-python` dep for `opencv-contrib-python`, which includes `cv2.ximgproc.thinning`. This function accounts for a good chunk of the perf improvement.