Commit Graph

3007 Commits

Author SHA1 Message Date
psychedelicious
e164451dfe chore: ruff 2025-06-26 20:00:38 +10:00
psychedelicious
b2b42be51c refactor: remove unused methods/routes, fix some gallery invalidation issues 2025-06-26 20:00:37 +10:00
psychedelicious
b204fb6a91 chore: ruff 2025-06-26 20:00:37 +10:00
psychedelicious
f68d8ed36a refactor: gallery scroll (improved impl) 2025-06-26 20:00:37 +10:00
psychedelicious
c8254710e6 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
0a8f647260 refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
32a5e9652a refactor: gallery scroll (improved impl) 2025-06-26 20:00:36 +10:00
psychedelicious
bee4cf41b4 refactor: gallery scroll 2025-06-26 20:00:36 +10:00
psychedelicious
4028cadfaf feat(api): return more data when doing image/board mutations
When we delete images, boards, or do any other board mutation, we need
to invalidate numerous query caches and related internal frontend state.
This gets complicated very quickly.

We can drastically reduce the complexity by having the backend return
some more information when we make these mutations.

For example, when deleting a list of images by name, we can return a
list of deleted image name and affected boards. The frontend can use
this information to determine which queries to invalidate with far less
tedium.

This will also enable the more efficient storage of images (e.g. in the
gallery selection). Previously, we had to store the entire image DTO
object, else we wouldn't be able to figure out which queries to
invalidate. But now that the backend tells us exactly what images/boards
have changed, we can just store image names in frontend state. This
amounts to a substantial improvement in DX and reduction in frontend
complexity.
2025-06-26 20:00:35 +10:00
psychedelicious
2ddcde13ff refactor(ui): migrate from canceling queue items to deleteing, make queue hook APIs consistent 2025-06-26 19:51:36 +10:00
psychedelicious
5d80642ea4 feat(app): support deleting queue items by id or destination 2025-06-26 19:50:37 +10:00
psychedelicious
7ec511da01 feat(app): do not prune queue on startup
With the new canvas design, this will result in loss of staging area images.
2025-06-26 19:50:36 +10:00
psychedelicious
0af20b03e5 feat(api): remove status from list all queue items query 2025-06-26 19:50:36 +10:00
psychedelicious
c9042e52d4 feat: canvas flow rework (wip) 2025-06-26 19:50:35 +10:00
psychedelicious
8a78e37634 feat: canvas flow rework (wip) 2025-06-26 19:50:35 +10:00
psychedelicious
5128f072a8 feat: add user_label to FieldIdentifier (#8126)
Co-authored-by: Mary Hipp Rogers <maryhipp@gmail.com>
2025-06-25 13:44:57 +00:00
Mary Hipp Rogers
2ad5b5cc2e Flux Kontext UI support (#8111)
* add support for flux-kontext models in nodes

* flux kontext in canvas

* add aspect ratio support

* lint

* restore aspect ratio logic

* more linting

* typegen

* fix typegen

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
2025-06-25 09:39:57 -04:00
psychedelicious
0794eb43e7 fix(nodes): ensure each invocation overrides _original_model_fields with own field data 2025-06-20 15:03:55 +10:00
psychedelicious
a8d7969a1d fix(app): config docstrings 2025-06-16 19:33:19 +10:00
Heathen711
46bfa24af3 ruff format 2025-06-16 19:33:19 +10:00
Heathen711
8cef0f5bf5 Update supported cuda slot input. 2025-06-16 19:33:19 +10:00
psychedelicious
1ff3d44dba fix(app): guard against possible race conditions during enqueue
In #7724 we made a number of perf optimisations related to enqueuing. One of these optimisations included moving the enqueue logic - including expensive prep work and db writes - to a separate thread.

At the same time manual DB locking was abandoned in favor of WAL mode.

Finally, we set `check_same_thread=False` to allow multiple threads to access the connection at a given time.

I think this may be the cause of #7950:
- We start an enqueue in a thread (running in bg)
- We dequeue
- Dequeue pulls a partially-written queue item from DB and we get the errors in the linked issue

To be honest, I don't understand enough about SQLite to confidently say that this kind of race condition is actually possible. But:
- The error started popping up around the time we made this change.
- I have reviewed the logic from enqueue to dequeue very carefully _many_ times over the past month or so, and I am confident that the error is only possible if we are getting unexpectedly `NULL` values from the DB.
- The DB schema includes `NOT NULL` constraints for the column that is apparently returning `NULL`.
- Therefore, without some kind of race condition or schema issue, the error should not be possible.
- The `enqueue_batch` call is the only place I can find where we have the possibility of a race condition due to async logic. Everywhere else, all DB interaction for the queue is synchronous, as far as I can tell.

This change retains the perf benefits by running the heavy enqueue prep logic in a separate thread, but moves back to the main thread for the DB write. It also uses an explicit transaction for the write.

Will just have to wait and see if this fixes the issue.
2025-06-13 23:51:47 +10:00
Emmanuel Ferdman
c80ad90f72 Migrate to modern logger interface
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2025-06-13 13:07:09 +10:00
psychedelicious
3b4d1b8786 perf(app): gc before every queue item
This reduces peak memory usage at a negligible cost. Queue items typically take on the order of seconds, making the time cost of a GC essentially free.

Not a great idea on a hotter code path though.
2025-06-11 12:56:16 +10:00
psychedelicious
35c7c59455 fix(app): reduce peak memory usage
We've long suspected there is a memory leak in Invoke, but that may not be true. What looks like a memory leak may in fact be the expected behaviour for our allocation patterns.

We observe ~20 to ~30 MB increase in memory usage per session executed. I did some prolonged tests, where I measured the process's RSS in bytes while doing 200 SDXL generations. I found that it eventually leveled off at around 100 generations, at which point memory usage had climbed by ~900MB from its starting point.

I used tracemalloc to diff the allocations of single session executions and found that we are allocating ~20MB or so per session in `ModelPatcher.apply_ti()`.

In `ModelPatcher.apply_ti()` we add tokens to the tokenizer when handling TIs. The added tokens should be scoped to only the current invocation, but there is no simple way to remove the tokens afterwards.

As a workaround for this, we clone the tokenizer, add the TI tokens to the clone, and use the clone to when running compel. Afterwards, this cloned tokenizer is discarded.

The tokenizer uses ~20MB of memory, and it has referrers/referents to other compel stuff. This is what is causing the observed increases in memory per session!

We'd expect these objects to be GC'd but python doesn't do it immediately. After creating the cond tensors, we quickly move on to denoising. So there isn't any time for the GC to happen to free up its existing memory arenas/blocks to reuse them. Instead, python needs to request more memory from the OS.

We can improve the situation by immediately calling `del` on the tokenizer clone and related objects. In fact, we already had some code in the compel nodes to `del` some of these objects, but not all.

Adding the `del`s vastly improves things. We hit peak RSS in half the sessions (~50 or less) and it's now ~100MB more than starting value. There is still a gradual increase in memory usage until we level off.
2025-06-11 12:56:16 +10:00
psychedelicious
85f98ab3eb fix(app): error on upload + resize for unusual image modes 2025-06-11 11:18:08 +10:00
psychedelicious
d7b5a8b298 fix: opencv dependency conflict (#8095)
* build: prevent `opencv-python` from being installed

Fixes this error: `AttributeError: module 'cv2.ximgproc' has no attribute 'thinning'`

`opencv-contrib-python` supersedes `opencv-python`, providing the same API + additional features. The two packages should not be installed at the same time to avoid conflicts and/or errors.

The `invisible-watermark` package requires `opencv-python`, but we require the contrib variant.

This change updates `pyproject.toml` to prevent `opencv-python` from ever being installed using a `uv` features called dependency overrides.

* feat(ui): data viewer supports disabling wrap

* feat(api): list _all_ pkgs in app deps endpoint

* chore(ui): typegen

* feat(ui): update about modal to display new full deps list

* chore: uv lock
2025-06-10 08:33:41 -04:00
dunkeroni
b5a6765a3d also search image creation date 2025-06-09 21:54:26 +10:00
dunkeroni
bf0fdbd10e Fix: inpaint model mask using wrong tensor name 2025-06-05 11:31:35 -04:00
mickr777
4c5ad1b7d7 Ruff Fix 2025-05-30 19:03:43 +10:00
mickr777
d80cc962ad Delay Imports that require torch 2025-05-30 19:03:43 +10:00
psychedelicious
c848cbc2e3 feat(app): move output annotation checking to run_app
Also change import order to ensure CLI args are handled correctly. Had to do this bc importing `InvocationRegistry` before parsing args resulted in the `--root` CLI arg being ignored.
2025-05-30 14:10:13 +10:00
psychedelicious
66fd0f0d8a feat(ui): warn on unregistered invocation output 2025-05-30 14:10:13 +10:00
Mary Hipp
c1d230f961 add support to delete all uncategorized images 2025-05-30 13:36:04 +10:00
psychedelicious
7e527ccfb7 feat(api): add validationg for max resize_to on upload endpoint 2025-05-29 13:49:07 +10:00
psychedelicious
e4818b967b tidy(api): remove benchmark logging 2025-05-29 13:49:07 +10:00
psychedelicious
ce3eede26f feat(nodes): revised heuristic_resize
better handling for smaller image sizes
2025-05-29 13:49:07 +10:00
psychedelicious
d98725c5e9 feat(nodes): use guo-hall thinning 2025-05-29 13:49:07 +10:00
psychedelicious
d5b9c3ee5a feat(api): support resizing image on upload 2025-05-29 13:49:07 +10:00
psychedelicious
91db136cd1 feat(nodes): much faster heuristic resize utility
Add `heuristic_resize_fast`, which does the same thing as `heuristic_resize`, except it's about 20x faster.

This is achieved by using opencv for the binary edge handling isntead of python, and checking only 100k pixels to determine what kind of image we are working with.

Besides being much faster, it results in cleaner lines for resized binary canny edge maps, and has results in fewer misidentified segmentation maps.

Tested against normal images, binary canny edge maps, grayscale HED edge maps, segmentation maps, and normal images.

Tested resizing up and down for each.

Besides the new utility function, I needed to swap the `opencv-python` dep for `opencv-contrib-python`, which includes `cv2.ximgproc.thinning`. This function accounts for a good chunk of the perf improvement.
2025-05-29 13:49:07 +10:00
Kent Keirsey
d4c4926caa Update Compel to 2.1.1 and apply Sentences Split logic 2025-05-26 22:54:15 -04:00
dunkeroni
9aa26f883e chore: ruff 2025-05-27 07:28:47 +10:00
dunkeroni
9e90bf1b20 fix gradient mask broken with flux gen 2025-05-27 07:28:47 +10:00
dunkeroni
53ac9eafbf reuse inpaint image noise seed for caching 2025-05-27 07:28:47 +10:00
dunkeroni
139ecc10ce ruff 2025-05-27 07:28:47 +10:00
dunkeroni
174249ec15 grtadient mask node works on greyscale now 2025-05-27 07:28:47 +10:00
dunkeroni
23627cf18d compositing in frontend 2025-05-27 07:28:47 +10:00
Mary Hipp
a8e0c48ddc add new method types to metadata 2025-05-22 14:09:10 -04:00
Mary Hipp
2f35d74902 backend updates 2025-05-22 13:50:15 +10:00
psychedelicious
ecc6e8a532 fix(nodes): transformers bug with SAM
Upstream bug in `transformers` breaks use of `AutoModelForMaskGeneration` class to load SAM models

Simple fix - directly load the model with `SamModel` class instead.

See upstream issue https://github.com/huggingface/transformers/issues/38228
2025-05-22 11:32:37 +10:00