* add support for flux-kontext models in nodes
* flux kontext in canvas
* add aspect ratio support
* lint
* restore aspect ratio logic
* more linting
* typegen
* fix typegen
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
We've long suspected there is a memory leak in Invoke, but that may not be true. What looks like a memory leak may in fact be the expected behaviour for our allocation patterns.
We observe ~20 to ~30 MB increase in memory usage per session executed. I did some prolonged tests, where I measured the process's RSS in bytes while doing 200 SDXL generations. I found that it eventually leveled off at around 100 generations, at which point memory usage had climbed by ~900MB from its starting point.
I used tracemalloc to diff the allocations of single session executions and found that we are allocating ~20MB or so per session in `ModelPatcher.apply_ti()`.
In `ModelPatcher.apply_ti()` we add tokens to the tokenizer when handling TIs. The added tokens should be scoped to only the current invocation, but there is no simple way to remove the tokens afterwards.
As a workaround for this, we clone the tokenizer, add the TI tokens to the clone, and use the clone to when running compel. Afterwards, this cloned tokenizer is discarded.
The tokenizer uses ~20MB of memory, and it has referrers/referents to other compel stuff. This is what is causing the observed increases in memory per session!
We'd expect these objects to be GC'd but python doesn't do it immediately. After creating the cond tensors, we quickly move on to denoising. So there isn't any time for the GC to happen to free up its existing memory arenas/blocks to reuse them. Instead, python needs to request more memory from the OS.
We can improve the situation by immediately calling `del` on the tokenizer clone and related objects. In fact, we already had some code in the compel nodes to `del` some of these objects, but not all.
Adding the `del`s vastly improves things. We hit peak RSS in half the sessions (~50 or less) and it's now ~100MB more than starting value. There is still a gradual increase in memory usage until we level off.
Also change import order to ensure CLI args are handled correctly. Had to do this bc importing `InvocationRegistry` before parsing args resulted in the `--root` CLI arg being ignored.
Add `heuristic_resize_fast`, which does the same thing as `heuristic_resize`, except it's about 20x faster.
This is achieved by using opencv for the binary edge handling isntead of python, and checking only 100k pixels to determine what kind of image we are working with.
Besides being much faster, it results in cleaner lines for resized binary canny edge maps, and has results in fewer misidentified segmentation maps.
Tested against normal images, binary canny edge maps, grayscale HED edge maps, segmentation maps, and normal images.
Tested resizing up and down for each.
Besides the new utility function, I needed to swap the `opencv-python` dep for `opencv-contrib-python`, which includes `cv2.ximgproc.thinning`. This function accounts for a good chunk of the perf improvement.
Upstream bug in `transformers` breaks use of `AutoModelForMaskGeneration` class to load SAM models
Simple fix - directly load the model with `SamModel` class instead.
See upstream issue https://github.com/huggingface/transformers/issues/38228
When we do our field type overrides to allow invocations to be instantiated without all required fields, we were not modifying the annotation of the field but did set the default value of the field to `None`.
This results in an error when doing a ser/de round trip. Here's what we end up doing:
```py
from pydantic import BaseModel, Field
class MyModel(BaseModel):
foo: str = Field(default=None)
```
And here is a simple round-trip, which should not error but which does:
```py
MyModel(**MyModel().model_dump())
# ValidationError: 1 validation error for MyModel
# foo
# Input should be a valid string [type=string_type, input_value=None, input_type=NoneType]
# For further information visit https://errors.pydantic.dev/2.11/v/string_type
```
To fix this, we now check every incoming field and update its annotation to match its default value. In other words, when we override the default field value to `None`, we make its type annotation `<original type> | None`.
This prevents the error during deserialization.
This slightly alters the schema for all invocations and outputs - the values of all fields without default values are now typed as `<original type> | None`, reflecting the overrides.
This means the autogenerated types for fields have also changed for fields without defaults:
```ts
// Old
image?: components["schemas"]["ImageField"];
// New
image?: components["schemas"]["ImageField"] | null;
```
This does not break anything on the frontend.