* add support for flux-kontext models in nodes
* flux kontext in canvas
* add aspect ratio support
* lint
* restore aspect ratio logic
* more linting
* typegen
* fix typegen
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-Air.lan>
* add GPTimage1 as allowed base model
* fix for non-disabled inpaint layers
* lots of boilerplate for adding gpt-image base model and disabling things along with imagen
* handle gpt-image dimensions
* build graph for gpt-image
* lint
* feat(ui): make chatgpt model naming consistent
* feat(ui): graph builder naming
* feat(ui): disable img2img for imagen3
* feat(ui): more naming
* feat(ui): support presigned url prefetch
* feat(ui): disable neg prompt for chatgpt
* docs(ui): update docstring
* feat(ui): fix graph building issues for chatgpt
* fix(ui): node ids for chatgpt/imagen
* chore(ui): typegen
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Add `useCanvasIsBusySafe()` hook. This is like `useCanvasIsBusy()`, but when the canvas is not initialized, it gracefully falls back to false instead of raising.
Because app tabs are lazy-loaded, the canvas is not initialized until the user visits that tab. If the page loads up on the workflows tab, the canvas will be uninitialized until the user clicks on it.
This graceful fallback behaviour allows actions like sending an image to canvas to work even when the canvas is not yet initialized. These actions are exposed in the image context menu, and previously were hidden when the canvas was not initialized. We can now show these actions and use them even when the canvas is uninitialized.
- Add `useCanvasIsBusySafe()` hook
- Use the new hook in the image context menu for send to canvas actions
- Do not use `<CanvasManagerProviderGate />` in the image context menu (this was hiding the actions when canvas was uninitialized)
When calling `ctx.drawImage()`, if the image to be drawn has a width of height of 0, the call will raise.
In this change, I have carefully reviewed the call hierarchy for all of our own code that calls this method and ensured that each call has error handling.
Well, with one exception - I'm not sure how to handle errors in `invokeai/frontend/web/src/common/hooks/useClientSideUpload.ts`. But this should never be an issue in that hook - it's a Canvas problem.
A redux selector is used to get the "default" IP Adapter. The selector uses the model list query result to select an IP Adapter model to be preset by default.
The selector is memoized, so if we mutate the returned default IP Adapter state, it mutates the result of the selector for all consumers.
For example, the `image` property of the default IP Adapter selector result is `null`. When we set the `image` property of the selector result while creating an IP Adapter, this does not trigger the selector to recompute its result. We end up setting the image for the selector result directly, and all other consumers now have that same image set.
Solution - we need to clone the selector result everywhere it is used. This was missed in a few spots, causing the issue.
The canvas react components pass canvas entity identifiers around, then redux selectors are used to access that entity. This is good for perf - entity states may rapidly change. Passing only the identifiers allows components and other logic to have more granular state updates.
Unfortunately, this design opens the possibility for for an entity identifier to point to an entity that does not exist.
To get around this, I had created a redux selector `selectEntityOrThrow` for canvas entities. As the name implies, it throws if the entity is not found.
While it prevents components/hooks from needing to deal with missing entities, it results in mysterious errors if an entity is missing. Without sourcemaps, it's very difficult to determine what component or hook couldn't find the entity.
Refactoring the app to not depend on this behaviour is tricky. We could pass the entity state around directly as a prop or via context, but as mentioned, this could cause performance issues with rapidly changing entities.
As a workaround, I've made two changes:
- `<CanvasEntityStateGate/>` is a component that takes an entity identifier, returning its children if the entity state exists, or null if not. This component is wraps every usage of `selectEntityOrThrow`. Theoretically, this should prevent the entity not found errors.
- Add a `caller: string` arg to `selectEntityOrThrow`. This string is now added to the error message when the assertion fails, so we can more easily track the source of the errors.
In the future we can work out a way to not use this throwing selector and retain perf. The app has changed quite a bit since that selector was created - so we may not have to worry about perf at all.
Rework uploadImage and uploadImages helpers and the RTK listener, ensuring gallery view isn't changed unexpectedly and preventing extraneous toasts.
Fix staging area save to gallery button to essentially make a copy of the image, instead of changing its intermediate status.
The root issue is the compositing cache. When we save the canvas to gallery, we need to first composite raster layers together and then upload the image.
The compositor makes extensive use of caching to reduce the number of images created and improve performance. There are two "layers" of caching:
1. Caching the composite canvas element, which is used both for uploading the canvas and for generation mode analysis.
2. Caching the uploaded composite canvas element as an image.
The combination of these caches allows for the various processes that require composite canvases to do minimal work.
But this causes a problem in this situation, because the user expects a new image to be uploaded when they click save to gallery.
For example, suppose we have already composited and uploaded the raster layer state for use in a generation. Then, we ask the compositor to save the canvas to gallery.
The compositor sees that we are requesting an image for the current canvas state, and instead of recompositing and uploading the image again, it just returns the cached image.
In this case, no image is uploaded and it the button does nothing.
We need to be able to opt out of the caching at some level, for certain actions. A `forceUpload` arg is added to the compositor's high-level `getCompositeImageDTO` method to do this.
When true, we ignore the uppermost caching layer (the uploaded image layer), but still use the lower caching layer (the canvas element layer). So we don't recompute the canvas element, but we do upload it as a new image to the server.
Previously we maintained an `isInteractable` flag, which was derived from these layer flags:
- Locked/unlocked
- Enabled/disabled
- Layer's type visible/hidden
When a layer was not interactable, we blocked all layer actions.
After comparing to the behaviour in Affinity and considering user feedback, I've loosened these restrictions while maintaining safety. First, some definitions.
There two kinds of layer actions - mutating actions and non-mutating actions.
- Mutating actions are drawing on the layer, cropping it, filtering it, converting it, etc. Anything that changes the layer.
- Non-mutating actions are copying the layer, saving the layer to gallery, etc. Anything that _uses_ the layer.
Then, there are two broad canvas states - busy and not busy. "Busy" means the canvas is actively filtering, staging, compositing layers together, etc - something that is "single-threaded" by nature.
And here are the revised restrictions:
- When canvas is busy, you cannot initiate any layer actions.
- When the canvas is not busy, and the layer is locked, you initiate any mutating actions.
- When the canvas is not busy and the layer is not locked, you can initiate any layer action.
Besides safely giving users more freedom, it also fixes an issue where the context menu for a layer was disabled if it was not the selected layer.
`CanvasCompositorModule` had a fairly inflexible API, only supporting compositing all raster layers or inpaint masks.
The API has been generalized work with a list of canvas entities. This enables `Merge Down` and `Merge Selected` functionality (though `Merge Selected` is not part of this set of changes).