Compare commits

...

251 Commits

Author SHA1 Message Date
Lincoln Stein
1f608d3743 add v2.3 branch to push trigger (#3363)
Update the push trigger with the branch which should deploy the docs,
also bring over the updates to the workflow from the v2.3 branch and:

- remove main and development branch from trigger
  - they would fail without the updated toml
- cache pip environment
- update install method (`pip install ".[docs]"`)
2023-05-08 16:26:06 -04:00
mauwii
df024dd982 bring changes from v2.3 branch over
- remove main and development branch from trigger
  - they would fail without the updated toml
- cache pip environment
- update install method
2023-05-08 21:50:00 +02:00
mauwii
45da85765c add v2.3 branch to push trigger 2023-05-08 21:10:20 +02:00
blessedcoolant
8618e41b32 Deploy documentation from v2.3 branch rather than main (#3356)
This PR instructs github to deploy documentation pages from the v2.3
branch.
2023-05-07 21:43:44 +12:00
blessedcoolant
4687f94141 Merge branch 'main' into actions/mkdocs-deploy 2023-05-07 21:43:18 +12:00
psychedelicious
440912dcff feat(ui): make base log level debug 2023-05-07 15:36:37 +10:00
psychedelicious
8b87a26e7e feat(ui): support collect nodes 2023-05-07 15:36:37 +10:00
Lincoln Stein
44ae93df3e Deploy documentation from v2.3 branch rather than main 2023-05-06 23:56:04 -04:00
Lincoln Stein
2b213da967 add -y to the automated install instructions (#3349)
hi there, love the project! i noticed a small typo when going over the
install process.

when copying the automated install instructions from the docs into a
terminal, the line to install the python packages failed as it was
missing the `-y` flag.
2023-05-06 13:34:37 -04:00
Lincoln Stein
e91e1eb9aa Merge branch 'main' into patch-1 2023-05-06 13:34:12 -04:00
Lincoln Stein
b24129fb3e Fix logger namespace clash in web server (#3344)
This PR fixes a bug that appeared in the legacy web server after the
logging PR was merged.

closes #3343
2023-05-06 08:35:13 -04:00
Lincoln Stein
350b1421bb Merge branch 'main' into lstein/bugfix/logger-namespace 2023-05-06 08:14:44 -04:00
Steve Martinelli
f01c79a94f add -y to the automated install instructions
when copying the automated install instructions from the docs into a terminal, the line to install the python packages failed as it was missing the `-y` flag.
2023-05-05 21:28:00 -04:00
blessedcoolant
463f6352ce Add compel node and conditioning field type (#3265)
Done as I said in title, but need to test(and understand) how cli works,
as previously it uses single prompt and now it's positive and negative.
2023-05-06 13:05:04 +12:00
StAlKeR7779
a80fe05e23 Rename compel node 2023-05-05 21:30:16 +03:00
StAlKeR7779
58d7833c5c Review changes 2023-05-05 21:09:29 +03:00
StAlKeR7779
5012f61599 Separate conditionings back to positive and negative 2023-05-05 15:47:51 +03:00
blessedcoolant
85c33823c3 Merge branch 'main' into feat/compel_node 2023-05-05 14:41:45 +12:00
blessedcoolant
c83a112669 Fix inpaint node (#3284)
Seems like this is the only change needed for the existing inpaint code
to work as a node. Kyle said on Discord that inpaint shouldn't be a
node, so feel free to just reject this if this code is going to be gone
soon.
2023-05-05 14:41:13 +12:00
psychedelicious
e04ada1319 Merge branch 'main' into patch-1 2023-05-05 10:38:45 +10:00
Lincoln Stein
d866dcb3d2 close #3343 2023-05-04 20:30:59 -04:00
StAlKeR7779
81ec476f3a Revert seed field addition 2023-05-04 21:50:40 +03:00
StAlKeR7779
1e6adf0a06 Fix default graph and test 2023-05-04 21:14:31 +03:00
StAlKeR7779
7d221e2518 Combine conditioning to one field(better fits for multiple type conditioning like perp-neg) 2023-05-04 20:14:22 +03:00
StAlKeR7779
56d3cbead0 Merge branch 'main' into feat/compel_node 2023-05-04 00:28:33 +03:00
Lincoln Stein
5e8c97f1ba [Enhancement] Regularize logging messages (#3176)
# Intro

This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions:

```
 ### A critical error
 *** A non-fatal error
 ** A warning
  >> Informational message
        | Debugging message
```

Internally, the invokeai logging module creates a new default logger
named "invokeai" so that its logging does not interfere with other
module's use of the vanilla logging module. So `logging.error("foo")`
will go through the regular logging path and not add InvokeAI's
informational message decorations, while `ialog.error("foo")` will add
the decorations.
    
# Usage:

This is a thin wrapper around the standard Python logging module. It can
be used in several ways:


## Module-level logging style
 
This style logs everything through a single default logging object and
is identical to using Python's `logging` module. The commonly-used
module-level logging functions are implemented as simple pass-thrus to
logging:
    
```
      import invokeai.backend.util.logging as logger
    
      logger.debug('this is a debugging message')
      logger.info('this is a informational message')
      logger.log(level=logging.CRITICAL, 'get out of dodge')

      logger.disable(level=logging.INFO)
      logger.basicConfig(filename='/var/log/invokeai.log')
      logger.error('this will be logged to console and to invokeai.log')
```    

Internally these functions all go through a custom logging object named
"invokeai". You can access it to perform additional customization in
either of these ways:

```
logger = logger.getLogger()
logger = logger.getLogger('invokeai')
```
    
## Object-oriented style

For more control, the logging module's object-oriented logging style is
also supported. The API is identical to the vanilla logging usage. In
fact, the only thing that has changed is that the getLogger() method
adds a custom formatter to the log messages.
    
```
     import logging
     from invokeai.backend.util.logging import InvokeAILogger
    
     logger = InvokeAILogger.getLogger(__name__)
     fh = logging.FileHandler('/var/invokeai.log')
     logger.addHandler(fh)
     logger.critical('this will be logged to both the console and the log file')
```

## Within the nodes API

From within the nodes API, the logger module is stored in the `logger`
slot of InvocationServices during dependency initialization. For
example, in a router, the idiom is:

```
from ..dependencies import ApiDependencies
logger = ApiDependencies.invoker.services.logger
logger.warning('uh oh')
```

Currently, to change the logger used by the API, one must change the
logging module passed to `ApiDependencies.initialize()` in `api_app.py`.
However, this will eventually be replaced with a method to select the
preferred logging module using the configuration file (dependent on
merging of PR #3221)
2023-05-03 15:00:05 -04:00
Lincoln Stein
4687ad4ed6 Merge branch 'main' into enhance/invokeai-logs 2023-05-03 13:36:06 -04:00
psychedelicious
994b247f8e feat(ui): do not persist gallery images
- I've sorted out the issues that make *not* persisting troublesome, these will be rolled out with canvas
- Also realized that persisting gallery images very quickly fills up localStorage, so we can't really do it anyways
2023-05-03 23:41:48 +10:00
psychedelicious
0419f50ab0 chore(ui): bump react-virtuoso
- Resolves an issue with gallery not rendering all items
2023-05-02 20:15:29 +10:00
psychedelicious
f9f40adcdc fix(nodes): fix t2i graph
Removed width and height edges.
2023-05-02 13:11:28 +10:00
psychedelicious
3264d30b44 feat(nodes): allow multiples of 8 for dimensions 2023-05-02 12:01:52 +10:00
psychedelicious
4d885653e9 feat(ui): tidy 2023-05-02 11:27:08 +10:00
psychedelicious
475b6bef53 feat(ui): use windowing for gallery
vastly improves the gallery performance when many images are loaded.

- `react-virtuoso` to do the virtualized list
- `overlayscrollbars` for a scrollbar
2023-05-02 11:27:08 +10:00
Eugene
d39de0ad38 fix(nodes): fix duplicate Invoker start/stop events 2023-05-01 18:24:37 -04:00
Eugene
d14a7d756e nodes-api: enforce single thread for the processor
On hyperthreaded CPUs we get two threads operating on the queue by
default on each core. This cases two threads to process queue items.
This results in pytorch errors and sometimes generates garbage.

Locking this to single thread makes sense because we are bound by the
number of GPUs in the system, not by CPU cores. And to parallelize
across GPUs we should just start multiple processors (and use async
instead of threading)

Fixes #3289
2023-05-01 18:24:37 -04:00
Lincoln Stein
b050c1bb8f use logger in ApiDependencies 2023-05-01 16:27:44 -04:00
psychedelicious
276dfc591b feat(ui): disable w/h when img2img & not fit 2023-05-01 17:28:22 +10:00
psychedelicious
b49d76ebee feat(nodes): fix image to image fit param
it was ignored previously.
2023-05-01 17:28:22 +10:00
psychedelicious
a6be44789b fix(ui): progress image rerender, checkbox 2023-05-01 11:16:49 +10:00
blessedcoolant
a4313c26cb fix: Do not hide Preview button & color code it 2023-05-01 11:16:49 +10:00
blessedcoolant
d4b250d509 feat(ui): Add auto show progress previews setting 2023-05-01 11:16:49 +10:00
psychedelicious
29743a9e02 fix(ui): next/prev image buttons 2023-05-01 11:16:49 +10:00
psychedelicious
fecb77e344 feat(ui): dndkit --> rnd for draggable 2023-05-01 11:16:49 +10:00
psychedelicious
779671753d feat(ui): tweak floating preview 2023-05-01 11:16:49 +10:00
psychedelicious
d5e152b35e fix(ui): ignore events after canceling session 2023-05-01 11:16:49 +10:00
psychedelicious
270657a62c feat(ui): gallery & progress image refactor 2023-05-01 11:16:49 +10:00
psychedelicious
3601b9c860 feat(ui): revamp status indicator 2023-05-01 11:16:49 +10:00
psychedelicious
c8fe12cd91 feat(ui): init image tweaks 2023-05-01 11:16:49 +10:00
psychedelicious
deae5fbaec fix(ui): socket event types 2023-05-01 11:16:49 +10:00
psychedelicious
5b558af2b3 fix(ui): fix metadata viewer scroll 2023-05-01 11:16:49 +10:00
psychedelicious
4150d5306f chore(ui): regen api client 2023-05-01 11:16:49 +10:00
psychedelicious
8c2e4700f9 feat(ui): persist gallery state 2023-05-01 11:16:49 +10:00
psychedelicious
adaecada20 fix(ui): fix current image seed button 2023-05-01 11:16:49 +10:00
psychedelicious
258895bcc9 feat(ui): being dismantling old sio stuff, fix recall seed/prompt/init
- still need to fix up metadataviewer's recall features
2023-05-01 11:16:49 +10:00
psychedelicious
2eb7c25bae feat(ui): clean up and simplify socketio middleware 2023-05-01 11:16:49 +10:00
psychedelicious
2e4e9434c1 fix(ui): fix initial image for uploads 2023-05-01 11:16:49 +10:00
psychedelicious
0cad204e74 feat(ui): add error handling for linear graph generation 2023-05-01 11:16:49 +10:00
Lincoln Stein
0bc2edc044 Merge branch 'main' into enhance/invokeai-logs 2023-04-29 11:00:18 -04:00
Lincoln Stein
16488e7db8 fix tests 2023-04-29 10:59:50 -04:00
Lincoln Stein
974841926d logger is a interchangeable service 2023-04-29 10:48:50 -04:00
Lincoln Stein
8db20e0d95 rename log to logger throughout 2023-04-29 09:43:40 -04:00
psychedelicious
d00d29d6b5 feat(ui): update settings modal 2023-04-29 18:28:19 +10:00
psychedelicious
dc976cd665 feat(ui): add switch for logging 2023-04-29 18:28:19 +10:00
psychedelicious
6d6b986a66 feat(ui): remove Console and redux logging state 2023-04-29 18:28:19 +10:00
psychedelicious
bffdede0fa feat(ui): improve log messages 2023-04-29 18:28:19 +10:00
psychedelicious
a4c258e9ec feat(ui): add roarr logger 2023-04-29 18:28:19 +10:00
psychedelicious
8d837558ac fix(ui): fix spelling of systemPersistDenylist.ts 2023-04-29 18:28:19 +10:00
psychedelicious
e673ed08ec fix(ui): restore missing chakra-cli package
(amending to try and get the workflow to run)
2023-04-29 12:21:11 +10:00
Lincoln Stein
f0e07bff5a fix bad logging path in config script 2023-04-28 15:39:00 -04:00
Lincoln Stein
3ec06a1fc3 Merge branch 'main' into enhance/invokeai-logs 2023-04-28 10:10:33 -04:00
Lincoln Stein
6b79e2b407 Merge branch 'main' into enhance/invokeai-logs
- resolve conflicts
- remove unused code identified by pyflakes
2023-04-28 10:09:46 -04:00
blessedcoolant
0eed9dbc44 fix(ui): fix packaging import issue (#3294)
I accidentally merged a broken #3292 (merge conflicts incorrectly
resolved). Fixing it
2023-04-29 00:39:56 +12:00
psychedelicious
53c7832fd1 fix(ui): fix packaging import issue 2023-04-28 22:37:51 +10:00
psychedelicious
ca1cc0e2c2 feat(ui): rerender mitigation sweep 2023-04-28 22:00:18 +10:00
psychedelicious
5d8728c7ef feat(ui): persist socket session ids and re-sub on connect 2023-04-28 22:00:18 +10:00
psychedelicious
a8cec4c7e6 fix(ui): improve schema parsing error handling 2023-04-28 22:00:18 +10:00
psychedelicious
2b5ccdc55f build(ui): treeshake lodash via lodash-es 2023-04-28 21:56:43 +10:00
psychedelicious
d92d5b5258 build(ui): fix types exports 2023-04-28 21:56:43 +10:00
psychedelicious
a591184d2a build(ui): remove unneeded types file 2023-04-28 21:56:43 +10:00
psychedelicious
ee881e4c78 build(ui): add react/react-dom peer deps 2023-04-28 21:56:43 +10:00
psychedelicious
61fbb24e36 feat(ui): set up for packaging 2023-04-28 21:56:43 +10:00
psychedelicious
d582949488 feat(ui): rename main app components 2023-04-28 21:56:43 +10:00
psychedelicious
de574eb4d9 chore(ui): upgrade all packages 2023-04-28 21:56:43 +10:00
psychedelicious
bfd90968f1 chore(ui): tidy npm structure 2023-04-28 21:56:43 +10:00
psychedelicious
4a924c9b54 feat(nodes): hardcode resize latents downsampling 2023-04-28 09:52:09 +10:00
psychedelicious
0453d60c64 fix(nodes): fix slatents and rlatents bugs 2023-04-28 09:52:09 +10:00
psychedelicious
c4f4f8b1b8 fix(nodes): remove unused width and height from t2l 2023-04-28 09:52:09 +10:00
psychedelicious
3e80eaa342 feat(nodes): add resize and scale latents nodes
- this resize/scale latents is what is needed for hires fix
- also remove unused `seed` from t2l
2023-04-28 09:52:09 +10:00
Mary Hipp
00a0cb3403 fix(ui): update exported types 2023-04-28 09:20:09 +10:00
Mary Hipp
ea93cad5ff fix(ui): update to match change in route params 2023-04-28 09:19:03 +10:00
Mary Hipp
4453a0d20d feat(ui): remove toasts for network bc we have status to tell us 2023-04-28 09:18:19 +10:00
Mary Hipp Rogers
1e837e3c9d fix(ui): add formatted neg prompt for linear nodes (#3282)
* fix(ui): add formatted neg prompt for linear nodes

* remove conditional

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-27 15:05:35 -04:00
Andy Luhrs
0f95f7cea3 Fix inpaint node
Seems like this is the only change needed for the existing inpaint node to work.
2023-04-27 11:03:07 -07:00
StAlKeR7779
0b0068ab86 Merge branch 'main' into feat/compel_node 2023-04-27 14:53:10 +03:00
psychedelicious
31c7fa833e feat(ui): simplify image display 2023-04-27 14:10:44 +10:00
blessedcoolant
db16ca0079 fix(ui): Current Image Buttons position 2023-04-27 14:10:44 +10:00
psychedelicious
a824f47bc6 fix(nodes): use absolute path when deleting 2023-04-27 14:10:44 +10:00
psychedelicious
99392debe8 feat(ui): refactor DeleteImageModal
- refactor the component
- use translations
- add config for systems where deleted images are not sent to bin (only changes the messaging)
2023-04-27 14:10:44 +10:00
psychedelicious
0cc739afc8 feat(nodes): use send2trash to delete images, fix thumbnail_path 2023-04-27 14:10:44 +10:00
psychedelicious
0ab62b0343 feat(ui): "blacklist" -> "denylist" 2023-04-27 14:10:44 +10:00
psychedelicious
75d25dd5cc feat(ui): restore image deletion functionality 2023-04-27 14:10:44 +10:00
psychedelicious
2e54da13d8 chore(ui): regen api client 2023-04-27 14:10:44 +10:00
psychedelicious
f34f416bf5 fix(ui): handle floats in NumberInputFieldComponent 2023-04-27 14:10:44 +10:00
psychedelicious
021c63891d fix(ui): fix config types and merging 2023-04-27 14:10:44 +10:00
blessedcoolant
a968862e6b feat(ui): Move img2img badge info to top right 2023-04-27 14:10:44 +10:00
blessedcoolant
a08189d457 ui: Match styling of img2img to the rest of the accordions 2023-04-27 14:10:44 +10:00
psychedelicious
0a936696c3 feat(ui): add config slice, configuration default values 2023-04-27 14:10:44 +10:00
blessedcoolant
55e33eaf4c docs: add note on README about migration (#3277) 2023-04-27 13:17:43 +12:00
psychedelicious
3da5fb223f docs: add note on README about migration 2023-04-27 11:05:32 +10:00
Mary Hipp Rogers
a3c5a664e5 fix(ui): update UI to handle uploads with alternate URLs (#3274) 2023-04-26 07:14:08 -07:00
Mary Hipp
b638fb2f30 fix(ui): use name in response instead of parsing out of URL to handle alternative URLs 2023-04-26 09:48:16 -04:00
psychedelicious
c1b10b2222 feat(ui): open in new tab @ hoverable image 2023-04-26 12:40:10 +10:00
psychedelicious
bee29714d9 fix(ui): fix templates not refreshing correctly 2023-04-26 12:40:10 +10:00
psychedelicious
d40d5276dd feat(ui): wip img2img ui 2023-04-26 12:40:10 +10:00
psychedelicious
568f0aad71 feat(ui): wip img2img ui 2023-04-26 12:40:10 +10:00
psychedelicious
38474fa9d4 feat(ui): add lil spinner to loading 2023-04-26 12:17:01 +10:00
psychedelicious
f7f974a28b fix(ui): fix inverted conditional 2023-04-26 12:17:01 +10:00
psychedelicious
3c150b384c fix(ui): fix export of ApplicationFeature type 2023-04-26 12:17:01 +10:00
psychedelicious
65816049ba feat(ui): add secret loading screen override button 2023-04-26 12:17:01 +10:00
psychedelicious
c1c881ded5 feat(ui): support disabledFeatures, add nicer loading
- `disabledParametersPanels` -> `disabledFeatures`
- handle disabling `faceRestore`, `upscaling`, `lightbox`, `modelManager` and OSS header links/buttons
- wait until models are loaded to hide loading screen
- also wait until schema is parsed if `nodes` is an enabled tab
2023-04-26 12:17:01 +10:00
maryhipp
82c4dd8b86 fix(api): return same URL on location header 2023-04-26 06:29:30 +10:00
psychedelicious
711d09a107 feat(nodes): add get_uri method to image storage
- gets the external URI of an image
2023-04-26 06:29:30 +10:00
psychedelicious
74013b6611 fix(nodes): address feedback 2023-04-26 06:29:30 +10:00
psychedelicious
790f399986 feat(nodes): tidy images routes 2023-04-26 06:29:30 +10:00
psychedelicious
73cdd36594 feat(nodes): raise HTTPExceptions instead of returning Reponses 2023-04-26 06:29:30 +10:00
psychedelicious
50ac3eb28d feat(nodes): add delete_image & delete_images routes 2023-04-26 06:29:30 +10:00
StAlKeR7779
d753cff91a Undo debug message 2023-04-25 13:18:50 +03:00
StAlKeR7779
89f1909e4b Update default graph 2023-04-25 13:11:50 +03:00
StAlKeR7779
37916a22ad Use textual inversion manager from pipeline, remove extra conditioning info for uc 2023-04-25 12:53:13 +03:00
blessedcoolant
76e5d0595d fix(ui): fix no progress images when gallery is empty (#3268)
When gallery was empty (and there is therefore no selected image), no
progress images were displayed.

- fix by correcting the logic in CurrentImageDisplay
- also fix app crash introduced by fixing the first bug
2023-04-25 17:48:24 +12:00
psychedelicious
f03cb8f134 fix(ui): fix no progress images when gallery is empty 2023-04-25 15:00:54 +10:00
Lincoln Stein
c2a0e8afc3 [Bugfix] prevent cli crash (#3132)
Prevent legacy CLI crash caused by removal of convert option
    
- Compensatory change to the CLI that prevents it from crashing when it
tries to import a model.
- Bug introduced when the "convert" option removed from the model
manager.
2023-04-25 03:55:33 +01:00
Lincoln Stein
31a904b903 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-25 03:28:45 +01:00
Lincoln Stein
c174cab3ee [Bugfix] fixes and code cleanup to update and installation routines (#3101)
- Fix the update script to work again and fixes the ambiguity between
when a user wants to update to a tag vs updating to a branch, by making
these two operations explicitly separate.
- Remove dangling functions and arguments related to legacy checkpoint
conversion. These are no longer needed now that all legacy models are
either converted at import time, or on-the-fly in RAM.
2023-04-25 03:28:23 +01:00
Lincoln Stein
fe12938c23 update to diffusers 0.15 and fix code for name changes (#3201)
- This is a port of #3184 to the main branch
2023-04-25 03:23:24 +01:00
Lincoln Stein
4fa5c963a1 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-25 03:10:51 +01:00
Lincoln Stein
48ce256ba2 Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-25 02:49:59 +01:00
StAlKeR7779
8cb2fa8600 Restore log_tokenization check 2023-04-25 04:29:17 +03:00
StAlKeR7779
8f460b92f1 Make latent generation nodes use conditions instead of prompt 2023-04-25 04:21:03 +03:00
StAlKeR7779
d99a08a441 Add compel node and conditioning field type 2023-04-25 03:48:44 +03:00
blessedcoolant
7555b1f876 Event service will now sleep for 100ms between polls instead of 1ms, reducing CPU usage significantly (#3256)
I noticed that the current invokeai-new.py was using almost all of a CPU
core. After a bit of profileing I noticed that there were many thousands
of calls to epoll() which suggested to me that something wasn't sleeping
properly in asyncio's loop.

A bit of further investigation with Python profiling revealed that the
__dispatch_from_queue() method in FastAPIEventService
(app/api/events.py:33) was also being called thousands of times.

I believe the asyncio.sleep(0.001) in that method is too aggressive (it
means that the queue will be polled every 1ms) and that 0.1 (100ms) is
still entirely reasonable.
2023-04-24 19:35:27 +12:00
blessedcoolant
a537231f19 Merge branch 'main' into reduce-event-polling 2023-04-24 19:14:10 +12:00
ismail ihsan bülbül
8044d1b840 translationBot(ui): update translation (Turkish)
Currently translated at 11.3% (58 of 512 strings)

translationBot(ui): added translation (Turkish)

Co-authored-by: ismail ihsan bülbül <e-ben@msn.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/tr/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
Patrick Tien
2b58ce4ae4 translationBot(ui): update translation (Chinese (Simplified))
Currently translated at 75.0% (380 of 506 strings)

Co-authored-by: Patrick Tien <ivetien@outlook.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/zh_Hans/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
Fabian Bahl
ef605cd76c translationBot(ui): update translation (German)
Currently translated at 81.8% (414 of 506 strings)

Co-authored-by: Fabian Bahl <fabian98@bahl-netz.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
figgefigge
a84b5b168f translationBot(ui): update translation (Swedish)
Currently translated at 34.7% (176 of 506 strings)

translationBot(ui): added translation (Swedish)

Co-authored-by: figgefigge <qvintuz@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/sv/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
Alexander Eichhorn
16f6ee04d0 translationBot(ui): update translation (German)
Currently translated at 81.8% (414 of 506 strings)

translationBot(ui): update translation (German)

Currently translated at 80.8% (409 of 506 strings)

Co-authored-by: Alexander Eichhorn <pfannkuchensack@einfach-doof.de>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
System X - Files
44be057aa3 translationBot(ui): update translation (Ukrainian)
Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (English)

Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Ukrainian)

Currently translated at 100.0% (506 of 506 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (506 of 506 strings)

translationBot(ui): update translation (Russian)

Currently translated at 100.0% (506 of 506 strings)

Co-authored-by: System X - Files <vasyasos@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/en/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/uk/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
mitien
422f6967b2 translationBot(ui): update translation (Ukrainian)
Currently translated at 75.8% (384 of 506 strings)

translationBot(ui): update translation (Russian)

Currently translated at 85.5% (433 of 506 strings)

Co-authored-by: mitien <mitien@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ru/
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/uk/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
Riccardo Giovanetti
4528cc8ba6 translationBot(ui): update translation (Italian)
Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (511 of 511 strings)

translationBot(ui): update translation (Italian)

Currently translated at 100.0% (506 of 506 strings)

Co-authored-by: Riccardo Giovanetti <riccardo.giovanetti@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/it/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
gallegonovato
87e91ebc1d translationBot(ui): update translation (Spanish)
Currently translated at 100.0% (512 of 512 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (511 of 511 strings)

translationBot(ui): update translation (Spanish)

Currently translated at 100.0% (506 of 506 strings)

Co-authored-by: gallegonovato <fran-carro@hotmail.es>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/es/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
Dennis
fd00d111ea translationBot(ui): update translation (Dutch)
Currently translated at 100.0% (504 of 504 strings)

Co-authored-by: Dennis <dennis@vanzoerlandt.nl>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/nl/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
Jaulustus
b8dc9000bd translationBot(ui): update translation (German)
Currently translated at 73.4% (370 of 504 strings)

Co-authored-by: Jaulustus <jaulustus@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/de/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
Juuso V
58c1066765 translationBot(ui): update translation (Finnish)
Currently translated at 18.2% (92 of 504 strings)

translationBot(ui): added translation (Finnish)

Co-authored-by: Juuso V <juuso.vantola@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/fi/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
Bouncyknighter
37096a697b translationBot(ui): added translation (Mongolian)
Co-authored-by: Bouncyknighter <gebifirm@gmail.com>
2023-04-24 16:05:16 +10:00
唐澤 克幸
17d0920186 translationBot(ui): update translation (Japanese)
Currently translated at 73.0% (368 of 504 strings)

Co-authored-by: 唐澤 克幸 <4ranci0ne@gmail.com>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/ja/
Translation: InvokeAI/Web UI
2023-04-24 16:05:16 +10:00
techybrain-dev
1e05538364 translationBot(ui): added translation (Vietnamese)
Co-authored-by: techybrain-dev <techybrain.dev@gmail.com>
2023-04-24 16:05:16 +10:00
Chris Jones
cf28617cd6 Event service will now sleep for 100ms between polls instead of 1ms, reducing CPU usage significantly 2023-04-23 21:27:02 +01:00
blessedcoolant
d0d8640711 feat(ui): add reload schema button (#3252) 2023-04-23 19:51:37 +12:00
psychedelicious
e6158d1874 feat(ui): add reload schema button 2023-04-23 17:49:02 +10:00
psychedelicious
2e9d1ea8a3 feat(ui): add support for shouldFetchImages if UI needs to re-fetch an image URL (#3250)
* if `shouldFetchImages` is passed in, UI will make an additional
request to get valid image URL when an invocation is complete
* this is necessary in order to have optional authorization for images
2023-04-23 16:00:13 +10:00
Mary Hipp
59b0153236 add to types 2023-04-23 15:59:55 +10:00
Mary Hipp
9f8ff912c4 feat(ui): add support for shouldFetchImages if UI needs to re-fetch an image URL 2023-04-23 15:59:55 +10:00
blessedcoolant
f0e4a2124a [Nodes UI] More Work (#3248)
- Style the Minimap
- Made the Node UI Legend Responsive
- Set Min Width for nodes on Spawn so resize doesn't snap.
- Initial Implementation of Node Search
- Added FuseJS to handle the node filtering
2023-04-23 17:51:40 +12:00
blessedcoolant
11ab5c7d56 fix(ui): Fix up arrow not working on unfiltered list 2023-04-23 15:18:35 +12:00
blessedcoolant
3f334d9e5e feat(ui): Add fusejs to NodeSearch 2023-04-23 15:14:44 +12:00
blessedcoolant
ff891b1ff2 feat(ui): Basic Node Search Component
Very buggy
2023-04-23 13:35:02 +12:00
Lincoln Stein
2914ee10b0 Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-22 20:21:59 +01:00
blessedcoolant
e29c2fb782 Merge branch 'more-nodes-work' of https://github.com/blessedcoolant/InvokeAI into more-nodes-work 2023-04-23 02:53:25 +12:00
blessedcoolant
b763f1809e feat(ui): Stylize Node Minimap 2023-04-23 02:52:32 +12:00
psychedelicious
d26b44104a fix(ui): minor tidy 2023-04-23 00:45:03 +10:00
blessedcoolant
b73fd2a6d2 fix(ui): Set Min Width for Nodes 2023-04-23 00:55:43 +12:00
blessedcoolant
f258aba6d1 chore(ui): Make the Node UI Legend Responsive 2023-04-23 00:55:22 +12:00
psychedelicious
2e70848aa0 Responsive Mobile Layout (#3207)
The first draft for a Responsive Mobile Layout for InvokeAI. Some basic
documentation to help contributors. // Notes from: @blessedcoolant

---

The whole rework needs to be done using the `mobile first` concept where
the base design will be catered to mobile and we add responsive changes
as we grow to larger screens.

**Added**

- Basic breakpoints have been added to the `theme.ts` file that indicate
at which values Chakra makes the responsive changes.
- A basic `useResolution` hook has been added that either returns
`mobile`, `tablet` or `desktop` based on the breakpoint. We can
customize this hook further to do more complex checks for us if need be.

**Syntax**

- Any Chakra component is directly capable of taking different values
for the different breakpoints set in our `theme.ts` file. These can be
passed in a few ways with the most descriptive being an object. For
example:

`flexDir={{ base: 'column', xl: 'row' }}` - This would set the `0em and
above` to be column for the flex direction but change to row
automatically when we hit `xl` and above resolutions which in our case
is `80em or 1280px`. This same format is applicable for any element in
Chakra.

`flexDir={['column', null, null, 'row', null]}` - The above syntax can
also be passed as an array to the property with each value in the array
corresponding to each breakpoint we have. Setting `null` just bypasses
it. This is a good short hand but I think we stick to the above syntax
for readability.

**Note**: I've modified a few elements here and there to give an idea on
how the responsive syntax works for reference.

---

**Problems to be solved** @SammCheese 

- Some issues you might run into are with the Resizable components.
We've decided we will get not use resizable components for smaller
resolutions. Doesn't make sense. So you'll need to make conditional
renderings around these.
- Some components that need custom layouts for different screens might
be better if ported over to `Grid` and use `gridTemplateAreas` to swap
out the design layout. I've demonstrated an example of this in a commit
I've made. I'll let you be the judge of where we might need this.
- The header will probably need to be converted to a burger menu of some
sort with the model changing being handled correctly UX wise. We'll
discuss this on discord.

---

Anyone willing to contribute to this PR can feel free to join the
discussion on discord.

https://discord.com/channels/1020123559063990373/1020839344170348605/threads/1097323866780606615
2023-04-22 22:34:30 +10:00
Sammy
e973aeef0d Merge branch 'main' into responsive-ui 2023-04-22 14:31:19 +02:00
psychedelicious
50e1ac731d fix(ui): make input/outputs renderfn callback 2023-04-22 22:25:17 +10:00
psychedelicious
43addc1548 fix(ui): memoize everything nodes 2023-04-22 22:25:17 +10:00
psychedelicious
4901911c1a fix(ui): improve nodes performance 2023-04-22 22:25:17 +10:00
psychedelicious
44a653925a feat(ui): node styling, controls
- custom node controls
- fix some types
- fix badge colors via colorScheme
- style nodes
2023-04-22 22:25:17 +10:00
blessedcoolant
94a07a8da7 feat(ui): Make Nodes always spawn in center of work area 2023-04-22 22:25:17 +10:00
blessedcoolant
ad41afe65e feat(ui): Make Nodes Resizable 2023-04-22 22:25:17 +10:00
blessedcoolant
77fa7519c4 chore(ui): Cleanup Invocation Component 2023-04-22 22:25:17 +10:00
SammCheese
6e29148d4d delete ImageToImageContent.tsx 2023-04-22 08:43:14 +02:00
SammCheese
3044f3bfe5 fix(ui): adapt NodeEditor for smaller screens 2023-04-22 08:33:05 +02:00
SammCheese
67a8627cf6 add dev:host script 2023-04-22 08:30:09 +02:00
SammCheese
3fb433cb91 Merge branch 'main' of https://github.com/invoke-ai/InvokeAI into responsive-ui 2023-04-22 08:27:00 +02:00
psychedelicious
5f498e10bd Partial migration of UI to nodes API (#3195)
* feat(ui): add axios client generator and simple example

* fix(ui): update client & nodes test code w/ new Edge type

* chore(ui): organize generated files

* chore(ui): update .eslintignore, .prettierignore

* chore(ui): update openapi.json

* feat(backend): fixes for nodes/generator

* feat(ui): generate object args for api client

* feat(ui): more nodes api prototyping

* feat(ui): nodes cancel

* chore(ui): regenerate api client

* fix(ui): disable OG web server socket connection

* fix(ui): fix scrollbar styles typing and prop

just noticed the typo, and made the types stronger.

* feat(ui): add socketio types

* feat(ui): wip nodes

- extract api client method arg types instead of manually declaring them
- update example to display images
- general tidy up

* start building out node translations from frontend state and add notes about missing features

* use reference to sampler_name

* use reference to sampler_name

* add optional apiUrl prop

* feat(ui): start hooking up dynamic txt2img node generation, create middleware for session invocation

* feat(ui): write separate nodes socket layer, txt2img generating and rendering w single node

* feat(ui): img2img implementation

* feat(ui): get intermediate images working but types are stubbed out

* chore(ui): add support for package mode

* feat(ui): add nodes mode script

* feat(ui): handle random seeds

* fix(ui): fix middleware types

* feat(ui): add rtk action type guard

* feat(ui): disable NodeAPITest

This was polluting the network/socket logs.

* feat(ui): fix parameters panel border color

This commit should be elsewhere but I don't want to break my flow

* feat(ui): make thunk types more consistent

* feat(ui): add type guards for outputs

* feat(ui): load images on socket connect

Rudimentary

* chore(ui): bump redux-toolkit

* docs(ui): update readme

* chore(ui): regenerate api client

* chore(ui): add typescript as dev dependency

I am having trouble with TS versions after vscode updated and now uses TS 5. `madge` has installed 3.9.10 and for whatever reason my vscode wants to use that. Manually specifying 4.9.5 and then setting vscode to use that as the workspace TS fixes the issue.

* feat(ui): begin migrating gallery to nodes

Along the way, migrate to use RTK `createEntityAdapter` for gallery images, and separate `results` and `uploads` into separate slices. Much cleaner this way.

* feat(ui): clean up & comment results slice

* fix(ui): separate thunk for initial gallery load so it properly gets index 0

* feat(ui): POST upload working

* fix(ui): restore removed type

* feat(ui): patch api generation for headers access

* chore(ui): regenerate api

* feat(ui): wip gallery migration

* feat(ui): wip gallery migration

* chore(ui): regenerate api

* feat(ui): wip refactor socket events

* feat(ui): disable panels based on app props

* feat(ui): invert logic to be disabled

* disable panels when app mounts

* feat(ui): add support to disableTabs

* docs(ui): organise and update docs

* lang(ui): add toast strings

* feat(ui): wip events, comments, and general refactoring

* feat(ui): add optional token for auth

* feat(ui): export StatusIndicator and ModelSelect for header use

* feat(ui) working on making socket URL dynamic

* feat(ui): dynamic middleware loading

* feat(ui): prep for socket jwt

* feat(ui): migrate cancelation

also updated action names to be event-like instead of declaration-like

sorry, i was scattered and this commit has a lot of unrelated stuff in it.

* fix(ui): fix img2img type

* chore(ui): regenerate api client

* feat(ui): improve InvocationCompleteEvent types

* feat(ui): increase StatusIndicator font size

* fix(ui): fix middleware order for multi-node graphs

* feat(ui): add exampleGraphs object w/ iterations example

* feat(ui): generate iterations graph

* feat(ui): update ModelSelect for nodes API

* feat(ui): add hi-res functionality for txt2img generations

* feat(ui): "subscribe" to particular nodes

feels like a dirty hack but oh well it works

* feat(ui): first steps to node editor ui

* fix(ui): disable event subscription

it is not fully baked just yet

* feat(ui): wip node editor

* feat(ui): remove extraneous field types

* feat(ui): nodes before deleting stuff

* feat(ui): cleanup nodes ui stuff

* feat(ui): hook up nodes to redux

* fix(ui): fix handle

* fix(ui): add basic node edges & connection validation

* feat(ui): add connection validation styling

* feat(ui): increase edge width

* feat(ui): it blends

* feat(ui): wip model handling and graph topology validation

* feat(ui): validation connections w/ graphlib

* docs(ui): update nodes doc

* feat(ui): wip node editor

* chore(ui): rebuild api, update types

* add redux-dynamic-middlewares as a dependency

* feat(ui): add url host transformation

* feat(ui): handle already-connected fields

* feat(ui): rewrite SqliteItemStore in sqlalchemy

* fix(ui): fix sqlalchemy dynamic model instantiation

* feat(ui, nodes): metadata wip

* feat(ui, nodes): models

* feat(ui, nodes): more metadata wip

* feat(ui): wip range/iterate

* fix(nodes): fix sqlite typing

* feat(ui): export new type for invoke component

* tests(nodes): fix test instantiation of ImageField

* feat(nodes): fix LoadImageInvocation

* feat(nodes): add `title` ui hint

* feat(nodes): make ImageField attrs optional

* feat(ui): wip nodes etc

* feat(nodes): roll back sqlalchemy

* fix(nodes): partially address feedback

* fix(backend): roll back changes to pngwriter

* feat(nodes): wip address metadata feedback

* feat(nodes): add seeded rng to RandomRange

* feat(nodes): address feedback

* feat(nodes): move GET images error handling to DiskImageStorage

* feat(nodes): move GET images error handling to DiskImageStorage

* fix(nodes): fix image output schema customization

* feat(ui): img2img/txt2img -> linear

- remove txt2img and img2img tabs
- add linear tab
- add initial image selection to linear parameters accordion

* feat(ui): tidy graph builders

* feat(ui): tidy misc

* feat(ui): improve invocation union types

* feat(ui): wip metadata viewer recall

* feat(ui): move fonts to normal deps

* feat(nodes): fix broken upload

* feat(nodes): add metadata module + tests, thumbnails

- `MetadataModule` is stateless and needed in places where the `InvocationContext` is not available, so have not made it a `service`
- Handles loading/parsing/building metadata, and creating png info objects
- added tests for MetadataModule
- Lifted thumbnail stuff to util

* fix(nodes): revert change to RandomRangeInvocation

* feat(nodes): address feedback

- make metadata a service
- rip out pydantic validation, implement metadata parsing as simple functions
- update tests
- address other minor feedback items

* fix(nodes): fix other tests

* fix(nodes): add metadata service to cli

* fix(nodes): fix latents/image field parsing

* feat(nodes): customise LatentsField schema

* feat(nodes): move metadata parsing to frontend

* fix(nodes): fix metadata test

---------

Co-authored-by: maryhipp <maryhipp@gmail.com>
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-22 13:10:20 +10:00
Lincoln Stein
fdad62e88b chore: add ".version" and ".last_model" to gitignore (#3208)
Mistakenly closed the previous pr.
2023-04-20 18:26:27 +01:00
Lincoln Stein
955c81acef Merge branch 'main' into patch-1 2023-04-20 18:26:06 +01:00
Lincoln Stein
e1058f3416 update CODEOWNERS for changed team composition (#3234)
Remove @mauwii and @keturn until they are able to reengage with the
development effort. @GreggHelt2 is designated co-codeowner for the
backend.
2023-04-20 17:19:10 +01:00
Sammy
edf16a253d Merge branch 'main' into patch-1 2023-04-20 14:16:10 +02:00
Lincoln Stein
46f5ef4100 Merge branch 'main' into dev/codeowner-fix-main 2023-04-19 22:40:56 +01:00
Lincoln Stein
b843255236 update CODEOWNERS for changed team composition 2023-04-19 17:37:48 -04:00
Alexandre D. Roberge
3a968e5072 Update NSFW.md
Outdated doc said to change the '.invokeai' file, but it's now named 'invokeai.init' afaik.
2023-04-18 21:18:32 -04:00
Lincoln Stein
b164330e3c replaced remaining print statements with log.*() 2023-04-18 20:49:00 -04:00
Lincoln Stein
69433c9f68 Merge branch 'main' into lstein/enhance/diffusers-0.15 2023-04-18 19:21:53 -04:00
Lincoln Stein
bd8ffd36bf bump to diffusers 0.15.1, remove dangling module 2023-04-18 19:20:38 -04:00
Lincoln Stein
fd80e84ea6 Merge branch 'main' into patch-1 2023-04-18 19:14:28 -04:00
Lincoln Stein
4824237a98 Added CPU instruction for README (#3225)
Since the change itself is quite straight-forward, I'll just describe
the context. Tried using automatic installer on my laptop, kept erroring
out on line 140-something of installer.py, "ERROR: Can not perform a
'--user' install. User site-packages are not visible in this
virtualenv."
Got tired of of fighting with pip so moved on to command line install.
Worked immediately, but at the time lacked instruction for CPU, so
instead of opening any helpful hyperlinks in the readme, took a few
minutes to grab the link from installer.py - thus this pr.
2023-04-18 19:07:37 -04:00
Leo Pasanen
2c9a05eb59 Added CPU instruction for README 2023-04-18 18:46:55 +03:00
blessedcoolant
ecb5bdaf7e [bug] #3218 HuggingFace API off when --no-internet set (#3219)
#3218 

Huggingface API will not be queried if --no-internet flag is set
2023-04-18 14:34:34 +12:00
blessedcoolant
2feeb1f44c fix(ui): more responsive layout work 2023-04-18 04:29:31 +12:00
blessedcoolant
554f353773 fix(ui): Fix Width and Height showing 0 as input 2023-04-18 04:28:58 +12:00
Tim Cabbage
f6cdff2c5b [bug] #3218 HuggingFace API off when --no-internet set
https://github.com/invoke-ai/InvokeAI/issues/3218

Huggingface API will not be queried if --no-internet flag is set
2023-04-17 16:53:31 +02:00
blessedcoolant
aee27e94c9 fix(ui): Fix site header on really small screens 2023-04-18 01:25:53 +12:00
blessedcoolant
695893e1ac fix(ui): Improve parameters panel and preview display 2023-04-18 01:09:48 +12:00
blessedcoolant
b800a8eb2e feat(ui): responsive wip
- Fixed a bunch of padding and margin issues across the app
- Fixed the Invoke logo compressing
- Disabled the visibility of the options panel pin button in tablet and mobile views
- Refined the header menu options in mobile and tablet views
- Refined other site header elements in mobile and tablet views
- Aligned Tab Icons to center in mobile and tablet views
2023-04-18 00:50:09 +12:00
SammCheese
9749ef34b5 layout improvements 2023-04-17 13:30:33 +02:00
blessedcoolant
9a43362127 Revert "Merge branch 'responsive-ui' of https://github.com/SammCheese/InvokeAI into pr/3207"
This reverts commit 866024ea6c, reversing
changes made to 601cc1f92c.
2023-04-17 13:51:08 +12:00
blessedcoolant
866024ea6c Merge branch 'responsive-ui' of https://github.com/SammCheese/InvokeAI into pr/3207 2023-04-17 13:50:44 +12:00
blessedcoolant
601cc1f92c help(ui): Basic responsive updates to demonstrate
Made some basic responsive changes to demonstrate how to go about making changes.

There are a bunch of problems not addressed yet. Like dealing with the resizeable component and etc.
2023-04-17 13:50:13 +12:00
blessedcoolant
d6a9a4464d feat(ui): Add Basic useResolution Component
This component just classifies `base` and `sm` as mobile, `md` and `lg` as tablet and `xl` and `2xl` as desktop.

This is a basic hook for quicker work with resolutions. Can be modified and adjusted to our needs. All resolution related work can go into this hook.
2023-04-17 13:48:42 +12:00
blessedcoolant
dac271725a feat(ui): Add Basic Breakpoints 2023-04-17 13:26:10 +12:00
blessedcoolant
e1fbecfcf7 fix(ui): Syntax issue with the HidePreview icon 2023-04-17 12:42:06 +12:00
Eugene
63d10027a4 nodes: invocation queue item - make more pydantic 2023-04-16 09:39:33 -04:00
Eugene
ef0773b8a3 nodes: set default for InvocationQueueItem.invoke_all 2023-04-16 09:39:33 -04:00
Eugene
3daaddf15b nodes: remove duplicate LatentsToLatentsInvocation 2023-04-16 09:39:33 -04:00
Eugene
570c3fe690 nodes: ensure Graph and GraphExecutionState ids are cast to str on instantiation 2023-04-16 09:39:33 -04:00
Eugene
cbd1a7263a nodes: fix typing of GraphExecutionState.id 2023-04-16 09:39:33 -04:00
Eugene
7fc5fbd4ce nodes: convert InvocationQueueItem to Pydantic class 2023-04-16 09:39:33 -04:00
Eugene Brodsky
6f6de402ad make InvocationQueueItem serializable 2023-04-16 09:39:33 -04:00
SammCheese
2ec4f5af10 remove unused import to pass lint & revert package.json 2023-04-15 21:53:33 +02:00
Sammy
281662a6e1 chore: add ".version" and ".last_model" to gitignore
Mistakenly closed the previous pr
2023-04-15 21:46:47 +02:00
SammCheese
2edd032ec7 draft mobile layout 2023-04-15 21:34:03 +02:00
SammCheese
50eb02f68b chore(ui): build 2023-04-15 20:45:17 +10:00
SammCheese
d73f3adc43 moving shouldHidePreview from gallery to ui slice. 2023-04-15 20:45:17 +10:00
SammCheese
116107f464 chore(ui): build 2023-04-15 20:45:17 +10:00
SammCheese
da44bb1707 rename setter 2023-04-15 20:45:17 +10:00
SammCheese
f43aed677e chore(ui): build 2023-04-15 20:45:17 +10:00
SammCheese
0d051aaae2 rename hidden variable to something more descriptive 2023-04-15 20:45:17 +10:00
SammCheese
e4e48ff995 i forgor to push the locale 2023-04-15 20:45:17 +10:00
SammCheese
442a6bffa4 feat: add "Hide Preview" Button 2023-04-15 20:45:17 +10:00
Lincoln Stein
aab262d991 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-14 20:12:38 -04:00
Lincoln Stein
47b9910b48 update to diffusers 0.15 and fix code for name changes
- This is a port of #3184 to the main branch
2023-04-14 15:35:03 -04:00
Lincoln Stein
0b0e6fe448 convert remainder of print() to log.info() 2023-04-14 15:15:14 -04:00
Kyle Schouviller
23d65e7162 [nodes] Add subgraph library, subgraph usage in CLI, and fix subgraph execution (#3180)
* Add latent to latent (img2img equivalent)
Fix a CLI bug with multiple links per node

* Using "latents" instead of "latent"

* [nodes] In-progress implementation of graph library

* Add linking to CLI for graph nodes (still broken)

* Fix subgraph execution, fix subgraph linking in CLI

* Fix LatentsToLatents
2023-04-14 06:41:06 +00:00
blessedcoolant
024fd54d0b Fixed a Typo. (#3190) 2023-04-14 14:33:31 +12:00
Nicholas Körfer
c44c19e911 Fixed a Typo. 2023-04-13 17:42:34 +02:00
Lincoln Stein
c132dbdefa change "ialog" to "log" 2023-04-11 18:48:20 -04:00
Lincoln Stein
f3081e7013 add module-level getLogger() method 2023-04-11 12:23:13 -04:00
Lincoln Stein
f904f14f9e add missing module-level methods 2023-04-11 11:10:43 -04:00
Lincoln Stein
8917a6d99b add logging support
This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions.

Examples:

   ### A critical error     (logging.CRITICAL)
   *** A non-fatal error    (logging.ERROR)
   ** A warning             (logging.WARNING)
   >> Informational message (logging.INFO)
      | Debugging message   (logging.DEBUG)

This style logs everything through a single logging object and is
identical to using Python's `logging` module. The commonly-used
module-level logging functions are implemented as simple pass-thrus
to logging:

  import invokeai.backend.util.logging as ialog

  ialog.debug('this is a debugging message')
  ialog.info('this is a informational message')
  ialog.log(level=logging.CRITICAL, 'get out of dodge')
  ialog.disable(level=logging.INFO)
  ialog.basicConfig(filename='/var/log/invokeai.log')

Internally, the invokeai logging module creates a new default logger
named "invokeai" so that its logging does not interfere with other
module's use of the vanilla logging module. So `logging.error("foo")`
will go through the regular logging path and not add the additional
message decorations.

For more control, the logging module's object-oriented logging style
is also supported. The API is identical to the vanilla logging
usage. In fact, the only thing that has changed is that the
getLogger() method adds a custom formatter to the log messages.

 import logging
 from invokeai.backend.util.logging import InvokeAILogger

 logger = InvokeAILogger.getLogger(__name__)
 fh = logging.FileHandler('/var/invokeai.log')
 logger.addHandler(fh)
 logger.critical('this will be logged to both the console and the log file')
2023-04-11 10:46:38 -04:00
Lincoln Stein
5a4765046e add logging support
This commit adds invokeai.backend.util.logging, which provides support
for formatted console and logfile messages that follow the status
reporting conventions of earlier InvokeAI versions.

Examples:

   ### A critical error     (logging.CRITICAL)
   *** A non-fatal error    (logging.ERROR)
   ** A warning             (logging.WARNING)
   >> Informational message (logging.INFO)
      | Debugging message   (logging.DEBUG)
2023-04-11 09:33:28 -04:00
Lincoln Stein
cee159dfa3 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-09 12:08:09 -04:00
Lincoln Stein
cd1b350dae Merge branch 'main' into bugfix/release-updater 2023-04-07 18:56:21 -04:00
Lincoln Stein
8334757af9 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-07 18:55:54 -04:00
Lincoln Stein
bc2b9500e3 Merge branch 'main' into bugfix/prevent-cli-crash 2023-04-06 15:38:46 -04:00
Lincoln Stein
32857d81c5 prevent legacy CLI crash caused by removal of convert option
- Compensatory change to the CLI that prevents it from crashing
  when it tries to import a model.
- Bug introduced when the "convert" option removed from the model
  manager.
2023-04-06 15:36:05 -04:00
Lincoln Stein
28f75d80d5 Merge branch 'main' into bugfix/release-updater 2023-04-05 18:25:33 -04:00
Lincoln Stein
b917ffa4d7 Merge branch 'main' into bugfix/release-updater 2023-04-05 17:37:27 -04:00
Lincoln Stein
f682fb8040 fix invokeai-update script
- This commit fixes the update script to work again, as well as fixing
  the ambiguity between updating to a tag and updating to a branch.
2023-04-02 11:08:12 -04:00
591 changed files with 23926 additions and 7319 deletions

14
.github/CODEOWNERS vendored
View File

@@ -1,16 +1,16 @@
# continuous integration # continuous integration
/.github/workflows/ @mauwii @lstein @blessedcoolant /.github/workflows/ @lstein @blessedcoolant
# documentation # documentation
/docs/ @lstein @mauwii @tildebyte @blessedcoolant /docs/ @lstein @tildebyte @blessedcoolant
/mkdocs.yml @lstein @mauwii @blessedcoolant /mkdocs.yml @lstein @blessedcoolant
# nodes # nodes
/invokeai/app/ @Kyle0654 @blessedcoolant /invokeai/app/ @Kyle0654 @blessedcoolant
# installation and configuration # installation and configuration
/pyproject.toml @mauwii @lstein @blessedcoolant /pyproject.toml @lstein @blessedcoolant
/docker/ @mauwii @lstein @blessedcoolant /docker/ @lstein @blessedcoolant
/scripts/ @ebr @lstein /scripts/ @ebr @lstein
/installer/ @lstein @ebr /installer/ @lstein @ebr
/invokeai/assets @lstein @ebr /invokeai/assets @lstein @ebr
@@ -22,11 +22,11 @@
/invokeai/backend @blessedcoolant @psychedelicious @lstein /invokeai/backend @blessedcoolant @psychedelicious @lstein
# generation, model management, postprocessing # generation, model management, postprocessing
/invokeai/backend @keturn @damian0815 @lstein @blessedcoolant @jpphoto /invokeai/backend @damian0815 @lstein @blessedcoolant @jpphoto @gregghelt2
# front ends # front ends
/invokeai/frontend/CLI @lstein /invokeai/frontend/CLI @lstein
/invokeai/frontend/install @lstein @ebr @mauwii /invokeai/frontend/install @lstein @ebr
/invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername /invokeai/frontend/merge @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/training @lstein @blessedcoolant @hipsterusername /invokeai/frontend/training @lstein @blessedcoolant @hipsterusername
/invokeai/frontend/web @psychedelicious @blessedcoolant /invokeai/frontend/web @psychedelicious @blessedcoolant

View File

@@ -2,8 +2,7 @@ name: mkdocs-material
on: on:
push: push:
branches: branches:
- 'main' - 'refs/heads/v2.3'
- 'development'
permissions: permissions:
contents: write contents: write
@@ -12,6 +11,10 @@ jobs:
mkdocs-material: mkdocs-material:
if: github.event.pull_request.draft == false if: github.event.pull_request.draft == false
runs-on: ubuntu-latest runs-on: ubuntu-latest
env:
REPO_URL: '${{ github.server_url }}/${{ github.repository }}'
REPO_NAME: '${{ github.repository }}'
SITE_URL: 'https://${{ github.repository_owner }}.github.io/InvokeAI'
steps: steps:
- name: checkout sources - name: checkout sources
uses: actions/checkout@v3 uses: actions/checkout@v3
@@ -22,11 +25,15 @@ jobs:
uses: actions/setup-python@v4 uses: actions/setup-python@v4
with: with:
python-version: '3.10' python-version: '3.10'
cache: pip
cache-dependency-path: pyproject.toml
- name: install requirements - name: install requirements
env:
PIP_USE_PEP517: 1
run: | run: |
python -m \ python -m \
pip install -r docs/requirements-mkdocs.txt pip install ".[docs]"
- name: confirm buildability - name: confirm buildability
run: | run: |
@@ -36,7 +43,7 @@ jobs:
--verbose --verbose
- name: deploy to gh-pages - name: deploy to gh-pages
if: ${{ github.ref == 'refs/heads/main' }} if: ${{ github.ref == 'refs/heads/v2.3' }}
run: | run: |
python -m \ python -m \
mkdocs gh-deploy \ mkdocs gh-deploy \

2
.gitignore vendored
View File

@@ -9,6 +9,8 @@ models/ldm/stable-diffusion-v1/model.ckpt
configs/models.user.yaml configs/models.user.yaml
config/models.user.yml config/models.user.yml
invokeai.init invokeai.init
.version
.last_model
# ignore the Anaconda/Miniconda installer used while building Docker image # ignore the Anaconda/Miniconda installer used while building Docker image
anaconda.sh anaconda.sh

View File

@@ -33,6 +33,8 @@
</div> </div>
_**Note: The UI is not fully functional on `main`. If you need a stable UI based on `main`, use the `pre-nodes` tag while we [migrate to a new backend](https://github.com/invoke-ai/InvokeAI/discussions/3246).**_
InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products. InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products.
**Quick links**: [[How to Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a href="https://invoke-ai.github.io/InvokeAI/">Documentation and Tutorials</a>] [<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas & Q&A</a>] **Quick links**: [[How to Install](https://invoke-ai.github.io/InvokeAI/#installation)] [<a href="https://discord.gg/ZmtBAhwWhy">Discord Server</a>] [<a href="https://invoke-ai.github.io/InvokeAI/">Documentation and Tutorials</a>] [<a href="https://github.com/invoke-ai/InvokeAI/">Code and Downloads</a>] [<a href="https://github.com/invoke-ai/InvokeAI/issues">Bug Reports</a>] [<a href="https://github.com/invoke-ai/InvokeAI/discussions">Discussion, Ideas & Q&A</a>]
@@ -84,7 +86,7 @@ installing lots of models.
6. Wait while the installer does its thing. After installing the software, 6. Wait while the installer does its thing. After installing the software,
the installer will launch a script that lets you configure InvokeAI and the installer will launch a script that lets you configure InvokeAI and
select a set of starting image generaiton models. select a set of starting image generation models.
7. Find the folder that InvokeAI was installed into (it is not the 7. Find the folder that InvokeAI was installed into (it is not the
same as the unpacked zip file directory!) The default location of this same as the unpacked zip file directory!) The default location of this
@@ -148,6 +150,11 @@ not supported.
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2 pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/rocm5.4.2
``` ```
_For non-GPU systems:_
```terminal
pip install InvokeAI --use-pep517 --extra-index-url https://download.pytorch.org/whl/cpu
```
_For Macintoshes, either Intel or M1/M2:_ _For Macintoshes, either Intel or M1/M2:_
```sh ```sh

View File

@@ -32,7 +32,7 @@ turned on and off on the command line using `--nsfw_checker` and
At installation time, InvokeAI will ask whether the checker should be At installation time, InvokeAI will ask whether the checker should be
activated by default (neither argument given on the command line). The activated by default (neither argument given on the command line). The
response is stored in the InvokeAI initialization file (usually response is stored in the InvokeAI initialization file (usually
`.invokeai` in your home directory). You can change the default at any `invokeai.init` in your home directory). You can change the default at any
time by opening this file in a text editor and commenting or time by opening this file in a text editor and commenting or
uncommenting the line `--nsfw_checker`. uncommenting the line `--nsfw_checker`.

View File

@@ -89,7 +89,7 @@ experimental versions later.
sudo apt update sudo apt update
sudo apt install -y software-properties-common sudo apt install -y software-properties-common
sudo add-apt-repository -y ppa:deadsnakes/ppa sudo add-apt-repository -y ppa:deadsnakes/ppa
sudo apt install python3.10 python3-pip python3.10-venv sudo apt install -y python3.10 python3-pip python3.10-venv
sudo update-alternatives --install /usr/local/bin/python python /usr/bin/python3.10 3 sudo update-alternatives --install /usr/local/bin/python python /usr/bin/python3.10 3
``` ```

View File

@@ -1,20 +1,23 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import os import os
from argparse import Namespace
import invokeai.backend.util.logging as logger
from typing import types
from ..services.default_graphs import create_system_graphs
from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage from ..services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ...backend import Globals from ...backend import Globals
from ..services.model_manager_initializer import get_model_manager from ..services.model_manager_initializer import get_model_manager
from ..services.restoration_services import RestorationServices from ..services.restoration_services import RestorationServices
from ..services.graph import GraphExecutionState from ..services.graph import GraphExecutionState, LibraryGraph
from ..services.image_storage import DiskImageStorage from ..services.image_storage import DiskImageStorage
from ..services.invocation_queue import MemoryInvocationQueue from ..services.invocation_queue import MemoryInvocationQueue
from ..services.invocation_services import InvocationServices from ..services.invocation_services import InvocationServices
from ..services.invoker import Invoker from ..services.invoker import Invoker
from ..services.processor import DefaultInvocationProcessor from ..services.processor import DefaultInvocationProcessor
from ..services.sqlite import SqliteItemStorage from ..services.sqlite import SqliteItemStorage
from ..services.metadata import PngMetadataService
from .events import FastAPIEventService from .events import FastAPIEventService
@@ -40,15 +43,16 @@ class ApiDependencies:
invoker: Invoker = None invoker: Invoker = None
@staticmethod @staticmethod
def initialize(config, event_handler_id: int): def initialize(config, event_handler_id: int, logger: types.ModuleType=logger):
Globals.try_patchmatch = config.patchmatch Globals.try_patchmatch = config.patchmatch
Globals.always_use_cpu = config.always_use_cpu Globals.always_use_cpu = config.always_use_cpu
Globals.internet_available = config.internet_available and check_internet() Globals.internet_available = config.internet_available and check_internet()
Globals.disable_xformers = not config.xformers Globals.disable_xformers = not config.xformers
Globals.ckpt_convert = config.ckpt_convert Globals.ckpt_convert = config.ckpt_convert
# TODO: Use a logger # TO DO: Use the config to select the logger rather than use the default
print(f">> Internet connectivity is {Globals.internet_available}") # invokeai logging module
logger.info(f"Internet connectivity is {Globals.internet_available}")
events = FastAPIEventService(event_handler_id) events = FastAPIEventService(event_handler_id)
@@ -58,24 +62,33 @@ class ApiDependencies:
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')) latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents'))
images = DiskImageStorage(f'{output_folder}/images') metadata = PngMetadataService()
images = DiskImageStorage(f'{output_folder}/images', metadata_service=metadata)
# TODO: build a file/path manager? # TODO: build a file/path manager?
db_location = os.path.join(output_folder, "invokeai.db") db_location = os.path.join(output_folder, "invokeai.db")
services = InvocationServices( services = InvocationServices(
model_manager=get_model_manager(config), model_manager=get_model_manager(config,logger),
events=events, events=events,
logger=logger,
latents=latents, latents=latents,
images=images, images=images,
metadata=metadata,
queue=MemoryInvocationQueue(), queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_execution_manager=SqliteItemStorage[GraphExecutionState]( graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions" filename=db_location, table_name="graph_executions"
), ),
processor=DefaultInvocationProcessor(), processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config), restoration=RestorationServices(config,logger),
) )
create_system_graphs(services.graph_library)
ApiDependencies.invoker = Invoker(services) ApiDependencies.invoker = Invoker(services)
@staticmethod @staticmethod

View File

@@ -45,7 +45,7 @@ class FastAPIEventService(EventServiceBase):
) )
except Empty: except Empty:
await asyncio.sleep(0.001) await asyncio.sleep(0.1)
pass pass
except asyncio.CancelledError as e: except asyncio.CancelledError as e:

View File

@@ -1,7 +1,19 @@
from typing import Optional
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from invokeai.app.models.image import ImageType from invokeai.app.models.image import ImageType
from invokeai.app.models.metadata import ImageMetadata from invokeai.app.services.metadata import InvokeAIMetadata
class ImageResponseMetadata(BaseModel):
"""An image's metadata. Used only in HTTP responses."""
created: int = Field(description="The creation timestamp of the image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
invokeai: Optional[InvokeAIMetadata] = Field(
description="The image's InvokeAI-specific metadata"
)
class ImageResponse(BaseModel): class ImageResponse(BaseModel):
@@ -11,4 +23,18 @@ class ImageResponse(BaseModel):
image_name: str = Field(description="The name of the image") image_name: str = Field(description="The name of the image")
image_url: str = Field(description="The url of the image") image_url: str = Field(description="The url of the image")
thumbnail_url: str = Field(description="The url of the image's thumbnail") thumbnail_url: str = Field(description="The url of the image's thumbnail")
metadata: ImageMetadata = Field(description="The image's metadata") metadata: ImageResponseMetadata = Field(description="The image's metadata")
class ProgressImage(BaseModel):
"""The progress image sent intermittently during processing"""
width: int = Field(description="The effective width of the image in pixels")
height: int = Field(description="The effective height of the image in pixels")
dataURL: str = Field(description="The image data as a b64 data URL")
class SavedImage(BaseModel):
image_name: str = Field(description="The name of the saved image")
thumbnail_name: str = Field(description="The name of the saved thumbnail")
created: int = Field(description="The created timestamp of the saved image")

View File

@@ -1,13 +1,19 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import io
from datetime import datetime, timezone from datetime import datetime, timezone
import json
import os
from typing import Any
import uuid import uuid
from fastapi import Path, Query, Request, UploadFile from fastapi import Body, HTTPException, Path, Query, Request, UploadFile
from fastapi.responses import FileResponse, Response from fastapi.responses import FileResponse, Response
from fastapi.routing import APIRouter from fastapi.routing import APIRouter
from PIL import Image from PIL import Image
from invokeai.app.api.models.images import ImageResponse from invokeai.app.api.models.images import (
ImageResponse,
ImageResponseMetadata,
)
from invokeai.app.services.item_storage import PaginatedResults from invokeai.app.services.item_storage import PaginatedResults
from ...services.image_storage import ImageType from ...services.image_storage import ImageType
@@ -15,70 +21,128 @@ from ..dependencies import ApiDependencies
images_router = APIRouter(prefix="/v1/images", tags=["images"]) images_router = APIRouter(prefix="/v1/images", tags=["images"])
@images_router.get("/{image_type}/{image_name}", operation_id="get_image") @images_router.get("/{image_type}/{image_name}", operation_id="get_image")
async def get_image( async def get_image(
image_type: ImageType = Path(description="The type of image to get"), image_type: ImageType = Path(description="The type of image to get"),
image_name: str = Path(description="The name of the image to get"), image_name: str = Path(description="The name of the image to get"),
): ) -> FileResponse:
"""Gets a result""" """Gets an image"""
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, image_name)
return FileResponse(filename)
@images_router.get("/{image_type}/thumbnails/{image_name}", operation_id="get_thumbnail") path = ApiDependencies.invoker.services.images.get_path(
image_type=image_type, image_name=image_name
)
if ApiDependencies.invoker.services.images.validate_path(path):
return FileResponse(path)
else:
raise HTTPException(status_code=404)
@images_router.delete("/{image_type}/{image_name}", operation_id="delete_image")
async def delete_image(
image_type: ImageType = Path(description="The type of image to delete"),
image_name: str = Path(description="The name of the image to delete"),
) -> None:
"""Deletes an image and its thumbnail"""
ApiDependencies.invoker.services.images.delete(
image_type=image_type, image_name=image_name
)
@images_router.get(
"/{thumbnail_type}/thumbnails/{thumbnail_name}", operation_id="get_thumbnail"
)
async def get_thumbnail( async def get_thumbnail(
image_type: ImageType = Path(description="The type of image to get"), thumbnail_type: ImageType = Path(description="The type of thumbnail to get"),
image_name: str = Path(description="The name of the image to get"), thumbnail_name: str = Path(description="The name of the thumbnail to get"),
): ) -> FileResponse | Response:
"""Gets a thumbnail""" """Gets a thumbnail"""
# TODO: This is not really secure at all. At least make sure only output results are served
filename = ApiDependencies.invoker.services.images.get_path(image_type, 'thumbnails/' + image_name) path = ApiDependencies.invoker.services.images.get_path(
return FileResponse(filename) image_type=thumbnail_type, image_name=thumbnail_name, is_thumbnail=True
)
if ApiDependencies.invoker.services.images.validate_path(path):
return FileResponse(path)
else:
raise HTTPException(status_code=404)
@images_router.post( @images_router.post(
"/uploads/", "/uploads/",
operation_id="upload_image", operation_id="upload_image",
responses={ responses={
201: {"description": "The image was uploaded successfully"}, 201: {
404: {"description": "Session not found"}, "description": "The image was uploaded successfully",
"model": ImageResponse,
},
415: {"description": "Image upload failed"},
}, },
status_code=201,
) )
async def upload_image(file: UploadFile, request: Request): async def upload_image(
file: UploadFile, request: Request, response: Response
) -> ImageResponse:
if not file.content_type.startswith("image"): if not file.content_type.startswith("image"):
return Response(status_code=415) raise HTTPException(status_code=415, detail="Not an image")
contents = await file.read() contents = await file.read()
try: try:
im = Image.open(contents) img = Image.open(io.BytesIO(contents))
except: except:
# Error opening the image # Error opening the image
return Response(status_code=415) raise HTTPException(status_code=415, detail="Failed to read image")
filename = f"{uuid.uuid4()}_{str(int(datetime.now(timezone.utc).timestamp()))}.png" filename = f"{uuid.uuid4()}_{str(int(datetime.now(timezone.utc).timestamp()))}.png"
ApiDependencies.invoker.services.images.save(ImageType.UPLOAD, filename, im)
return Response( saved_image = ApiDependencies.invoker.services.images.save(
status_code=201, ImageType.UPLOAD, filename, img
headers={
"Location": request.url_for(
"get_image", image_type=ImageType.UPLOAD.value, image_name=filename
)
},
) )
invokeai_metadata = ApiDependencies.invoker.services.metadata.get_metadata(img)
image_url = ApiDependencies.invoker.services.images.get_uri(
ImageType.UPLOAD, saved_image.image_name
)
thumbnail_url = ApiDependencies.invoker.services.images.get_uri(
ImageType.UPLOAD, saved_image.image_name, True
)
res = ImageResponse(
image_type=ImageType.UPLOAD,
image_name=saved_image.image_name,
image_url=image_url,
thumbnail_url=thumbnail_url,
metadata=ImageResponseMetadata(
created=saved_image.created,
width=img.width,
height=img.height,
invokeai=invokeai_metadata,
),
)
response.status_code = 201
response.headers["Location"] = image_url
return res
@images_router.get( @images_router.get(
"/", "/",
operation_id="list_images", operation_id="list_images",
responses={200: {"model": PaginatedResults[ImageResponse]}}, responses={200: {"model": PaginatedResults[ImageResponse]}},
) )
async def list_images( async def list_images(
image_type: ImageType = Query(default=ImageType.RESULT, description="The type of images to get"), image_type: ImageType = Query(
default=ImageType.RESULT, description="The type of images to get"
),
page: int = Query(default=0, description="The page of images to get"), page: int = Query(default=0, description="The page of images to get"),
per_page: int = Query(default=10, description="The number of images per page"), per_page: int = Query(default=10, description="The number of images per page"),
) -> PaginatedResults[ImageResponse]: ) -> PaginatedResults[ImageResponse]:
"""Gets a list of images""" """Gets a list of images"""
result = ApiDependencies.invoker.services.images.list( result = ApiDependencies.invoker.services.images.list(image_type, page, per_page)
image_type, page, per_page
)
return result return result

View File

@@ -8,10 +8,6 @@ from fastapi.routing import APIRouter, HTTPException
from pydantic import BaseModel, Field, parse_obj_as from pydantic import BaseModel, Field, parse_obj_as
from pathlib import Path from pathlib import Path
from ..dependencies import ApiDependencies from ..dependencies import ApiDependencies
from invokeai.backend.globals import Globals, global_converted_ckpts_dir
from invokeai.backend.args import Args
models_router = APIRouter(prefix="/v1/models", tags=["models"]) models_router = APIRouter(prefix="/v1/models", tags=["models"])
@@ -112,19 +108,20 @@ async def update_model(
async def delete_model(model_name: str) -> None: async def delete_model(model_name: str) -> None:
"""Delete Model""" """Delete Model"""
model_names = ApiDependencies.invoker.services.model_manager.model_names() model_names = ApiDependencies.invoker.services.model_manager.model_names()
logger = ApiDependencies.invoker.services.logger
model_exists = model_name in model_names model_exists = model_name in model_names
# check if model exists # check if model exists
print(f">> Checking for model {model_name}...") logger.info(f"Checking for model {model_name}...")
if model_exists: if model_exists:
print(f">> Deleting Model: {model_name}") logger.info(f"Deleting Model: {model_name}")
ApiDependencies.invoker.services.model_manager.del_model(model_name, delete_files=True) ApiDependencies.invoker.services.model_manager.del_model(model_name, delete_files=True)
print(f">> Model Deleted: {model_name}") logger.info(f"Model Deleted: {model_name}")
raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully") raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully")
else: else:
print(f">> Model not found") logger.error(f"Model not found")
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found") raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
@@ -248,4 +245,4 @@ async def delete_model(model_name: str) -> None:
# ) # )
# print(f">> Models Merged: {models_to_merge}") # print(f">> Models Merged: {models_to_merge}")
# print(f">> New Model Added: {model_merge_info['merged_model_name']}") # print(f">> New Model Added: {model_merge_info['merged_model_name']}")
# except Exception as e: # except Exception as e:

View File

@@ -2,8 +2,7 @@
from typing import Annotated, List, Optional, Union from typing import Annotated, List, Optional, Union
from fastapi import Body, Path, Query from fastapi import Body, HTTPException, Path, Query, Response
from fastapi.responses import Response
from fastapi.routing import APIRouter from fastapi.routing import APIRouter
from pydantic.fields import Field from pydantic.fields import Field
@@ -76,7 +75,7 @@ async def get_session(
"""Gets a session""" """Gets a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None: if session is None:
return Response(status_code=404) raise HTTPException(status_code=404)
else: else:
return session return session
@@ -99,7 +98,7 @@ async def add_node(
"""Adds a node to the graph""" """Adds a node to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None: if session is None:
return Response(status_code=404) raise HTTPException(status_code=404)
try: try:
session.add_node(node) session.add_node(node)
@@ -108,9 +107,9 @@ async def add_node(
) # TODO: can this be done automatically, or add node through an API? ) # TODO: can this be done automatically, or add node through an API?
return session.id return session.id
except NodeAlreadyExecutedError: except NodeAlreadyExecutedError:
return Response(status_code=400) raise HTTPException(status_code=400)
except IndexError: except IndexError:
return Response(status_code=400) raise HTTPException(status_code=400)
@session_router.put( @session_router.put(
@@ -132,7 +131,7 @@ async def update_node(
"""Updates a node in the graph and removes all linked edges""" """Updates a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None: if session is None:
return Response(status_code=404) raise HTTPException(status_code=404)
try: try:
session.update_node(node_path, node) session.update_node(node_path, node)
@@ -141,9 +140,9 @@ async def update_node(
) # TODO: can this be done automatically, or add node through an API? ) # TODO: can this be done automatically, or add node through an API?
return session return session
except NodeAlreadyExecutedError: except NodeAlreadyExecutedError:
return Response(status_code=400) raise HTTPException(status_code=400)
except IndexError: except IndexError:
return Response(status_code=400) raise HTTPException(status_code=400)
@session_router.delete( @session_router.delete(
@@ -162,7 +161,7 @@ async def delete_node(
"""Deletes a node in the graph and removes all linked edges""" """Deletes a node in the graph and removes all linked edges"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None: if session is None:
return Response(status_code=404) raise HTTPException(status_code=404)
try: try:
session.delete_node(node_path) session.delete_node(node_path)
@@ -171,9 +170,9 @@ async def delete_node(
) # TODO: can this be done automatically, or add node through an API? ) # TODO: can this be done automatically, or add node through an API?
return session return session
except NodeAlreadyExecutedError: except NodeAlreadyExecutedError:
return Response(status_code=400) raise HTTPException(status_code=400)
except IndexError: except IndexError:
return Response(status_code=400) raise HTTPException(status_code=400)
@session_router.post( @session_router.post(
@@ -192,7 +191,7 @@ async def add_edge(
"""Adds an edge to the graph""" """Adds an edge to the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None: if session is None:
return Response(status_code=404) raise HTTPException(status_code=404)
try: try:
session.add_edge(edge) session.add_edge(edge)
@@ -201,9 +200,9 @@ async def add_edge(
) # TODO: can this be done automatically, or add node through an API? ) # TODO: can this be done automatically, or add node through an API?
return session return session
except NodeAlreadyExecutedError: except NodeAlreadyExecutedError:
return Response(status_code=400) raise HTTPException(status_code=400)
except IndexError: except IndexError:
return Response(status_code=400) raise HTTPException(status_code=400)
# TODO: the edge being in the path here is really ugly, find a better solution # TODO: the edge being in the path here is really ugly, find a better solution
@@ -226,7 +225,7 @@ async def delete_edge(
"""Deletes an edge from the graph""" """Deletes an edge from the graph"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None: if session is None:
return Response(status_code=404) raise HTTPException(status_code=404)
try: try:
edge = Edge( edge = Edge(
@@ -239,9 +238,9 @@ async def delete_edge(
) # TODO: can this be done automatically, or add node through an API? ) # TODO: can this be done automatically, or add node through an API?
return session return session
except NodeAlreadyExecutedError: except NodeAlreadyExecutedError:
return Response(status_code=400) raise HTTPException(status_code=400)
except IndexError: except IndexError:
return Response(status_code=400) raise HTTPException(status_code=400)
@session_router.put( @session_router.put(
@@ -259,14 +258,14 @@ async def invoke_session(
all: bool = Query( all: bool = Query(
default=False, description="Whether or not to invoke all remaining invocations" default=False, description="Whether or not to invoke all remaining invocations"
), ),
) -> None: ) -> Response:
"""Invokes a session""" """Invokes a session"""
session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id) session = ApiDependencies.invoker.services.graph_execution_manager.get(session_id)
if session is None: if session is None:
return Response(status_code=404) raise HTTPException(status_code=404)
if session.is_complete(): if session.is_complete():
return Response(status_code=400) raise HTTPException(status_code=400)
ApiDependencies.invoker.invoke(session, invoke_all=all) ApiDependencies.invoker.invoke(session, invoke_all=all)
return Response(status_code=202) return Response(status_code=202)
@@ -281,7 +280,7 @@ async def invoke_session(
) )
async def cancel_session_invoke( async def cancel_session_invoke(
session_id: str = Path(description="The id of the session to cancel"), session_id: str = Path(description="The id of the session to cancel"),
) -> None: ) -> Response:
"""Invokes a session""" """Invokes a session"""
ApiDependencies.invoker.cancel(session_id) ApiDependencies.invoker.cancel(session_id)
return Response(status_code=202) return Response(status_code=202)

View File

@@ -3,6 +3,7 @@ import asyncio
from inspect import signature from inspect import signature
import uvicorn import uvicorn
import invokeai.backend.util.logging as logger
from fastapi import FastAPI from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware from fastapi.middleware.cors import CORSMiddleware
from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html from fastapi.openapi.docs import get_redoc_html, get_swagger_ui_html
@@ -16,7 +17,6 @@ from ..backend import Args
from .api.dependencies import ApiDependencies from .api.dependencies import ApiDependencies
from .api.routers import images, sessions, models from .api.routers import images, sessions, models
from .api.sockets import SocketIO from .api.sockets import SocketIO
from .invocations import *
from .invocations.baseinvocation import BaseInvocation from .invocations.baseinvocation import BaseInvocation
# Create the app # Create the app
@@ -56,7 +56,7 @@ async def startup_event():
config.parse_args() config.parse_args()
ApiDependencies.initialize( ApiDependencies.initialize(
config=config, event_handler_id=event_handler_id config=config, event_handler_id=event_handler_id, logger=logger
) )

View File

@@ -2,16 +2,46 @@
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
import argparse import argparse
from typing import Any, Callable, Iterable, Literal, get_args, get_origin, get_type_hints from typing import Any, Callable, Iterable, Literal, Union, get_args, get_origin, get_type_hints
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
import networkx as nx import networkx as nx
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from ..models.image import ImageField import invokeai.backend.util.logging as logger
from ..services.graph import GraphExecutionState from ..invocations.baseinvocation import BaseInvocation
from ..invocations.image import ImageField
from ..services.graph import GraphExecutionState, LibraryGraph, Edge
from ..services.invoker import Invoker from ..services.invoker import Invoker
def add_field_argument(command_parser, name: str, field, default_override = None):
default = default_override if default_override is not None else field.default if field.default_factory is None else field.default_factory()
if get_origin(field.type_) == Literal:
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
command_parser.add_argument(
f"--{name}",
dest=name,
type=field_type,
default=default,
choices=allowed_values,
help=field.field_info.description,
)
else:
command_parser.add_argument(
f"--{name}",
dest=name,
type=field.type_,
default=default,
help=field.field_info.description,
)
def add_parsers( def add_parsers(
subparsers, subparsers,
commands: list[type], commands: list[type],
@@ -36,30 +66,26 @@ def add_parsers(
if name in exclude_fields: if name in exclude_fields:
continue continue
if get_origin(field.type_) == Literal: add_field_argument(command_parser, name, field)
allowed_values = get_args(field.type_)
allowed_types = set()
for val in allowed_values:
allowed_types.add(type(val))
allowed_types_list = list(allowed_types)
field_type = allowed_types_list[0] if len(allowed_types) == 1 else Union[allowed_types_list] # type: ignore
command_parser.add_argument(
f"--{name}", def add_graph_parsers(
dest=name, subparsers,
type=field_type, graphs: list[LibraryGraph],
default=field.default if field.default_factory is None else field.default_factory(), add_arguments: Callable[[argparse.ArgumentParser], None]|None = None
choices=allowed_values, ):
help=field.field_info.description, for graph in graphs:
) command_parser = subparsers.add_parser(graph.name, help=graph.description)
else:
command_parser.add_argument( if add_arguments is not None:
f"--{name}", add_arguments(command_parser)
dest=name,
type=field.type_, # Add arguments for inputs
default=field.default if field.default_factory is None else field.default_factory(), for exposed_input in graph.exposed_inputs:
help=field.field_info.description, node = graph.graph.get_node(exposed_input.node_path)
) field = node.__fields__[exposed_input.field]
default_override = getattr(node, exposed_input.field)
add_field_argument(command_parser, exposed_input.alias, field, default_override)
class CliContext: class CliContext:
@@ -67,17 +93,38 @@ class CliContext:
session: GraphExecutionState session: GraphExecutionState
parser: argparse.ArgumentParser parser: argparse.ArgumentParser
defaults: dict[str, Any] defaults: dict[str, Any]
graph_nodes: dict[str, str]
nodes_added: list[str]
def __init__(self, invoker: Invoker, session: GraphExecutionState, parser: argparse.ArgumentParser): def __init__(self, invoker: Invoker, session: GraphExecutionState, parser: argparse.ArgumentParser):
self.invoker = invoker self.invoker = invoker
self.session = session self.session = session
self.parser = parser self.parser = parser
self.defaults = dict() self.defaults = dict()
self.graph_nodes = dict()
self.nodes_added = list()
def get_session(self): def get_session(self):
self.session = self.invoker.services.graph_execution_manager.get(self.session.id) self.session = self.invoker.services.graph_execution_manager.get(self.session.id)
return self.session return self.session
def reset(self):
self.session = self.invoker.create_execution_state()
self.graph_nodes = dict()
self.nodes_added = list()
# Leave defaults unchanged
def add_node(self, node: BaseInvocation):
self.get_session()
self.session.graph.add_node(node)
self.nodes_added.append(node.id)
self.invoker.services.graph_execution_manager.set(self.session)
def add_edge(self, edge: Edge):
self.get_session()
self.session.add_edge(edge)
self.invoker.services.graph_execution_manager.set(self.session)
class ExitCli(Exception): class ExitCli(Exception):
"""Exception to exit the CLI""" """Exception to exit the CLI"""
@@ -183,7 +230,7 @@ class HistoryCommand(BaseCommand):
for i in range(min(self.count, len(history))): for i in range(min(self.count, len(history))):
entry_id = history[-1 - i] entry_id = history[-1 - i]
entry = context.get_session().graph.get_node(entry_id) entry = context.get_session().graph.get_node(entry_id)
print(f"{entry_id}: {get_invocation_command(entry)}") logger.info(f"{entry_id}: {get_invocation_command(entry)}")
class SetDefaultCommand(BaseCommand): class SetDefaultCommand(BaseCommand):

View File

@@ -10,6 +10,7 @@ import shlex
from pathlib import Path from pathlib import Path
from typing import List, Dict, Literal, get_args, get_type_hints, get_origin from typing import List, Dict, Literal, get_args, get_type_hints, get_origin
import invokeai.backend.util.logging as logger
from ...backend import ModelManager, Globals from ...backend import ModelManager, Globals
from ..invocations.baseinvocation import BaseInvocation from ..invocations.baseinvocation import BaseInvocation
from .commands import BaseCommand from .commands import BaseCommand
@@ -160,8 +161,8 @@ def set_autocompleter(model_manager: ModelManager) -> Completer:
pass pass
except OSError: # file likely corrupted except OSError: # file likely corrupted
newname = f"{histfile}.old" newname = f"{histfile}.old"
print( logger.error(
f"## Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}" f"Your history file {histfile} couldn't be loaded and may be corrupted. Renaming it to {newname}"
) )
histfile.replace(Path(newname)) histfile.replace(Path(newname))
atexit.register(readline.write_history_file, histfile) atexit.register(readline.write_history_file, histfile)

View File

@@ -13,17 +13,21 @@ from typing import (
from pydantic import BaseModel from pydantic import BaseModel
from pydantic.fields import Field from pydantic.fields import Field
import invokeai.backend.util.logging as logger
from invokeai.app.services.metadata import PngMetadataService
from .services.default_graphs import create_system_graphs
from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage from .services.latent_storage import DiskLatentsStorage, ForwardCacheLatentsStorage
from ..backend import Args from ..backend import Args
from .cli.commands import BaseCommand, CliContext, ExitCli, add_parsers, get_graph_execution_history from .cli.commands import BaseCommand, CliContext, ExitCli, add_graph_parsers, add_parsers
from .cli.completer import set_autocompleter from .cli.completer import set_autocompleter
from .invocations import *
from .invocations.baseinvocation import BaseInvocation from .invocations.baseinvocation import BaseInvocation
from .services.events import EventServiceBase from .services.events import EventServiceBase
from .services.model_manager_initializer import get_model_manager from .services.model_manager_initializer import get_model_manager
from .services.restoration_services import RestorationServices from .services.restoration_services import RestorationServices
from .services.graph import Edge, EdgeConnection, GraphExecutionState, are_connection_types_compatible from .services.graph import Edge, EdgeConnection, GraphExecutionState, GraphInvocation, LibraryGraph, are_connection_types_compatible
from .services.default_graphs import default_text_to_image_graph_id
from .services.image_storage import DiskImageStorage from .services.image_storage import DiskImageStorage
from .services.invocation_queue import MemoryInvocationQueue from .services.invocation_queue import MemoryInvocationQueue
from .services.invocation_services import InvocationServices from .services.invocation_services import InvocationServices
@@ -58,7 +62,7 @@ def add_invocation_args(command_parser):
) )
def get_command_parser() -> argparse.ArgumentParser: def get_command_parser(services: InvocationServices) -> argparse.ArgumentParser:
# Create invocation parser # Create invocation parser
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
@@ -76,20 +80,72 @@ def get_command_parser() -> argparse.ArgumentParser:
commands = BaseCommand.get_all_subclasses() commands = BaseCommand.get_all_subclasses()
add_parsers(subparsers, commands, exclude_fields=["type"]) add_parsers(subparsers, commands, exclude_fields=["type"])
# Create subparsers for exposed CLI graphs
# TODO: add a way to identify these graphs
text_to_image = services.graph_library.get(default_text_to_image_graph_id)
add_graph_parsers(subparsers, [text_to_image], add_arguments=add_invocation_args)
return parser return parser
class NodeField():
alias: str
node_path: str
field: str
field_type: type
def __init__(self, alias: str, node_path: str, field: str, field_type: type):
self.alias = alias
self.node_path = node_path
self.field = field
self.field_type = field_type
def fields_from_type_hints(hints: dict[str, type], node_path: str) -> dict[str,NodeField]:
return {k:NodeField(alias=k, node_path=node_path, field=k, field_type=v) for k, v in hints.items()}
def get_node_input_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias"""
exposed_input = next(e for e in graph.exposed_inputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_input.node_path))
return NodeField(alias=exposed_input.alias, node_path=f'{node_id}.{exposed_input.node_path}', field=exposed_input.field, field_type=get_type_hints(node_type)[exposed_input.field])
def get_node_output_field(graph: LibraryGraph, field_alias: str, node_id: str) -> NodeField:
"""Gets the node field for the specified field alias"""
exposed_output = next(e for e in graph.exposed_outputs if e.alias == field_alias)
node_type = type(graph.graph.get_node(exposed_output.node_path))
node_output_type = node_type.get_output_type()
return NodeField(alias=exposed_output.alias, node_path=f'{node_id}.{exposed_output.node_path}', field=exposed_output.field, field_type=get_type_hints(node_output_type)[exposed_output.field])
def get_node_inputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
"""Gets the inputs for the specified invocation from the context"""
node_type = type(invocation)
if node_type is not GraphInvocation:
return fields_from_type_hints(get_type_hints(node_type), invocation.id)
else:
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
return {e.alias: get_node_input_field(graph, e.alias, invocation.id) for e in graph.exposed_inputs}
def get_node_outputs(invocation: BaseInvocation, context: CliContext) -> dict[str, NodeField]:
"""Gets the outputs for the specified invocation from the context"""
node_type = type(invocation)
if node_type is not GraphInvocation:
return fields_from_type_hints(get_type_hints(node_type.get_output_type()), invocation.id)
else:
graph: LibraryGraph = context.invoker.services.graph_library.get(context.graph_nodes[invocation.id])
return {e.alias: get_node_output_field(graph, e.alias, invocation.id) for e in graph.exposed_outputs}
def generate_matching_edges( def generate_matching_edges(
a: BaseInvocation, b: BaseInvocation a: BaseInvocation, b: BaseInvocation, context: CliContext
) -> list[Edge]: ) -> list[Edge]:
"""Generates all possible edges between two invocations""" """Generates all possible edges between two invocations"""
atype = type(a) afields = get_node_outputs(a, context)
btype = type(b) bfields = get_node_inputs(b, context)
aoutputtype = atype.get_output_type()
afields = get_type_hints(aoutputtype)
bfields = get_type_hints(btype)
matching_fields = set(afields.keys()).intersection(bfields.keys()) matching_fields = set(afields.keys()).intersection(bfields.keys())
@@ -98,14 +154,14 @@ def generate_matching_edges(
matching_fields = matching_fields.difference(invalid_fields) matching_fields = matching_fields.difference(invalid_fields)
# Validate types # Validate types
matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f], bfields[f])] matching_fields = [f for f in matching_fields if are_connection_types_compatible(afields[f].field_type, bfields[f].field_type)]
edges = [ edges = [
Edge( Edge(
source=EdgeConnection(node_id=a.id, field=field), source=EdgeConnection(node_id=afields[alias].node_path, field=afields[alias].field),
destination=EdgeConnection(node_id=b.id, field=field) destination=EdgeConnection(node_id=bfields[alias].node_path, field=bfields[alias].field)
) )
for field in matching_fields for alias in matching_fields
] ]
return edges return edges
@@ -125,7 +181,7 @@ def invoke_all(context: CliContext):
# Print any errors # Print any errors
if context.session.has_error(): if context.session.has_error():
for n in context.session.errors: for n in context.session.errors:
print( context.invoker.services.logger.error(
f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}" f"Error in node {n} (source node {context.session.prepared_source_mapping[n]}): {context.session.errors[n]}"
) )
@@ -135,16 +191,18 @@ def invoke_all(context: CliContext):
def invoke_cli(): def invoke_cli():
config = Args() config = Args()
config.parse_args() config.parse_args()
model_manager = get_model_manager(config) model_manager = get_model_manager(config,logger=logger)
# This initializes the autocompleter and returns it. # This initializes the autocompleter and returns it.
# Currently nothing is done with the returned Completer # Currently nothing is done with the returned Completer
# object, but the object can be used to change autocompletion # object, but the object can be used to change autocompletion
# behavior on the fly, if desired. # behavior on the fly, if desired.
completer = set_autocompleter(model_manager) set_autocompleter(model_manager)
events = EventServiceBase() events = EventServiceBase()
metadata = PngMetadataService()
output_folder = os.path.abspath( output_folder = os.path.abspath(
os.path.join(os.path.dirname(__file__), "../../../outputs") os.path.join(os.path.dirname(__file__), "../../../outputs")
) )
@@ -156,18 +214,26 @@ def invoke_cli():
model_manager=model_manager, model_manager=model_manager,
events=events, events=events,
latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')), latents = ForwardCacheLatentsStorage(DiskLatentsStorage(f'{output_folder}/latents')),
images=DiskImageStorage(f'{output_folder}/images'), images=DiskImageStorage(f'{output_folder}/images', metadata_service=metadata),
metadata=metadata,
queue=MemoryInvocationQueue(), queue=MemoryInvocationQueue(),
graph_library=SqliteItemStorage[LibraryGraph](
filename=db_location, table_name="graphs"
),
graph_execution_manager=SqliteItemStorage[GraphExecutionState]( graph_execution_manager=SqliteItemStorage[GraphExecutionState](
filename=db_location, table_name="graph_executions" filename=db_location, table_name="graph_executions"
), ),
processor=DefaultInvocationProcessor(), processor=DefaultInvocationProcessor(),
restoration=RestorationServices(config), restoration=RestorationServices(config,logger=logger),
logger=logger,
) )
system_graphs = create_system_graphs(services.graph_library)
system_graph_names = set([g.name for g in system_graphs])
invoker = Invoker(services) invoker = Invoker(services)
session: GraphExecutionState = invoker.create_execution_state() session: GraphExecutionState = invoker.create_execution_state()
parser = get_command_parser() parser = get_command_parser(services)
re_negid = re.compile('^-[0-9]+$') re_negid = re.compile('^-[0-9]+$')
@@ -185,11 +251,12 @@ def invoke_cli():
try: try:
# Refresh the state of the session # Refresh the state of the session
history = list(get_graph_execution_history(context.session)) #history = list(get_graph_execution_history(context.session))
history = list(reversed(context.nodes_added))
# Split the command for piping # Split the command for piping
cmds = cmd_input.split("|") cmds = cmd_input.split("|")
start_id = len(history) start_id = len(context.nodes_added)
current_id = start_id current_id = start_id
new_invocations = list() new_invocations = list()
for cmd in cmds: for cmd in cmds:
@@ -205,8 +272,24 @@ def invoke_cli():
args[field_name] = field_default args[field_name] = field_default
# Parse invocation # Parse invocation
args["id"] = current_id command: CliCommand = None # type:ignore
command = CliCommand(command=args) system_graph: LibraryGraph|None = None
if args['type'] in system_graph_names:
system_graph = next(filter(lambda g: g.name == args['type'], system_graphs))
invocation = GraphInvocation(graph=system_graph.graph, id=str(current_id))
for exposed_input in system_graph.exposed_inputs:
if exposed_input.alias in args:
node = invocation.graph.get_node(exposed_input.node_path)
field = exposed_input.field
setattr(node, field, args[exposed_input.alias])
command = CliCommand(command = invocation)
context.graph_nodes[invocation.id] = system_graph.id
else:
args["id"] = current_id
command = CliCommand(command=args)
if command is None:
continue
# Run any CLI commands immediately # Run any CLI commands immediately
if isinstance(command.command, BaseCommand): if isinstance(command.command, BaseCommand):
@@ -217,6 +300,7 @@ def invoke_cli():
command.command.run(context) command.command.run(context)
continue continue
# TODO: handle linking with library graphs
# Pipe previous command output (if there was a previous command) # Pipe previous command output (if there was a previous command)
edges: list[Edge] = list() edges: list[Edge] = list()
if len(history) > 0 or current_id != start_id: if len(history) > 0 or current_id != start_id:
@@ -229,7 +313,7 @@ def invoke_cli():
else context.session.graph.get_node(from_id) else context.session.graph.get_node(from_id)
) )
matching_edges = generate_matching_edges( matching_edges = generate_matching_edges(
from_node, command.command from_node, command.command, context
) )
edges.extend(matching_edges) edges.extend(matching_edges)
@@ -242,7 +326,7 @@ def invoke_cli():
link_node = context.session.graph.get_node(node_id) link_node = context.session.graph.get_node(node_id)
matching_edges = generate_matching_edges( matching_edges = generate_matching_edges(
link_node, command.command link_node, command.command, context
) )
matching_destinations = [e.destination for e in matching_edges] matching_destinations = [e.destination for e in matching_edges]
edges = [e for e in edges if e.destination not in matching_destinations] edges = [e for e in edges if e.destination not in matching_destinations]
@@ -256,12 +340,14 @@ def invoke_cli():
if re_negid.match(node_id): if re_negid.match(node_id):
node_id = str(current_id + int(node_id)) node_id = str(current_id + int(node_id))
# TODO: handle missing input/output
node_output = get_node_outputs(context.session.graph.get_node(node_id), context)[link[1]]
node_input = get_node_inputs(command.command, context)[link[2]]
edges.append( edges.append(
Edge( Edge(
source=EdgeConnection(node_id=node_id, field=link[1]), source=EdgeConnection(node_id=node_output.node_path, field=node_output.field),
destination=EdgeConnection( destination=EdgeConnection(node_id=node_input.node_path, field=node_input.field)
node_id=command.command.id, field=link[2]
)
) )
) )
@@ -270,22 +356,22 @@ def invoke_cli():
current_id = current_id + 1 current_id = current_id + 1
# Add the node to the session # Add the node to the session
context.session.add_node(command.command) context.add_node(command.command)
for edge in edges: for edge in edges:
print(edge) print(edge)
context.session.add_edge(edge) context.add_edge(edge)
# Execute all remaining nodes # Execute all remaining nodes
invoke_all(context) invoke_all(context)
except InvalidArgs: except InvalidArgs:
print('Invalid command, use "help" to list commands') invoker.services.logger.warning('Invalid command, use "help" to list commands')
continue continue
except SessionError: except SessionError:
# Start a new session # Start a new session
print("Session error: creating a new session") invoker.services.logger.warning("Session error: creating a new session")
context.session = context.invoker.create_execution_state() context.reset()
except ExitCli: except ExitCli:
break break

View File

@@ -95,7 +95,7 @@ class UIConfig(TypedDict, total=False):
], ],
] ]
tags: List[str] tags: List[str]
title: str
class CustomisedSchemaExtra(TypedDict): class CustomisedSchemaExtra(TypedDict):
ui: UIConfig ui: UIConfig

View File

@@ -1,16 +1,17 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal from typing import Literal, Optional
import cv2 as cv
import numpy as np import numpy as np
import numpy.random import numpy.random
from PIL import Image, ImageOps
from pydantic import Field from pydantic import Field
from ..services.image_storage import ImageType from .baseinvocation import (
from .baseinvocation import BaseInvocation, InvocationContext, BaseInvocationOutput BaseInvocation,
from .image import ImageField, ImageOutput InvocationConfig,
InvocationContext,
BaseInvocationOutput,
)
class IntCollectionOutput(BaseInvocationOutput): class IntCollectionOutput(BaseInvocationOutput):
@@ -33,7 +34,9 @@ class RangeInvocation(BaseInvocation):
step: int = Field(default=1, description="The step of the range") step: int = Field(default=1, description="The step of the range")
def invoke(self, context: InvocationContext) -> IntCollectionOutput: def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(range(self.start, self.stop, self.step))) return IntCollectionOutput(
collection=list(range(self.start, self.stop, self.step))
)
class RandomRangeInvocation(BaseInvocation): class RandomRangeInvocation(BaseInvocation):
@@ -43,8 +46,19 @@ class RandomRangeInvocation(BaseInvocation):
# Inputs # Inputs
low: int = Field(default=0, description="The inclusive low value") low: int = Field(default=0, description="The inclusive low value")
high: int = Field(default=np.iinfo(np.int32).max, description="The exclusive high value") high: int = Field(
default=np.iinfo(np.int32).max, description="The exclusive high value"
)
size: int = Field(default=1, description="The number of values to generate") size: int = Field(default=1, description="The number of values to generate")
seed: Optional[int] = Field(
ge=0,
le=np.iinfo(np.int32).max,
description="The seed for the RNG",
default_factory=lambda: numpy.random.randint(0, np.iinfo(np.int32).max),
)
def invoke(self, context: InvocationContext) -> IntCollectionOutput: def invoke(self, context: InvocationContext) -> IntCollectionOutput:
return IntCollectionOutput(collection=list(numpy.random.randint(self.low, self.high, size=self.size))) rng = np.random.default_rng(self.seed)
return IntCollectionOutput(
collection=list(rng.integers(low=self.low, high=self.high, size=self.size))
)

View File

@@ -0,0 +1,245 @@
from typing import Literal, Optional, Union
from pydantic import BaseModel, Field
from invokeai.app.invocations.util.choose_model import choose_model
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
from ...backend.stable_diffusion.textual_inversion_manager import TextualInversionManager
from compel import Compel
from compel.prompt_parser import (
Blend,
CrossAttentionControlSubstitute,
FlattenedPrompt,
Fragment,
)
from invokeai.backend.globals import Globals
class ConditioningField(BaseModel):
conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data")
class Config:
schema_extra = {"required": ["conditioning_name"]}
class CompelOutput(BaseInvocationOutput):
"""Compel parser output"""
#fmt: off
type: Literal["compel_output"] = "compel_output"
conditioning: ConditioningField = Field(default=None, description="Conditioning")
#fmt: on
class CompelInvocation(BaseInvocation):
"""Parse prompt using compel package to conditioning."""
type: Literal["compel"] = "compel"
prompt: str = Field(default="", description="Prompt")
model: str = Field(default="", description="Model to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Prompt (Compel)",
"tags": ["prompt", "compel"],
"type_hints": {
"model": "model"
}
},
}
def invoke(self, context: InvocationContext) -> CompelOutput:
# TODO: load without model
model = choose_model(context.services.model_manager, self.model)
pipeline = model["model"]
tokenizer = pipeline.tokenizer
text_encoder = pipeline.text_encoder
# TODO: global? input?
#use_full_precision = precision == "float32" or precision == "autocast"
#use_full_precision = False
# TODO: redo TI when separate model loding implemented
#textual_inversion_manager = TextualInversionManager(
# tokenizer=tokenizer,
# text_encoder=text_encoder,
# full_precision=use_full_precision,
#)
def load_huggingface_concepts(concepts: list[str]):
pipeline.textual_inversion_manager.load_huggingface_concepts(concepts)
# apply the concepts library to the prompt
prompt_str = pipeline.textual_inversion_manager.hf_concepts_library.replace_concepts_with_triggers(
self.prompt,
lambda concepts: load_huggingface_concepts(concepts),
pipeline.textual_inversion_manager.get_all_trigger_strings(),
)
# lazy-load any deferred textual inversions.
# this might take a couple of seconds the first time a textual inversion is used.
pipeline.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(
prompt_str
)
compel = Compel(
tokenizer=tokenizer,
text_encoder=text_encoder,
textual_inversion_manager=pipeline.textual_inversion_manager,
dtype_for_device_getter=torch_dtype,
truncate_long_prompts=True, # TODO:
)
# TODO: support legacy blend?
prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(prompt_str)
if getattr(Globals, "log_tokenization", False):
log_tokenization_for_prompt_object(prompt, tokenizer)
c, options = compel.build_conditioning_tensor_for_prompt_object(prompt)
# TODO: long prompt support
#if not self.truncate_long_prompts:
# [c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
tokens_count_including_eos_bos=get_max_token_count(tokenizer, prompt),
cross_attention_control_args=options.get("cross_attention_control", None),
)
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
# TODO: hacky but works ;D maybe rename latents somehow?
context.services.latents.set(conditioning_name, (c, ec))
return CompelOutput(
conditioning=ConditioningField(
conditioning_name=conditioning_name,
),
)
def get_max_token_count(
tokenizer, prompt: Union[FlattenedPrompt, Blend], truncate_if_too_long=False
) -> int:
if type(prompt) is Blend:
blend: Blend = prompt
return max(
[
get_max_token_count(tokenizer, c, truncate_if_too_long)
for c in blend.prompts
]
)
else:
return len(
get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)
)
def get_tokens_for_prompt_object(
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
) -> [str]:
if type(parsed_prompt) is Blend:
raise ValueError(
"Blend is not supported here - you need to get tokens for each of its .children"
)
text_fragments = [
x.text
if type(x) is Fragment
else (
" ".join([f.text for f in x.original])
if type(x) is CrossAttentionControlSubstitute
else str(x)
)
for x in parsed_prompt.children
]
text = " ".join(text_fragments)
tokens = tokenizer.tokenize(text)
if truncate_if_too_long:
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
tokens = tokens[0:max_tokens_length]
return tokens
def log_tokenization_for_prompt_object(
p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None
):
display_label_prefix = display_label_prefix or ""
if type(p) is Blend:
blend: Blend = p
for i, c in enumerate(blend.prompts):
log_tokenization_for_prompt_object(
c,
tokenizer,
display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})",
)
elif type(p) is FlattenedPrompt:
flattened_prompt: FlattenedPrompt = p
if flattened_prompt.wants_cross_attention_control:
original_fragments = []
edited_fragments = []
for f in flattened_prompt.children:
if type(f) is CrossAttentionControlSubstitute:
original_fragments += f.original
edited_fragments += f.edited
else:
original_fragments.append(f)
edited_fragments.append(f)
original_text = " ".join([x.text for x in original_fragments])
log_tokenization_for_text(
original_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap originals)",
)
edited_text = " ".join([x.text for x in edited_fragments])
log_tokenization_for_text(
edited_text,
tokenizer,
display_label=f"{display_label_prefix}(.swap replacements)",
)
else:
text = " ".join([x.text for x in flattened_prompt.children])
log_tokenization_for_text(
text, tokenizer, display_label=display_label_prefix
)
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
"""shows how the prompt is tokenized
# usually tokens have '</w>' to indicate end-of-word,
# but for readability it has been replaced with ' '
"""
tokens = tokenizer.tokenize(text)
tokenized = ""
discarded = ""
usedTokens = 0
totalTokens = len(tokens)
for i in range(0, totalTokens):
token = tokens[i].replace("</w>", " ")
# alternate color
s = (usedTokens % 6) + 1
if truncate_if_too_long and i >= tokenizer.model_max_length:
discarded = discarded + f"\x1b[0;3{s};40m{token}"
else:
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
usedTokens += 1
if usedTokens > 0:
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
print(f"{tokenized}\x1b[0m")
if discarded != "":
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
print(f"{discarded}\x1b[0m")

View File

@@ -9,7 +9,7 @@ from pydantic import BaseModel, Field
from invokeai.app.models.image import ImageField, ImageType from invokeai.app.models.image import ImageField, ImageType
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput from .image import ImageOutput, build_image_output
class CvInvocationConfig(BaseModel): class CvInvocationConfig(BaseModel):
@@ -56,7 +56,14 @@ class CvInpaintInvocation(BaseInvocation, CvInvocationConfig):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, image_inpainted)
return ImageOutput( metadata = context.services.metadata.build_metadata(
image=ImageField(image_type=image_type, image_name=image_name) session_id=context.graph_execution_state_id, node=self
) )
context.services.images.save(image_type, image_name, image_inpainted, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image_inpainted,
)

View File

@@ -9,13 +9,12 @@ from torch import Tensor
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from invokeai.app.models.image import ImageField, ImageType from invokeai.app.models.image import ImageField, ImageType
from invokeai.app.invocations.util.get_model import choose_model from invokeai.app.invocations.util.choose_model import choose_model
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput from .image import ImageOutput, build_image_output
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.stable_diffusion import PipelineIntermediateState
from ..models.exceptions import CanceledException from ..util.step_callback import stable_diffusion_step_callback
from ..util.step_callback import diffusers_step_callback_adapter
SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())] SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())]
@@ -47,8 +46,8 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
prompt: Optional[str] = Field(description="The prompt to generate an image from") prompt: Optional[str] = Field(description="The prompt to generate an image from")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", ) seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image") steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", ) width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", ) height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", ) cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" ) scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", ) seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
@@ -58,28 +57,31 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
# TODO: pass this an emitter method or something? or a session for dispatching? # TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress( def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState self,
context: InvocationContext,
source_node_id: str,
intermediate_state: PipelineIntermediateState,
) -> None: ) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)): stable_diffusion_step_callback(
raise CanceledException context=context,
intermediate_state=intermediate_state,
step = intermediate_state.step node=self.dict(),
if intermediate_state.predicted_original is not None: source_node_id=source_node_id,
# Some schedulers report not only the noisy latents at the current timestep, )
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
# Handle invalid model parameter # Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model) model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Txt2Img(model).generate( outputs = Txt2Img(model).generate(
prompt=self.prompt, prompt=self.prompt,
step_callback=partial(self.dispatch_progress, context), step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict( **self.dict(
exclude={"prompt"} exclude={"prompt"}
), # Shorthand for passing all of the parameters above manually ), # Shorthand for passing all of the parameters above manually
@@ -95,9 +97,18 @@ class TextToImageInvocation(BaseInvocation, SDImageInvocation):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, generate_output.image)
return ImageOutput( metadata = context.services.metadata.build_metadata(
image=ImageField(image_type=image_type, image_name=image_name) session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(
image_type, image_name, generate_output.image, metadata
)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=generate_output.image,
) )
@@ -117,20 +128,17 @@ class ImageToImageInvocation(TextToImageInvocation):
) )
def dispatch_progress( def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState self,
) -> None: context: InvocationContext,
if (context.services.queue.is_canceled(context.graph_execution_state_id)): source_node_id: str,
raise CanceledException intermediate_state: PipelineIntermediateState,
) -> None:
step = intermediate_state.step stable_diffusion_step_callback(
if intermediate_state.predicted_original is not None: context=context,
# Some schedulers report not only the noisy latents at the current timestep, intermediate_state=intermediate_state,
# but also their estimate so far of what the de-noised latents will be. node=self.dict(),
sample = intermediate_state.predicted_original source_node_id=source_node_id,
else: )
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = ( image = (
@@ -142,18 +150,27 @@ class ImageToImageInvocation(TextToImageInvocation):
) )
mask = None mask = None
if self.fit:
image = image.resize((self.width, self.height))
# Handle invalid model parameter # Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model) model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Img2Img(model).generate( outputs = Img2Img(model).generate(
prompt=self.prompt, prompt=self.prompt,
init_image=image, init_image=image,
init_mask=mask, init_mask=mask,
step_callback=partial(self.dispatch_progress, context), step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict( **self.dict(
exclude={"prompt", "image", "mask"} exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually ), # Shorthand for passing all of the parameters above manually
) )
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object # Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one. # each time it is called. We only need the first one.
@@ -168,11 +185,19 @@ class ImageToImageInvocation(TextToImageInvocation):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, result_image)
return ImageOutput( metadata = context.services.metadata.build_metadata(
image=ImageField(image_type=image_type, image_name=image_name) session_id=context.graph_execution_state_id, node=self
) )
context.services.images.save(image_type, image_name, result_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=result_image,
)
class InpaintInvocation(ImageToImageInvocation): class InpaintInvocation(ImageToImageInvocation):
"""Generates an image using inpaint.""" """Generates an image using inpaint."""
@@ -188,20 +213,17 @@ class InpaintInvocation(ImageToImageInvocation):
) )
def dispatch_progress( def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState self,
) -> None: context: InvocationContext,
if (context.services.queue.is_canceled(context.graph_execution_state_id)): source_node_id: str,
raise CanceledException intermediate_state: PipelineIntermediateState,
) -> None:
step = intermediate_state.step stable_diffusion_step_callback(
if intermediate_state.predicted_original is not None: context=context,
# Some schedulers report not only the noisy latents at the current timestep, intermediate_state=intermediate_state,
# but also their estimate so far of what the de-noised latents will be. node=self.dict(),
sample = intermediate_state.predicted_original source_node_id=source_node_id,
else: )
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = ( image = (
@@ -218,17 +240,23 @@ class InpaintInvocation(ImageToImageInvocation):
) )
# Handle invalid model parameter # Handle invalid model parameter
model = choose_model(context.services.model_manager, self.model) model = choose_model(context.services.model_manager, self.model)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
outputs = Inpaint(model).generate( outputs = Inpaint(model).generate(
prompt=self.prompt, prompt=self.prompt,
init_img=image, init_image=image,
init_mask=mask, mask_image=mask,
step_callback=partial(self.dispatch_progress, context), step_callback=partial(self.dispatch_progress, context, source_node_id),
**self.dict( **self.dict(
exclude={"prompt", "image", "mask"} exclude={"prompt", "image", "mask"}
), # Shorthand for passing all of the parameters above manually ), # Shorthand for passing all of the parameters above manually
) )
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object # Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
# each time it is called. We only need the first one. # each time it is called. We only need the first one.
@@ -243,7 +271,14 @@ class InpaintInvocation(ImageToImageInvocation):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, result_image)
return ImageOutput( metadata = context.services.metadata.build_metadata(
image=ImageField(image_type=image_type, image_name=image_name) session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, result_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=result_image,
) )

View File

@@ -1,6 +1,5 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Optional from typing import Literal, Optional
import numpy import numpy
@@ -8,8 +7,12 @@ from PIL import Image, ImageFilter, ImageOps
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from ..models.image import ImageField, ImageType from ..models.image import ImageField, ImageType
from ..services.invocation_services import InvocationServices from .baseinvocation import (
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
class PILInvocationConfig(BaseModel): class PILInvocationConfig(BaseModel):
@@ -22,50 +25,73 @@ class PILInvocationConfig(BaseModel):
}, },
} }
class ImageOutput(BaseInvocationOutput): class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image""" """Base class for invocations that output an image"""
#fmt: off
# fmt: off
type: Literal["image"] = "image" type: Literal["image"] = "image"
image: ImageField = Field(default=None, description="The output image") image: ImageField = Field(default=None, description="The output image")
#fmt: on width: Optional[int] = Field(default=None, description="The width of the image in pixels")
height: Optional[int] = Field(default=None, description="The height of the image in pixels")
# fmt: on
class Config: class Config:
schema_extra = { schema_extra = {
'required': [ "required": ["type", "image", "width", "height", "mode"]
'type',
'image',
]
} }
def build_image_output(
image_type: ImageType, image_name: str, image: Image.Image
) -> ImageOutput:
"""Builds an ImageOutput and its ImageField"""
image_field = ImageField(
image_name=image_name,
image_type=image_type,
)
return ImageOutput(
image=image_field,
width=image.width,
height=image.height,
mode=image.mode,
)
class MaskOutput(BaseInvocationOutput): class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask""" """Base class for invocations that output a mask"""
#fmt: off
# fmt: off
type: Literal["mask"] = "mask" type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask") mask: ImageField = Field(default=None, description="The output mask")
#fmt: on # fmt: on
class Config: class Config:
schema_extra = { schema_extra = {
'required': [ "required": [
'type', "type",
'mask', "mask",
] ]
} }
# TODO: this isn't really necessary anymore
class LoadImageInvocation(BaseInvocation): class LoadImageInvocation(BaseInvocation):
"""Load an image from a filename and provide it as output.""" """Load an image and provide it as output."""
#fmt: off
# fmt: off
type: Literal["load_image"] = "load_image" type: Literal["load_image"] = "load_image"
# Inputs # Inputs
image_type: ImageType = Field(description="The type of the image") image_type: ImageType = Field(description="The type of the image")
image_name: str = Field(description="The name of the image") image_name: str = Field(description="The name of the image")
#fmt: on # fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
return ImageOutput( image = context.services.images.get(self.image_type, self.image_name)
image=ImageField(image_type=self.image_type, image_name=self.image_name)
return build_image_output(
image_type=self.image_type,
image_name=self.image_name,
image=image,
) )
@@ -86,16 +112,17 @@ class ShowImageInvocation(BaseInvocation):
# TODO: how to handle failure? # TODO: how to handle failure?
return ImageOutput( return build_image_output(
image=ImageField( image_type=self.image.image_type,
image_type=self.image.image_type, image_name=self.image.image_name image_name=self.image.image_name,
) image=image,
) )
class CropImageInvocation(BaseInvocation, PILInvocationConfig): class CropImageInvocation(BaseInvocation, PILInvocationConfig):
"""Crops an image to a specified box. The box can be outside of the image.""" """Crops an image to a specified box. The box can be outside of the image."""
#fmt: off
# fmt: off
type: Literal["crop"] = "crop" type: Literal["crop"] = "crop"
# Inputs # Inputs
@@ -104,7 +131,7 @@ class CropImageInvocation(BaseInvocation, PILInvocationConfig):
y: int = Field(default=0, description="The top y coordinate of the crop rectangle") y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
width: int = Field(default=512, gt=0, description="The width of the crop rectangle") width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
height: int = Field(default=512, gt=0, description="The height of the crop rectangle") height: int = Field(default=512, gt=0, description="The height of the crop rectangle")
#fmt: on # fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get( image = context.services.images.get(
@@ -120,15 +147,23 @@ class CropImageInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, image_crop)
return ImageOutput( metadata = context.services.metadata.build_metadata(
image=ImageField(image_type=image_type, image_name=image_name) session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image_crop, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=image_crop,
) )
class PasteImageInvocation(BaseInvocation, PILInvocationConfig): class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
"""Pastes an image into another image.""" """Pastes an image into another image."""
#fmt: off
# fmt: off
type: Literal["paste"] = "paste" type: Literal["paste"] = "paste"
# Inputs # Inputs
@@ -137,7 +172,7 @@ class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting") mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
x: int = Field(default=0, description="The left x coordinate at which to paste the image") x: int = Field(default=0, description="The left x coordinate at which to paste the image")
y: int = Field(default=0, description="The top y coordinate at which to paste the image") y: int = Field(default=0, description="The top y coordinate at which to paste the image")
#fmt: on # fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.services.images.get( base_image = context.services.images.get(
@@ -170,21 +205,29 @@ class PasteImageInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, new_image)
return ImageOutput( metadata = context.services.metadata.build_metadata(
image=ImageField(image_type=image_type, image_name=image_name) session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, new_image, metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=new_image,
) )
class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig): class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
"""Extracts the alpha channel of an image as a mask.""" """Extracts the alpha channel of an image as a mask."""
#fmt: off
# fmt: off
type: Literal["tomask"] = "tomask" type: Literal["tomask"] = "tomask"
# Inputs # Inputs
image: ImageField = Field(default=None, description="The image to create the mask from") image: ImageField = Field(default=None, description="The image to create the mask from")
invert: bool = Field(default=False, description="Whether or not to invert the mask") invert: bool = Field(default=False, description="Whether or not to invert the mask")
#fmt: on # fmt: on
def invoke(self, context: InvocationContext) -> MaskOutput: def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.services.images.get( image = context.services.images.get(
@@ -199,22 +242,27 @@ class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, image_mask)
metadata = context.services.metadata.build_metadata(
session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, image_mask, metadata)
return MaskOutput(mask=ImageField(image_type=image_type, image_name=image_name)) return MaskOutput(mask=ImageField(image_type=image_type, image_name=image_name))
class BlurInvocation(BaseInvocation, PILInvocationConfig): class BlurInvocation(BaseInvocation, PILInvocationConfig):
"""Blurs an image""" """Blurs an image"""
#fmt: off # fmt: off
type: Literal["blur"] = "blur" type: Literal["blur"] = "blur"
# Inputs # Inputs
image: ImageField = Field(default=None, description="The image to blur") image: ImageField = Field(default=None, description="The image to blur")
radius: float = Field(default=8.0, ge=0, description="The blur radius") radius: float = Field(default=8.0, ge=0, description="The blur radius")
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur") blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
#fmt: on # fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get( image = context.services.images.get(
self.image.image_type, self.image.image_name self.image.image_type, self.image.image_name
@@ -231,22 +279,28 @@ class BlurInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, blur_image)
return ImageOutput( metadata = context.services.metadata.build_metadata(
image=ImageField(image_type=image_type, image_name=image_name) session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, blur_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=blur_image
) )
class LerpInvocation(BaseInvocation, PILInvocationConfig): class LerpInvocation(BaseInvocation, PILInvocationConfig):
"""Linear interpolation of all pixels of an image""" """Linear interpolation of all pixels of an image"""
#fmt: off
# fmt: off
type: Literal["lerp"] = "lerp" type: Literal["lerp"] = "lerp"
# Inputs # Inputs
image: ImageField = Field(default=None, description="The image to lerp") image: ImageField = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum output value") min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
max: int = Field(default=255, ge=0, le=255, description="The maximum output value") max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
#fmt: on # fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get( image = context.services.images.get(
@@ -262,23 +316,29 @@ class LerpInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, lerp_image)
return ImageOutput( metadata = context.services.metadata.build_metadata(
image=ImageField(image_type=image_type, image_name=image_name) session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, lerp_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=lerp_image
) )
class InverseLerpInvocation(BaseInvocation, PILInvocationConfig): class InverseLerpInvocation(BaseInvocation, PILInvocationConfig):
"""Inverse linear interpolation of all pixels of an image""" """Inverse linear interpolation of all pixels of an image"""
#fmt: off
# fmt: off
type: Literal["ilerp"] = "ilerp" type: Literal["ilerp"] = "ilerp"
# Inputs # Inputs
image: ImageField = Field(default=None, description="The image to lerp") image: ImageField = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum input value") min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
max: int = Field(default=255, ge=0, le=255, description="The maximum input value") max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
#fmt: on # fmt: on
def invoke(self, context: InvocationContext) -> ImageOutput: def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get( image = context.services.images.get(
self.image.image_type, self.image.image_name self.image.image_type, self.image.image_name
@@ -298,7 +358,12 @@ class InverseLerpInvocation(BaseInvocation, PILInvocationConfig):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, ilerp_image)
return ImageOutput( metadata = context.services.metadata.build_metadata(
image=ImageField(image_type=image_type, image_name=image_name) session_id=context.graph_execution_state_id, node=self
)
context.services.images.save(image_type, image_name, ilerp_image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=ilerp_image
) )

View File

@@ -1,24 +1,25 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
import random
from typing import Literal, Optional from typing import Literal, Optional
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
import torch import torch
from invokeai.app.models.exceptions import CanceledException from invokeai.app.invocations.util.choose_model import choose_model
from invokeai.app.invocations.util.get_model import choose_model
from invokeai.app.util.step_callback import diffusers_step_callback_adapter from invokeai.app.util.step_callback import stable_diffusion_step_callback
from ...backend.model_management.model_manager import ModelManager from ...backend.model_management.model_manager import ModelManager
from ...backend.util.devices import choose_torch_device, torch_dtype from ...backend.util.devices import choose_torch_device, torch_dtype
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.image_util.seamless import configure_model_padding from ...backend.image_util.seamless import configure_model_padding
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
import numpy as np import numpy as np
from ..services.image_storage import ImageType from ..services.image_storage import ImageType
from .baseinvocation import BaseInvocation, InvocationContext from .baseinvocation import BaseInvocation, InvocationContext
from .image import ImageField, ImageOutput from .image import ImageField, ImageOutput, build_image_output
from .compel import ConditioningField
from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.stable_diffusion import PipelineIntermediateState
from diffusers.schedulers import SchedulerMixin as Scheduler from diffusers.schedulers import SchedulerMixin as Scheduler
import diffusers import diffusers
@@ -30,6 +31,8 @@ class LatentsField(BaseModel):
latents_name: Optional[str] = Field(default=None, description="The name of the latents") latents_name: Optional[str] = Field(default=None, description="The name of the latents")
class Config:
schema_extra = {"required": ["latents_name"]}
class LatentsOutput(BaseInvocationOutput): class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents""" """Base class for invocations that output latents"""
@@ -99,15 +102,19 @@ def get_noise(width:int, height:int, device:torch.device, seed:int = 0, latent_c
return x return x
def random_seed():
return random.randint(0, np.iinfo(np.uint32).max)
class NoiseInvocation(BaseInvocation): class NoiseInvocation(BaseInvocation):
"""Generates latent noise.""" """Generates latent noise."""
type: Literal["noise"] = "noise" type: Literal["noise"] = "noise"
# Inputs # Inputs
seed: int = Field(default=0, ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", ) seed: int = Field(ge=0, le=np.iinfo(np.uint32).max, description="The seed to use", default_factory=random_seed)
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting noise", ) width: int = Field(default=512, multiple_of=8, gt=0, description="The width of the resulting noise", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting noise", ) height: int = Field(default=512, multiple_of=8, gt=0, description="The height of the resulting noise", )
# Schema customisation # Schema customisation
@@ -131,19 +138,16 @@ class NoiseInvocation(BaseInvocation):
# Text to image # Text to image
class TextToLatentsInvocation(BaseInvocation): class TextToLatentsInvocation(BaseInvocation):
"""Generates latents from a prompt.""" """Generates latents from conditionings."""
type: Literal["t2l"] = "t2l" type: Literal["t2l"] = "t2l"
# Inputs # Inputs
# TODO: consider making prompt optional to enable providing prompt through a link
# fmt: off # fmt: off
prompt: Optional[str] = Field(description="The prompt to generate an image from") positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", ) negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
noise: Optional[LatentsField] = Field(description="The noise to use") noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image") steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", ) cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" ) scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", ) seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
@@ -165,22 +169,15 @@ class TextToLatentsInvocation(BaseInvocation):
# TODO: pass this an emitter method or something? or a session for dispatching? # TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress( def dispatch_progress(
self, context: InvocationContext, intermediate_state: PipelineIntermediateState self, context: InvocationContext, source_node_id: str, intermediate_state: PipelineIntermediateState
) -> None: ) -> None:
if (context.services.queue.is_canceled(context.graph_execution_state_id)): stable_diffusion_step_callback(
raise CanceledException context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
step = intermediate_state.step
if intermediate_state.predicted_original is not None:
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be.
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
diffusers_step_callback_adapter(sample, step, steps=self.steps, id=self.id, context=context)
def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline: def get_model(self, model_manager: ModelManager) -> StableDiffusionGeneratorPipeline:
model_info = choose_model(model_manager, self.model) model_info = choose_model(model_manager, self.model)
model_name = model_info['model_name'] model_name = model_info['model_name']
@@ -190,7 +187,7 @@ class TextToLatentsInvocation(BaseInvocation):
model=model, model=model,
scheduler_name=self.scheduler scheduler_name=self.scheduler
) )
if isinstance(model, DiffusionPipeline): if isinstance(model, DiffusionPipeline):
for component in [model.unet, model.vae]: for component in [model.unet, model.vae]:
configure_model_padding(component, configure_model_padding(component,
@@ -206,8 +203,10 @@ class TextToLatentsInvocation(BaseInvocation):
return model return model
def get_conditioning_data(self, model: StableDiffusionGeneratorPipeline) -> ConditioningData: def get_conditioning_data(self, context: InvocationContext, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(self.prompt, model=model) c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
conditioning_data = ConditioningData( conditioning_data = ConditioningData(
uc, uc,
c, c,
@@ -226,11 +225,15 @@ class TextToLatentsInvocation(BaseInvocation):
def invoke(self, context: InvocationContext) -> LatentsOutput: def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name) noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState): def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, state) self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager) model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model) conditioning_data = self.get_conditioning_data(context, model)
# TODO: Verify the noise is the right size # TODO: Verify the noise is the right size
@@ -276,8 +279,12 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
noise = context.services.latents.get(self.noise.latents_name) noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name) latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState): def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, state) self.dispatch_progress(context, source_node_id, state)
model = self.get_model(context.services.model_manager) model = self.get_model(context.services.model_manager)
conditioning_data = self.get_conditioning_data(model) conditioning_data = self.get_conditioning_data(model)
@@ -287,7 +294,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
initial_latents = latent if self.strength < 1.0 else torch.zeros_like( initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=model.device, dtype=latent.dtype latent, device=model.device, dtype=latent.dtype
) )
timesteps, _ = model.get_img2img_timesteps( timesteps, _ = model.get_img2img_timesteps(
self.steps, self.steps,
self.strength, self.strength,
@@ -350,7 +357,79 @@ class LatentsToImageInvocation(BaseInvocation):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, image)
return ImageOutput( metadata = context.services.metadata.build_metadata(
image=ImageField(image_type=image_type, image_name=image_name) session_id=context.graph_execution_state_id, node=self
) )
torch.cuda.empty_cache()
context.services.images.save(image_type, image_name, image, metadata)
return build_image_output(
image_type=image_type, image_name=image_name, image=image
)
LATENTS_INTERPOLATION_MODE = Literal[
"nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"
]
class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
type: Literal["lresize"] = "lresize"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to resize")
width: int = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode")
antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
resized_latents = torch.nn.functional.interpolate(
latents,
size=(self.height // 8, self.width // 8),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.set(name, resized_latents)
return LatentsOutput(latents=LatentsField(latents_name=name))
class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor."""
type: Literal["lscale"] = "lscale"
# Inputs
latents: Optional[LatentsField] = Field(description="The latents to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
mode: Optional[LATENTS_INTERPOLATION_MODE] = Field(default="bilinear", description="The interpolation mode")
antialias: Optional[bool] = Field(default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# resizing
resized_latents = torch.nn.functional.interpolate(
latents,
scale_factor=self.scale_factor,
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.set(name, resized_latents)
return LatentsOutput(latents=LatentsField(latents_name=name))

View File

@@ -0,0 +1,18 @@
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal
from pydantic import Field
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext
from .math import IntOutput
# Pass-through parameter nodes - used by subgraphs
class ParamIntInvocation(BaseInvocation):
"""An integer parameter"""
#fmt: off
type: Literal["param_int"] = "param_int"
a: int = Field(default=0, description="The integer value")
#fmt: on
def invoke(self, context: InvocationContext) -> IntOutput:
return IntOutput(a=self.a)

View File

@@ -1,12 +1,11 @@
from datetime import datetime, timezone
from typing import Literal, Union from typing import Literal, Union
from pydantic import Field from pydantic import Field
from invokeai.app.models.image import ImageField, ImageType from invokeai.app.models.image import ImageField, ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput from .image import ImageOutput, build_image_output
class RestoreFaceInvocation(BaseInvocation): class RestoreFaceInvocation(BaseInvocation):
"""Restores faces in an image.""" """Restores faces in an image."""
@@ -44,7 +43,14 @@ class RestoreFaceInvocation(BaseInvocation):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput( metadata = context.services.metadata.build_metadata(
image=ImageField(image_type=image_type, image_name=image_name) session_id=context.graph_execution_state_id, node=self
) )
context.services.images.save(image_type, image_name, results[0][0], metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=results[0][0]
)

View File

@@ -1,14 +1,12 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from datetime import datetime, timezone
from typing import Literal, Union from typing import Literal, Union
from pydantic import Field from pydantic import Field
from invokeai.app.models.image import ImageField, ImageType from invokeai.app.models.image import ImageField, ImageType
from ..services.invocation_services import InvocationServices
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
from .image import ImageOutput from .image import ImageOutput, build_image_output
class UpscaleInvocation(BaseInvocation): class UpscaleInvocation(BaseInvocation):
@@ -49,7 +47,14 @@ class UpscaleInvocation(BaseInvocation):
image_name = context.services.images.create_name( image_name = context.services.images.create_name(
context.graph_execution_state_id, self.id context.graph_execution_state_id, self.id
) )
context.services.images.save(image_type, image_name, results[0][0])
return ImageOutput( metadata = context.services.metadata.build_metadata(
image=ImageField(image_type=image_type, image_name=image_name) session_id=context.graph_execution_state_id, node=self
) )
context.services.images.save(image_type, image_name, results[0][0], metadata)
return build_image_output(
image_type=image_type,
image_name=image_name,
image=results[0][0]
)

View File

@@ -1,11 +1,13 @@
from invokeai.app.invocations.baseinvocation import InvocationContext
from invokeai.backend.model_management.model_manager import ModelManager from invokeai.backend.model_management.model_manager import ModelManager
def choose_model(model_manager: ModelManager, model_name: str): def choose_model(model_manager: ModelManager, model_name: str):
"""Returns the default model if the `model_name` not a valid model, else returns the selected model.""" """Returns the default model if the `model_name` not a valid model, else returns the selected model."""
logger = model_manager.logger
if model_manager.valid_model(model_name): if model_manager.valid_model(model_name):
return model_manager.get_model(model_name) model = model_manager.get_model(model_name)
else: else:
print(f"* Warning: '{model_name}' is not a valid model name. Using default model instead.") model = model_manager.get_model()
return model_manager.get_model() logger.warning(f"{model_name}' is not a valid model name. Using default model \'{model['model_name']}\' instead.")
return model

View File

@@ -9,6 +9,14 @@ class ImageType(str, Enum):
UPLOAD = "uploads" UPLOAD = "uploads"
def is_image_type(obj):
try:
ImageType(obj)
except ValueError:
return False
return True
class ImageField(BaseModel): class ImageField(BaseModel):
"""An image field used for passing image objects between invocations""" """An image field used for passing image objects between invocations"""
@@ -18,9 +26,4 @@ class ImageField(BaseModel):
image_name: Optional[str] = Field(default=None, description="The name of the image") image_name: Optional[str] = Field(default=None, description="The name of the image")
class Config: class Config:
schema_extra = { schema_extra = {"required": ["image_type", "image_name"]}
"required": [
"image_type",
"image_name",
]
}

View File

@@ -1,11 +0,0 @@
from typing import Optional
from pydantic import BaseModel, Field
class ImageMetadata(BaseModel):
"""An image's metadata"""
timestamp: float = Field(description="The creation timestamp of the image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# TODO: figure out metadata
sd_metadata: Optional[dict] = Field(default={}, description="The image's SD-specific metadata")

View File

@@ -0,0 +1,63 @@
from ..invocations.latent import LatentsToImageInvocation, NoiseInvocation, TextToLatentsInvocation
from ..invocations.compel import CompelInvocation
from ..invocations.params import ParamIntInvocation
from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph
from .item_storage import ItemStorageABC
default_text_to_image_graph_id = '539b2af5-2b4d-4d8c-8071-e54a3255fc74'
def create_text_to_image() -> LibraryGraph:
return LibraryGraph(
id=default_text_to_image_graph_id,
name='t2i',
description='Converts text to an image',
graph=Graph(
nodes={
'width': ParamIntInvocation(id='width', a=512),
'height': ParamIntInvocation(id='height', a=512),
'seed': ParamIntInvocation(id='seed', a=-1),
'3': NoiseInvocation(id='3'),
'4': CompelInvocation(id='4'),
'5': CompelInvocation(id='5'),
'6': TextToLatentsInvocation(id='6'),
'7': LatentsToImageInvocation(id='7'),
},
edges=[
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='3', field='width')),
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='3', field='height')),
Edge(source=EdgeConnection(node_id='seed', field='a'), destination=EdgeConnection(node_id='3', field='seed')),
Edge(source=EdgeConnection(node_id='3', field='noise'), destination=EdgeConnection(node_id='6', field='noise')),
Edge(source=EdgeConnection(node_id='6', field='latents'), destination=EdgeConnection(node_id='7', field='latents')),
Edge(source=EdgeConnection(node_id='4', field='conditioning'), destination=EdgeConnection(node_id='6', field='positive_conditioning')),
Edge(source=EdgeConnection(node_id='5', field='conditioning'), destination=EdgeConnection(node_id='6', field='negative_conditioning')),
]
),
exposed_inputs=[
ExposedNodeInput(node_path='4', field='prompt', alias='positive_prompt'),
ExposedNodeInput(node_path='5', field='prompt', alias='negative_prompt'),
ExposedNodeInput(node_path='width', field='a', alias='width'),
ExposedNodeInput(node_path='height', field='a', alias='height'),
ExposedNodeInput(node_path='seed', field='a', alias='seed'),
],
exposed_outputs=[
ExposedNodeOutput(node_path='7', field='image', alias='image')
])
def create_system_graphs(graph_library: ItemStorageABC[LibraryGraph]) -> list[LibraryGraph]:
"""Creates the default system graphs, or adds new versions if the old ones don't match"""
graphs: list[LibraryGraph] = list()
text_to_image = graph_library.get(default_text_to_image_graph_id)
# TODO: Check if the graph is the same as the default one, and if not, update it
#if text_to_image is None:
text_to_image = create_text_to_image()
graph_library.set(text_to_image)
graphs.append(text_to_image)
return graphs

View File

@@ -1,10 +1,9 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Any, Dict, TypedDict from typing import Any
from invokeai.app.api.models.images import ProgressImage
from invokeai.app.util.misc import get_timestamp
ProgressImage = TypedDict(
"ProgressImage", {"dataURL": str, "width": int, "height": int}
)
class EventServiceBase: class EventServiceBase:
session_event: str = "session_event" session_event: str = "session_event"
@@ -14,7 +13,8 @@ class EventServiceBase:
def dispatch(self, event_name: str, payload: Any) -> None: def dispatch(self, event_name: str, payload: Any) -> None:
pass pass
def __emit_session_event(self, event_name: str, payload: Dict) -> None: def __emit_session_event(self, event_name: str, payload: dict) -> None:
payload["timestamp"] = get_timestamp()
self.dispatch( self.dispatch(
event_name=EventServiceBase.session_event, event_name=EventServiceBase.session_event,
payload=dict(event=event_name, data=payload), payload=dict(event=event_name, data=payload),
@@ -25,7 +25,8 @@ class EventServiceBase:
def emit_generator_progress( def emit_generator_progress(
self, self,
graph_execution_state_id: str, graph_execution_state_id: str,
invocation_id: str, node: dict,
source_node_id: str,
progress_image: ProgressImage | None, progress_image: ProgressImage | None,
step: int, step: int,
total_steps: int, total_steps: int,
@@ -35,48 +36,60 @@ class EventServiceBase:
event_name="generator_progress", event_name="generator_progress",
payload=dict( payload=dict(
graph_execution_state_id=graph_execution_state_id, graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id, node=node,
progress_image=progress_image, source_node_id=source_node_id,
progress_image=progress_image.dict() if progress_image is not None else None,
step=step, step=step,
total_steps=total_steps, total_steps=total_steps,
), ),
) )
def emit_invocation_complete( def emit_invocation_complete(
self, graph_execution_state_id: str, invocation_id: str, result: Dict self,
graph_execution_state_id: str,
result: dict,
node: dict,
source_node_id: str,
) -> None: ) -> None:
"""Emitted when an invocation has completed""" """Emitted when an invocation has completed"""
self.__emit_session_event( self.__emit_session_event(
event_name="invocation_complete", event_name="invocation_complete",
payload=dict( payload=dict(
graph_execution_state_id=graph_execution_state_id, graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id, node=node,
source_node_id=source_node_id,
result=result, result=result,
), ),
) )
def emit_invocation_error( def emit_invocation_error(
self, graph_execution_state_id: str, invocation_id: str, error: str self,
graph_execution_state_id: str,
node: dict,
source_node_id: str,
error: str,
) -> None: ) -> None:
"""Emitted when an invocation has completed""" """Emitted when an invocation has completed"""
self.__emit_session_event( self.__emit_session_event(
event_name="invocation_error", event_name="invocation_error",
payload=dict( payload=dict(
graph_execution_state_id=graph_execution_state_id, graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id, node=node,
source_node_id=source_node_id,
error=error, error=error,
), ),
) )
def emit_invocation_started( def emit_invocation_started(
self, graph_execution_state_id: str, invocation_id: str self, graph_execution_state_id: str, node: dict, source_node_id: str
) -> None: ) -> None:
"""Emitted when an invocation has started""" """Emitted when an invocation has started"""
self.__emit_session_event( self.__emit_session_event(
event_name="invocation_started", event_name="invocation_started",
payload=dict( payload=dict(
graph_execution_state_id=graph_execution_state_id, graph_execution_state_id=graph_execution_state_id,
invocation_id=invocation_id, node=node,
source_node_id=source_node_id,
), ),
) )
@@ -84,5 +97,7 @@ class EventServiceBase:
"""Emitted when a session has completed all invocations""" """Emitted when a session has completed all invocations"""
self.__emit_session_event( self.__emit_session_event(
event_name="graph_execution_state_complete", event_name="graph_execution_state_complete",
payload=dict(graph_execution_state_id=graph_execution_state_id), payload=dict(
graph_execution_state_id=graph_execution_state_id,
),
) )

View File

@@ -2,7 +2,6 @@
import copy import copy
import itertools import itertools
import traceback
import uuid import uuid
from types import NoneType from types import NoneType
from typing import ( from typing import (
@@ -17,7 +16,7 @@ from typing import (
) )
import networkx as nx import networkx as nx
from pydantic import BaseModel, validator from pydantic import BaseModel, root_validator, validator
from pydantic.fields import Field from pydantic.fields import Field
from ..invocations import * from ..invocations import *
@@ -26,7 +25,6 @@ from ..invocations.baseinvocation import (
BaseInvocationOutput, BaseInvocationOutput,
InvocationContext, InvocationContext,
) )
from .invocation_services import InvocationServices
class EdgeConnection(BaseModel): class EdgeConnection(BaseModel):
@@ -215,7 +213,7 @@ InvocationOutputsUnion = Union[BaseInvocationOutput.get_all_subclasses_tuple()]
class Graph(BaseModel): class Graph(BaseModel):
id: str = Field(description="The id of this graph", default_factory=uuid.uuid4) id: str = Field(description="The id of this graph", default_factory=lambda: uuid.uuid4().__str__())
# TODO: use a list (and never use dict in a BaseModel) because pydantic/fastapi hates me # TODO: use a list (and never use dict in a BaseModel) because pydantic/fastapi hates me
nodes: dict[str, Annotated[InvocationsUnion, Field(discriminator="type")]] = Field( nodes: dict[str, Annotated[InvocationsUnion, Field(discriminator="type")]] = Field(
description="The nodes in this graph", default_factory=dict description="The nodes in this graph", default_factory=dict
@@ -283,7 +281,8 @@ class Graph(BaseModel):
:raises InvalidEdgeError: the provided edge is invalid. :raises InvalidEdgeError: the provided edge is invalid.
""" """
if self._is_edge_valid(edge) and edge not in self.edges: self._validate_edge(edge)
if edge not in self.edges:
self.edges.append(edge) self.edges.append(edge)
else: else:
raise InvalidEdgeError() raise InvalidEdgeError()
@@ -354,7 +353,7 @@ class Graph(BaseModel):
return True return True
def _is_edge_valid(self, edge: Edge) -> bool: def _validate_edge(self, edge: Edge):
"""Validates that a new edge doesn't create a cycle in the graph""" """Validates that a new edge doesn't create a cycle in the graph"""
# Validate that the nodes exist (edges may contain node paths, so we can't just check for nodes directly) # Validate that the nodes exist (edges may contain node paths, so we can't just check for nodes directly)
@@ -362,54 +361,53 @@ class Graph(BaseModel):
from_node = self.get_node(edge.source.node_id) from_node = self.get_node(edge.source.node_id)
to_node = self.get_node(edge.destination.node_id) to_node = self.get_node(edge.destination.node_id)
except NodeNotFoundError: except NodeNotFoundError:
return False raise InvalidEdgeError("One or both nodes don't exist")
# Validate that an edge to this node+field doesn't already exist # Validate that an edge to this node+field doesn't already exist
input_edges = self._get_input_edges(edge.destination.node_id, edge.destination.field) input_edges = self._get_input_edges(edge.destination.node_id, edge.destination.field)
if len(input_edges) > 0 and not isinstance(to_node, CollectInvocation): if len(input_edges) > 0 and not isinstance(to_node, CollectInvocation):
return False raise InvalidEdgeError(f'Edge to node {edge.destination.node_id} field {edge.destination.field} already exists')
# Validate that no cycles would be created # Validate that no cycles would be created
g = self.nx_graph_flat() g = self.nx_graph_flat()
g.add_edge(edge.source.node_id, edge.destination.node_id) g.add_edge(edge.source.node_id, edge.destination.node_id)
if not nx.is_directed_acyclic_graph(g): if not nx.is_directed_acyclic_graph(g):
return False raise InvalidEdgeError(f'Edge creates a cycle in the graph')
# Validate that the field types are compatible # Validate that the field types are compatible
if not are_connections_compatible( if not are_connections_compatible(
from_node, edge.source.field, to_node, edge.destination.field from_node, edge.source.field, to_node, edge.destination.field
): ):
return False raise InvalidEdgeError(f'Fields are incompatible')
# Validate if iterator output type matches iterator input type (if this edge results in both being set) # Validate if iterator output type matches iterator input type (if this edge results in both being set)
if isinstance(to_node, IterateInvocation) and edge.destination.field == "collection": if isinstance(to_node, IterateInvocation) and edge.destination.field == "collection":
if not self._is_iterator_connection_valid( if not self._is_iterator_connection_valid(
edge.destination.node_id, new_input=edge.source edge.destination.node_id, new_input=edge.source
): ):
return False raise InvalidEdgeError(f'Iterator input type does not match iterator output type')
# Validate if iterator input type matches output type (if this edge results in both being set) # Validate if iterator input type matches output type (if this edge results in both being set)
if isinstance(from_node, IterateInvocation) and edge.source.field == "item": if isinstance(from_node, IterateInvocation) and edge.source.field == "item":
if not self._is_iterator_connection_valid( if not self._is_iterator_connection_valid(
edge.source.node_id, new_output=edge.destination edge.source.node_id, new_output=edge.destination
): ):
return False raise InvalidEdgeError(f'Iterator output type does not match iterator input type')
# Validate if collector input type matches output type (if this edge results in both being set) # Validate if collector input type matches output type (if this edge results in both being set)
if isinstance(to_node, CollectInvocation) and edge.destination.field == "item": if isinstance(to_node, CollectInvocation) and edge.destination.field == "item":
if not self._is_collector_connection_valid( if not self._is_collector_connection_valid(
edge.destination.node_id, new_input=edge.source edge.destination.node_id, new_input=edge.source
): ):
return False raise InvalidEdgeError(f'Collector output type does not match collector input type')
# Validate if collector output type matches input type (if this edge results in both being set) # Validate if collector output type matches input type (if this edge results in both being set)
if isinstance(from_node, CollectInvocation) and edge.source.field == "collection": if isinstance(from_node, CollectInvocation) and edge.source.field == "collection":
if not self._is_collector_connection_valid( if not self._is_collector_connection_valid(
edge.source.node_id, new_output=edge.destination edge.source.node_id, new_output=edge.destination
): ):
return False raise InvalidEdgeError(f'Collector input type does not match collector output type')
return True
def has_node(self, node_path: str) -> bool: def has_node(self, node_path: str) -> bool:
"""Determines whether or not a node exists in the graph.""" """Determines whether or not a node exists in the graph."""
@@ -733,7 +731,7 @@ class Graph(BaseModel):
for sgn in ( for sgn in (
gn for gn in self.nodes.values() if isinstance(gn, GraphInvocation) gn for gn in self.nodes.values() if isinstance(gn, GraphInvocation)
): ):
sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix)) g = sgn.graph.nx_graph_flat(g, self._get_node_path(sgn.id, prefix))
# TODO: figure out if iteration nodes need to be expanded # TODO: figure out if iteration nodes need to be expanded
@@ -750,9 +748,7 @@ class Graph(BaseModel):
class GraphExecutionState(BaseModel): class GraphExecutionState(BaseModel):
"""Tracks the state of a graph execution""" """Tracks the state of a graph execution"""
id: str = Field( id: str = Field(description="The id of the execution state", default_factory=lambda: uuid.uuid4().__str__())
description="The id of the execution state", default_factory=uuid.uuid4
)
# TODO: Store a reference to the graph instead of the actual graph? # TODO: Store a reference to the graph instead of the actual graph?
graph: Graph = Field(description="The graph being executed") graph: Graph = Field(description="The graph being executed")
@@ -858,7 +854,8 @@ class GraphExecutionState(BaseModel):
def is_complete(self) -> bool: def is_complete(self) -> bool:
"""Returns true if the graph is complete""" """Returns true if the graph is complete"""
return self.has_error() or all((k in self.executed for k in self.graph.nodes)) node_ids = set(self.graph.nx_graph_flat().nodes)
return self.has_error() or all((k in self.executed for k in node_ids))
def has_error(self) -> bool: def has_error(self) -> bool:
"""Returns true if the graph has any errors""" """Returns true if the graph has any errors"""
@@ -946,11 +943,11 @@ class GraphExecutionState(BaseModel):
def _iterator_graph(self) -> nx.DiGraph: def _iterator_graph(self) -> nx.DiGraph:
"""Gets a DiGraph with edges to collectors removed so an ancestor search produces all active iterators for any node""" """Gets a DiGraph with edges to collectors removed so an ancestor search produces all active iterators for any node"""
g = self.graph.nx_graph() g = self.graph.nx_graph_flat()
collectors = ( collectors = (
n n
for n in self.graph.nodes for n in self.graph.nodes
if isinstance(self.graph.nodes[n], CollectInvocation) if isinstance(self.graph.get_node(n), CollectInvocation)
) )
for c in collectors: for c in collectors:
g.remove_edges_from(list(g.in_edges(c))) g.remove_edges_from(list(g.in_edges(c)))
@@ -962,7 +959,7 @@ class GraphExecutionState(BaseModel):
iterators = [ iterators = [
n n
for n in nx.ancestors(g, node_id) for n in nx.ancestors(g, node_id)
if isinstance(self.graph.nodes[n], IterateInvocation) if isinstance(self.graph.get_node(n), IterateInvocation)
] ]
return iterators return iterators
@@ -1098,7 +1095,9 @@ class GraphExecutionState(BaseModel):
# TODO: Add API for modifying underlying graph that checks if the change will be valid given the current execution state # TODO: Add API for modifying underlying graph that checks if the change will be valid given the current execution state
def _is_edge_valid(self, edge: Edge) -> bool: def _is_edge_valid(self, edge: Edge) -> bool:
if not self._is_edge_valid(edge): try:
self.graph._validate_edge(edge)
except InvalidEdgeError:
return False return False
# Invalid if destination has already been prepared or executed # Invalid if destination has already been prepared or executed
@@ -1144,4 +1143,52 @@ class GraphExecutionState(BaseModel):
self.graph.delete_edge(edge) self.graph.delete_edge(edge)
class ExposedNodeInput(BaseModel):
node_path: str = Field(description="The node path to the node with the input")
field: str = Field(description="The field name of the input")
alias: str = Field(description="The alias of the input")
class ExposedNodeOutput(BaseModel):
node_path: str = Field(description="The node path to the node with the output")
field: str = Field(description="The field name of the output")
alias: str = Field(description="The alias of the output")
class LibraryGraph(BaseModel):
id: str = Field(description="The unique identifier for this library graph", default_factory=uuid.uuid4)
graph: Graph = Field(description="The graph")
name: str = Field(description="The name of the graph")
description: str = Field(description="The description of the graph")
exposed_inputs: list[ExposedNodeInput] = Field(description="The inputs exposed by this graph", default_factory=list)
exposed_outputs: list[ExposedNodeOutput] = Field(description="The outputs exposed by this graph", default_factory=list)
@validator('exposed_inputs', 'exposed_outputs')
def validate_exposed_aliases(cls, v):
if len(v) != len(set(i.alias for i in v)):
raise ValueError("Duplicate exposed alias")
return v
@root_validator
def validate_exposed_nodes(cls, values):
graph = values['graph']
# Validate exposed inputs
for exposed_input in values['exposed_inputs']:
if not graph.has_node(exposed_input.node_path):
raise ValueError(f"Exposed input node {exposed_input.node_path} does not exist")
node = graph.get_node(exposed_input.node_path)
if get_input_field(node, exposed_input.field) is None:
raise ValueError(f"Exposed input field {exposed_input.field} does not exist on node {exposed_input.node_path}")
# Validate exposed outputs
for exposed_output in values['exposed_outputs']:
if not graph.has_node(exposed_output.node_path):
raise ValueError(f"Exposed output node {exposed_output.node_path} does not exist")
node = graph.get_node(exposed_output.node_path)
if get_output_field(node, exposed_output.field) is None:
raise ValueError(f"Exposed output field {exposed_output.field} does not exist on node {exposed_output.node_path}")
return values
GraphInvocation.update_forward_refs() GraphInvocation.update_forward_refs()

View File

@@ -1,24 +1,29 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import datetime
import os import os
from glob import glob from glob import glob
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from enum import Enum
from pathlib import Path from pathlib import Path
from queue import Queue from queue import Queue
from typing import Callable, Dict, List from typing import Dict, List
from PIL.Image import Image from PIL.Image import Image
import PIL.Image as PILImage import PIL.Image as PILImage
from pydantic import BaseModel from send2trash import send2trash
from invokeai.app.api.models.images import ImageResponse from invokeai.app.api.models.images import (
from invokeai.app.models.image import ImageField, ImageType ImageResponse,
from invokeai.app.models.metadata import ImageMetadata ImageResponseMetadata,
SavedImage,
)
from invokeai.app.models.image import ImageType
from invokeai.app.services.metadata import (
InvokeAIMetadata,
MetadataServiceBase,
build_invokeai_metadata_pnginfo,
)
from invokeai.app.services.item_storage import PaginatedResults from invokeai.app.services.item_storage import PaginatedResults
from invokeai.app.util.save_thumbnail import save_thumbnail from invokeai.app.util.misc import get_timestamp
from invokeai.app.util.thumbnails import get_thumbnail_name, make_thumbnail
from invokeai.backend.image_util import PngWriter
class ImageStorageBase(ABC): class ImageStorageBase(ABC):
@@ -26,12 +31,14 @@ class ImageStorageBase(ABC):
@abstractmethod @abstractmethod
def get(self, image_type: ImageType, image_name: str) -> Image: def get(self, image_type: ImageType, image_name: str) -> Image:
"""Retrieves an image as PIL Image."""
pass pass
@abstractmethod @abstractmethod
def list( def list(
self, image_type: ImageType, page: int = 0, per_page: int = 10 self, image_type: ImageType, page: int = 0, per_page: int = 10
) -> PaginatedResults[ImageResponse]: ) -> PaginatedResults[ImageResponse]:
"""Gets a paginated list of images."""
pass pass
# TODO: make this a bit more flexible for e.g. cloud storage # TODO: make this a bit more flexible for e.g. cloud storage
@@ -39,35 +46,59 @@ class ImageStorageBase(ABC):
def get_path( def get_path(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str: ) -> str:
"""Gets the internal path to an image or its thumbnail."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def get_uri(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str:
"""Gets the external URI to an image or its thumbnail."""
pass
# TODO: make this a bit more flexible for e.g. cloud storage
@abstractmethod
def validate_path(self, path: str) -> bool:
"""Validates an image path."""
pass pass
@abstractmethod @abstractmethod
def save(self, image_type: ImageType, image_name: str, image: Image) -> None: def save(
self,
image_type: ImageType,
image_name: str,
image: Image,
metadata: InvokeAIMetadata | None = None,
) -> SavedImage:
"""Saves an image and a 256x256 WEBP thumbnail. Returns a tuple of the image name, thumbnail name, and created timestamp."""
pass pass
@abstractmethod @abstractmethod
def delete(self, image_type: ImageType, image_name: str) -> None: def delete(self, image_type: ImageType, image_name: str) -> None:
"""Deletes an image and its thumbnail (if one exists)."""
pass pass
def create_name(self, context_id: str, node_id: str) -> str: def create_name(self, context_id: str, node_id: str) -> str:
return f"{context_id}_{node_id}_{str(int(datetime.datetime.now(datetime.timezone.utc).timestamp()))}.png" """Creates a unique contextual image filename."""
return f"{context_id}_{node_id}_{str(get_timestamp())}.png"
class DiskImageStorage(ImageStorageBase): class DiskImageStorage(ImageStorageBase):
"""Stores images on disk""" """Stores images on disk"""
__output_folder: str __output_folder: str
__pngWriter: PngWriter
__cache_ids: Queue # TODO: this is an incredibly naive cache __cache_ids: Queue # TODO: this is an incredibly naive cache
__cache: Dict[str, Image] __cache: Dict[str, Image]
__max_cache_size: int __max_cache_size: int
__metadata_service: MetadataServiceBase
def __init__(self, output_folder: str): def __init__(self, output_folder: str, metadata_service: MetadataServiceBase):
self.__output_folder = output_folder self.__output_folder = output_folder
self.__pngWriter = PngWriter(output_folder)
self.__cache = dict() self.__cache = dict()
self.__cache_ids = Queue() self.__cache_ids = Queue()
self.__max_cache_size = 10 # TODO: get this from config self.__max_cache_size = 10 # TODO: get this from config
self.__metadata_service = metadata_service
Path(output_folder).mkdir(parents=True, exist_ok=True) Path(output_folder).mkdir(parents=True, exist_ok=True)
@@ -100,18 +131,22 @@ class DiskImageStorage(ImageStorageBase):
for path in page_of_image_paths: for path in page_of_image_paths:
filename = os.path.basename(path) filename = os.path.basename(path)
img = PILImage.open(path) img = PILImage.open(path)
invokeai_metadata = self.__metadata_service.get_metadata(img)
page_of_images.append( page_of_images.append(
ImageResponse( ImageResponse(
image_type=image_type.value, image_type=image_type.value,
image_name=filename, image_name=filename,
# TODO: DiskImageStorage should not be building URLs...? # TODO: DiskImageStorage should not be building URLs...?
image_url=f"api/v1/images/{image_type.value}/{filename}", image_url=self.get_uri(image_type, filename),
thumbnail_url=f"api/v1/images/{image_type.value}/thumbnails/{os.path.splitext(filename)[0]}.webp", thumbnail_url=self.get_uri(image_type, filename, True),
# TODO: Creation of this object should happen elsewhere, just making it fit here so it works # TODO: Creation of this object should happen elsewhere (?), just making it fit here so it works
metadata=ImageMetadata( metadata=ImageResponseMetadata(
timestamp=os.path.getctime(path), created=int(os.path.getctime(path)),
width=img.width, width=img.width,
height=img.height, height=img.height,
invokeai=invokeai_metadata,
), ),
) )
) )
@@ -142,43 +177,89 @@ class DiskImageStorage(ImageStorageBase):
def get_path( def get_path(
self, image_type: ImageType, image_name: str, is_thumbnail: bool = False self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
) -> str: ) -> str:
# strip out any relative path shenanigans
basename = os.path.basename(image_name)
if is_thumbnail: if is_thumbnail:
path = os.path.join( path = os.path.join(
self.__output_folder, image_type, "thumbnails", image_name self.__output_folder, image_type, "thumbnails", basename
) )
else: else:
path = os.path.join(self.__output_folder, image_type, image_name) path = os.path.join(self.__output_folder, image_type, basename)
return path
def save(self, image_type: ImageType, image_name: str, image: Image) -> None: abspath = os.path.abspath(path)
image_subpath = os.path.join(image_type, image_name)
self.__pngWriter.save_image_and_prompt_to_png( return abspath
image, "", image_subpath, None
) # TODO: just pass full path to png writer def get_uri(
save_thumbnail( self, image_type: ImageType, image_name: str, is_thumbnail: bool = False
image=image, ) -> str:
filename=image_name, # strip out any relative path shenanigans
path=os.path.join(self.__output_folder, image_type, "thumbnails"), basename = os.path.basename(image_name)
)
if is_thumbnail:
thumbnail_basename = get_thumbnail_name(basename)
uri = f"api/v1/images/{image_type.value}/thumbnails/{thumbnail_basename}"
else:
uri = f"api/v1/images/{image_type.value}/{basename}"
return uri
def validate_path(self, path: str) -> bool:
try:
os.stat(path)
return True
except Exception:
return False
def save(
self,
image_type: ImageType,
image_name: str,
image: Image,
metadata: InvokeAIMetadata | None = None,
) -> SavedImage:
image_path = self.get_path(image_type, image_name) image_path = self.get_path(image_type, image_name)
# TODO: Reading the image and then saving it strips the metadata...
if metadata:
pnginfo = build_invokeai_metadata_pnginfo(metadata=metadata)
image.save(image_path, "PNG", pnginfo=pnginfo)
else:
image.save(image_path) # this saved image has an empty info
thumbnail_name = get_thumbnail_name(image_name)
thumbnail_path = self.get_path(image_type, thumbnail_name, is_thumbnail=True)
thumbnail_image = make_thumbnail(image)
thumbnail_image.save(thumbnail_path)
self.__set_cache(image_path, image) self.__set_cache(image_path, image)
self.__set_cache(thumbnail_path, thumbnail_image)
return SavedImage(
image_name=image_name,
thumbnail_name=thumbnail_name,
created=int(os.path.getctime(image_path)),
)
def delete(self, image_type: ImageType, image_name: str) -> None: def delete(self, image_type: ImageType, image_name: str) -> None:
image_path = self.get_path(image_type, image_name) basename = os.path.basename(image_name)
thumbnail_path = self.get_path(image_type, image_name, True) image_path = self.get_path(image_type, basename)
if os.path.exists(image_path):
os.remove(image_path)
if os.path.exists(image_path):
send2trash(image_path)
if image_path in self.__cache: if image_path in self.__cache:
del self.__cache[image_path] del self.__cache[image_path]
if os.path.exists(thumbnail_path): thumbnail_name = get_thumbnail_name(image_name)
os.remove(thumbnail_path) thumbnail_path = self.get_path(image_type, thumbnail_name, True)
if os.path.exists(thumbnail_path):
send2trash(thumbnail_path)
if thumbnail_path in self.__cache: if thumbnail_path in self.__cache:
del self.__cache[thumbnail_path] del self.__cache[thumbnail_path]
def __get_cache(self, image_name: str) -> Image: def __get_cache(self, image_name: str) -> Image | None:
return None if image_name not in self.__cache else self.__cache[image_name] return None if image_name not in self.__cache else self.__cache[image_name]
def __set_cache(self, image_name: str, image: Image): def __set_cache(self, image_name: str, image: Image):

View File

@@ -1,30 +1,17 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
import time
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from queue import Queue from queue import Queue
import time
from pydantic import BaseModel, Field
# TODO: make this serializable class InvocationQueueItem(BaseModel):
class InvocationQueueItem: graph_execution_state_id: str = Field(description="The ID of the graph execution state")
# session_id: str invocation_id: str = Field(description="The ID of the node being invoked")
graph_execution_state_id: str invoke_all: bool = Field(default=False)
invocation_id: str timestamp: float = Field(default_factory=time.time)
invoke_all: bool
timestamp: float
def __init__(
self,
# session_id: str,
graph_execution_state_id: str,
invocation_id: str,
invoke_all: bool = False,
):
# self.session_id = session_id
self.graph_execution_state_id = graph_execution_state_id
self.invocation_id = invocation_id
self.invoke_all = invoke_all
self.timestamp = time.time()
class InvocationQueueABC(ABC): class InvocationQueueABC(ABC):

View File

@@ -1,4 +1,7 @@
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) # Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654) and the InvokeAI Team
from typing import types
from invokeai.app.services.metadata import MetadataServiceBase
from invokeai.backend import ModelManager from invokeai.backend import ModelManager
from .events import EventServiceBase from .events import EventServiceBase
@@ -14,11 +17,13 @@ class InvocationServices:
events: EventServiceBase events: EventServiceBase
latents: LatentsStorageBase latents: LatentsStorageBase
images: ImageStorageBase images: ImageStorageBase
metadata: MetadataServiceBase
queue: InvocationQueueABC queue: InvocationQueueABC
model_manager: ModelManager model_manager: ModelManager
restoration: RestorationServices restoration: RestorationServices
# NOTE: we must forward-declare any types that include invocations, since invocations can use services # NOTE: we must forward-declare any types that include invocations, since invocations can use services
graph_library: ItemStorageABC["LibraryGraph"]
graph_execution_manager: ItemStorageABC["GraphExecutionState"] graph_execution_manager: ItemStorageABC["GraphExecutionState"]
processor: "InvocationProcessorABC" processor: "InvocationProcessorABC"
@@ -26,18 +31,24 @@ class InvocationServices:
self, self,
model_manager: ModelManager, model_manager: ModelManager,
events: EventServiceBase, events: EventServiceBase,
logger: types.ModuleType,
latents: LatentsStorageBase, latents: LatentsStorageBase,
images: ImageStorageBase, images: ImageStorageBase,
metadata: MetadataServiceBase,
queue: InvocationQueueABC, queue: InvocationQueueABC,
graph_library: ItemStorageABC["LibraryGraph"],
graph_execution_manager: ItemStorageABC["GraphExecutionState"], graph_execution_manager: ItemStorageABC["GraphExecutionState"],
processor: "InvocationProcessorABC", processor: "InvocationProcessorABC",
restoration: RestorationServices, restoration: RestorationServices,
): ):
self.model_manager = model_manager self.model_manager = model_manager
self.events = events self.events = events
self.logger = logger
self.latents = latents self.latents = latents
self.images = images self.images = images
self.metadata = metadata
self.queue = queue self.queue = queue
self.graph_library = graph_library
self.graph_execution_manager = graph_execution_manager self.graph_execution_manager = graph_execution_manager
self.processor = processor self.processor = processor
self.restoration = restoration self.restoration = restoration

View File

@@ -49,7 +49,7 @@ class Invoker:
new_state = GraphExecutionState(graph=Graph() if graph is None else graph) new_state = GraphExecutionState(graph=Graph() if graph is None else graph)
self.services.graph_execution_manager.set(new_state) self.services.graph_execution_manager.set(new_state)
return new_state return new_state
def cancel(self, graph_execution_state_id: str) -> None: def cancel(self, graph_execution_state_id: str) -> None:
"""Cancels the given execution state""" """Cancels the given execution state"""
self.services.queue.cancel(graph_execution_state_id) self.services.queue.cancel(graph_execution_state_id)
@@ -71,18 +71,12 @@ class Invoker:
for service in vars(self.services): for service in vars(self.services):
self.__start_service(getattr(self.services, service)) self.__start_service(getattr(self.services, service))
for service in vars(self.services):
self.__start_service(getattr(self.services, service))
def stop(self) -> None: def stop(self) -> None:
"""Stops the invoker. A new invoker will have to be created to execute further.""" """Stops the invoker. A new invoker will have to be created to execute further."""
# First stop all services # First stop all services
for service in vars(self.services): for service in vars(self.services):
self.__stop_service(getattr(self.services, service)) self.__stop_service(getattr(self.services, service))
for service in vars(self.services):
self.__stop_service(getattr(self.services, service))
self.services.queue.put(None) self.services.queue.put(None)

View File

@@ -0,0 +1,96 @@
import json
from abc import ABC, abstractmethod
from typing import Any, Dict, Optional, TypedDict
from PIL import Image, PngImagePlugin
from pydantic import BaseModel
from invokeai.app.models.image import ImageType, is_image_type
class MetadataImageField(TypedDict):
"""Pydantic-less ImageField, used for metadata parsing."""
image_type: ImageType
image_name: str
class MetadataLatentsField(TypedDict):
"""Pydantic-less LatentsField, used for metadata parsing."""
latents_name: str
# TODO: This is a placeholder for `InvocationsUnion` pending resolution of circular imports
NodeMetadata = Dict[
str, str | int | float | bool | MetadataImageField | MetadataLatentsField
]
class InvokeAIMetadata(TypedDict, total=False):
"""InvokeAI-specific metadata format."""
session_id: Optional[str]
node: Optional[NodeMetadata]
def build_invokeai_metadata_pnginfo(
metadata: InvokeAIMetadata | None,
) -> PngImagePlugin.PngInfo:
"""Builds a PngInfo object with key `"invokeai"` and value `metadata`"""
pnginfo = PngImagePlugin.PngInfo()
if metadata is not None:
pnginfo.add_text("invokeai", json.dumps(metadata))
return pnginfo
class MetadataServiceBase(ABC):
@abstractmethod
def get_metadata(self, image: Image.Image) -> InvokeAIMetadata | None:
"""Gets the InvokeAI metadata from a PIL Image, skipping invalid values"""
pass
@abstractmethod
def build_metadata(
self, session_id: str, node: BaseModel
) -> InvokeAIMetadata | None:
"""Builds an InvokeAIMetadata object"""
pass
class PngMetadataService(MetadataServiceBase):
"""Handles loading and building metadata for images."""
# TODO: Use `InvocationsUnion` to **validate** metadata as representing a fully-functioning node
def _load_metadata(self, image: Image.Image) -> dict | None:
"""Loads a specific info entry from a PIL Image."""
try:
info = image.info.get("invokeai")
if type(info) is not str:
return None
loaded_metadata = json.loads(info)
if type(loaded_metadata) is not dict:
return None
if len(loaded_metadata.items()) == 0:
return None
return loaded_metadata
except:
return None
def get_metadata(self, image: Image.Image) -> dict | None:
"""Retrieves an image's metadata as a dict"""
loaded_metadata = self._load_metadata(image)
return loaded_metadata
def build_metadata(self, session_id: str, node: BaseModel) -> InvokeAIMetadata:
metadata = InvokeAIMetadata(session_id=session_id, node=node.dict())
return metadata

View File

@@ -5,6 +5,7 @@ from argparse import Namespace
from invokeai.backend import Args from invokeai.backend import Args
from omegaconf import OmegaConf from omegaconf import OmegaConf
from pathlib import Path from pathlib import Path
from typing import types
import invokeai.version import invokeai.version
from ...backend import ModelManager from ...backend import ModelManager
@@ -12,16 +13,16 @@ from ...backend.util import choose_precision, choose_torch_device
from ...backend import Globals from ...backend import Globals
# TODO: Replace with an abstract class base ModelManagerBase # TODO: Replace with an abstract class base ModelManagerBase
def get_model_manager(config: Args) -> ModelManager: def get_model_manager(config: Args, logger: types.ModuleType) -> ModelManager:
if not config.conf: if not config.conf:
config_file = os.path.join(Globals.root, "configs", "models.yaml") config_file = os.path.join(Globals.root, "configs", "models.yaml")
if not os.path.exists(config_file): if not os.path.exists(config_file):
report_model_error( report_model_error(
config, FileNotFoundError(f"The file {config_file} could not be found.") config, FileNotFoundError(f"The file {config_file} could not be found."), logger
) )
print(f">> {invokeai.version.__app_name__}, version {invokeai.version.__version__}") logger.info(f"{invokeai.version.__app_name__}, version {invokeai.version.__version__}")
print(f'>> InvokeAI runtime directory is "{Globals.root}"') logger.info(f'InvokeAI runtime directory is "{Globals.root}"')
# these two lines prevent a horrible warning message from appearing # these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported # when the frozen CLIP tokenizer is imported
@@ -62,11 +63,12 @@ def get_model_manager(config: Args) -> ModelManager:
device_type=device, device_type=device,
max_loaded_models=config.max_loaded_models, max_loaded_models=config.max_loaded_models,
embedding_path = Path(embedding_path), embedding_path = Path(embedding_path),
logger = logger,
) )
except (FileNotFoundError, TypeError, AssertionError) as e: except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(config, e) report_model_error(config, e, logger)
except (IOError, KeyError) as e: except (IOError, KeyError) as e:
print(f"{e}. Aborting.") logger.error(f"{e}. Aborting.")
sys.exit(-1) sys.exit(-1)
# try to autoconvert new models # try to autoconvert new models
@@ -76,18 +78,18 @@ def get_model_manager(config: Args) -> ModelManager:
conf_path=config.conf, conf_path=config.conf,
weights_directory=path, weights_directory=path,
) )
logger.info('Model manager initialized')
return model_manager return model_manager
def report_model_error(opt: Namespace, e: Exception): def report_model_error(opt: Namespace, e: Exception, logger: types.ModuleType):
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"') logger.error(f'An error occurred while attempting to initialize the model: "{str(e)}"')
print( logger.error(
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models." "This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
) )
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE") yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
if yes_to_all: if yes_to_all:
print( logger.warning(
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE" "Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
) )
else: else:
response = input( response = input(
@@ -96,13 +98,12 @@ def report_model_error(opt: Namespace, e: Exception):
if response.startswith(("n", "N")): if response.startswith(("n", "N")):
return return
print("invokeai-configure is launching....\n") logger.info("invokeai-configure is launching....\n")
# Match arguments that were set on the CLI # Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed # only the arguments accepted by the configuration script are parsed
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else [] root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
config = ["--config", opt.conf] if opt.conf is not None else [] config = ["--config", opt.conf] if opt.conf is not None else []
previous_config = sys.argv
sys.argv = ["invokeai-configure"] sys.argv = ["invokeai-configure"]
sys.argv.extend(root_dir) sys.argv.extend(root_dir)
sys.argv.extend(config.to_dict()) sys.argv.extend(config.to_dict())

View File

@@ -1,5 +1,5 @@
import traceback import traceback
from threading import Event, Thread from threading import Event, Thread, BoundedSemaphore
from ..invocations.baseinvocation import InvocationContext from ..invocations.baseinvocation import InvocationContext
from .invocation_queue import InvocationQueueItem from .invocation_queue import InvocationQueueItem
@@ -10,8 +10,11 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
__invoker_thread: Thread __invoker_thread: Thread
__stop_event: Event __stop_event: Event
__invoker: Invoker __invoker: Invoker
__threadLimit: BoundedSemaphore
def start(self, invoker) -> None: def start(self, invoker) -> None:
# if we do want multithreading at some point, we could make this configurable
self.__threadLimit = BoundedSemaphore(1)
self.__invoker = invoker self.__invoker = invoker
self.__stop_event = Event() self.__stop_event = Event()
self.__invoker_thread = Thread( self.__invoker_thread = Thread(
@@ -20,7 +23,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
kwargs=dict(stop_event=self.__stop_event), kwargs=dict(stop_event=self.__stop_event),
) )
self.__invoker_thread.daemon = ( self.__invoker_thread.daemon = (
True # TODO: probably better to just not use threads? True # TODO: make async and do not use threads
) )
self.__invoker_thread.start() self.__invoker_thread.start()
@@ -29,6 +32,7 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
def __process(self, stop_event: Event): def __process(self, stop_event: Event):
try: try:
self.__threadLimit.acquire()
while not stop_event.is_set(): while not stop_event.is_set():
queue_item: InvocationQueueItem = self.__invoker.services.queue.get() queue_item: InvocationQueueItem = self.__invoker.services.queue.get()
if not queue_item: # Probably stopping if not queue_item: # Probably stopping
@@ -43,10 +47,14 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
queue_item.invocation_id queue_item.invocation_id
) )
# get the source node id to provide to clients (the prepared node id is not as useful)
source_node_id = graph_execution_state.prepared_source_mapping[invocation.id]
# Send starting event # Send starting event
self.__invoker.services.events.emit_invocation_started( self.__invoker.services.events.emit_invocation_started(
graph_execution_state_id=graph_execution_state.id, graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id, node=invocation.dict(),
source_node_id=source_node_id
) )
# Invoke # Invoke
@@ -75,7 +83,8 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Send complete event # Send complete event
self.__invoker.services.events.emit_invocation_complete( self.__invoker.services.events.emit_invocation_complete(
graph_execution_state_id=graph_execution_state.id, graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id, node=invocation.dict(),
source_node_id=source_node_id,
result=outputs.dict(), result=outputs.dict(),
) )
@@ -99,12 +108,13 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
# Send error event # Send error event
self.__invoker.services.events.emit_invocation_error( self.__invoker.services.events.emit_invocation_error(
graph_execution_state_id=graph_execution_state.id, graph_execution_state_id=graph_execution_state.id,
invocation_id=invocation.id, node=invocation.dict(),
source_node_id=source_node_id,
error=error, error=error,
) )
pass pass
# Check queue to see if this is canceled, and skip if so # Check queue to see if this is canceled, and skip if so
if self.__invoker.services.queue.is_canceled( if self.__invoker.services.queue.is_canceled(
graph_execution_state.id graph_execution_state.id
@@ -121,4 +131,6 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
) )
except KeyboardInterrupt: except KeyboardInterrupt:
... # Log something? pass # Log something? KeyboardInterrupt is probably not going to be seen by the processor
finally:
self.__threadLimit.release()

View File

@@ -1,6 +1,7 @@
import sys import sys
import traceback import traceback
import torch import torch
from typing import types
from ...backend.restoration import Restoration from ...backend.restoration import Restoration
from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
@@ -10,7 +11,7 @@ from ...backend.util import choose_torch_device, CPU_DEVICE, MPS_DEVICE
class RestorationServices: class RestorationServices:
'''Face restoration and upscaling''' '''Face restoration and upscaling'''
def __init__(self,args): def __init__(self,args,logger:types.ModuleType):
try: try:
gfpgan, codeformer, esrgan = None, None, None gfpgan, codeformer, esrgan = None, None, None
if args.restore or args.esrgan: if args.restore or args.esrgan:
@@ -20,20 +21,22 @@ class RestorationServices:
args.gfpgan_model_path args.gfpgan_model_path
) )
else: else:
print(">> Face restoration disabled") logger.info("Face restoration disabled")
if args.esrgan: if args.esrgan:
esrgan = restoration.load_esrgan(args.esrgan_bg_tile) esrgan = restoration.load_esrgan(args.esrgan_bg_tile)
else: else:
print(">> Upscaling disabled") logger.info("Upscaling disabled")
else: else:
print(">> Face restoration and upscaling disabled") logger.info("Face restoration and upscaling disabled")
except (ModuleNotFoundError, ImportError): except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
print(">> You may need to install the ESRGAN and/or GFPGAN modules") logger.info("You may need to install the ESRGAN and/or GFPGAN modules")
self.device = torch.device(choose_torch_device()) self.device = torch.device(choose_torch_device())
self.gfpgan = gfpgan self.gfpgan = gfpgan
self.codeformer = codeformer self.codeformer = codeformer
self.esrgan = esrgan self.esrgan = esrgan
self.logger = logger
self.logger.info('Face restoration initialized')
# note that this one method does gfpgan and codepath reconstruction, as well as # note that this one method does gfpgan and codepath reconstruction, as well as
# esrgan upscaling # esrgan upscaling
@@ -58,15 +61,15 @@ class RestorationServices:
if self.gfpgan is not None or self.codeformer is not None: if self.gfpgan is not None or self.codeformer is not None:
if facetool == "gfpgan": if facetool == "gfpgan":
if self.gfpgan is None: if self.gfpgan is None:
print( self.logger.info(
">> GFPGAN not found. Face restoration is disabled." "GFPGAN not found. Face restoration is disabled."
) )
else: else:
image = self.gfpgan.process(image, strength, seed) image = self.gfpgan.process(image, strength, seed)
if facetool == "codeformer": if facetool == "codeformer":
if self.codeformer is None: if self.codeformer is None:
print( self.logger.info(
">> CodeFormer not found. Face restoration is disabled." "CodeFormer not found. Face restoration is disabled."
) )
else: else:
cf_device = ( cf_device = (
@@ -80,7 +83,7 @@ class RestorationServices:
fidelity=codeformer_fidelity, fidelity=codeformer_fidelity,
) )
else: else:
print(">> Face Restoration is disabled.") self.logger.info("Face Restoration is disabled.")
if upscale is not None: if upscale is not None:
if self.esrgan is not None: if self.esrgan is not None:
if len(upscale) < 2: if len(upscale) < 2:
@@ -93,10 +96,10 @@ class RestorationServices:
denoise_str=upscale_denoise_str, denoise_str=upscale_denoise_str,
) )
else: else:
print(">> ESRGAN is disabled. Image not upscaled.") self.logger.info("ESRGAN is disabled. Image not upscaled.")
except Exception as e: except Exception as e:
print( self.logger.info(
f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}" f"Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
) )
if image_callback is not None: if image_callback is not None:

View File

@@ -0,0 +1,5 @@
import datetime
def get_timestamp():
return int(datetime.datetime.now(datetime.timezone.utc).timestamp())

View File

@@ -1,25 +0,0 @@
import os
from PIL import Image
def save_thumbnail(
image: Image.Image,
filename: str,
path: str,
size: int = 256,
) -> str:
"""
Saves a thumbnail of an image, returning its path.
"""
base_filename = os.path.splitext(filename)[0]
thumbnail_path = os.path.join(path, base_filename + ".webp")
if os.path.exists(thumbnail_path):
return thumbnail_path
image_copy = image.copy()
image_copy.thumbnail(size=(size, size))
image_copy.save(thumbnail_path, "WEBP")
return thumbnail_path

View File

@@ -1,16 +1,41 @@
import torch from invokeai.app.api.models.images import ProgressImage
from invokeai.app.models.exceptions import CanceledException
from ..invocations.baseinvocation import InvocationContext from ..invocations.baseinvocation import InvocationContext
from ...backend.util.util import image_to_dataURL from ...backend.util.util import image_to_dataURL
from ...backend.generator.base import Generator from ...backend.generator.base import Generator
from ...backend.stable_diffusion import PipelineIntermediateState from ...backend.stable_diffusion import PipelineIntermediateState
def fast_latents_step_callback(
sample: torch.Tensor, def stable_diffusion_step_callback(
step: int,
steps: int,
id: str,
context: InvocationContext, context: InvocationContext,
intermediate_state: PipelineIntermediateState,
node: dict,
source_node_id: str,
): ):
if context.services.queue.is_canceled(context.graph_execution_state_id):
raise CanceledException
# Some schedulers report not only the noisy latents at the current timestep,
# but also their estimate so far of what the de-noised latents will be. Use
# that estimate if it is available.
if intermediate_state.predicted_original is not None:
sample = intermediate_state.predicted_original
else:
sample = intermediate_state.latents
# TODO: This does not seem to be needed any more?
# # txt2img provides a Tensor in the step_callback
# # img2img provides a PipelineIntermediateState
# if isinstance(sample, PipelineIntermediateState):
# # this was an img2img
# print('img2img')
# latents = sample.latents
# step = sample.step
# else:
# print('txt2img')
# latents = sample
# step = intermediate_state.step
# TODO: only output a preview image when requested # TODO: only output a preview image when requested
image = Generator.sample_to_lowres_estimated_image(sample) image = Generator.sample_to_lowres_estimated_image(sample)
@@ -21,23 +46,10 @@ def fast_latents_step_callback(
dataURL = image_to_dataURL(image, image_format="JPEG") dataURL = image_to_dataURL(image, image_format="JPEG")
context.services.events.emit_generator_progress( context.services.events.emit_generator_progress(
context.graph_execution_state_id, graph_execution_state_id=context.graph_execution_state_id,
id, node=node,
{"width": width, "height": height, "dataURL": dataURL}, source_node_id=source_node_id,
step, progress_image=ProgressImage(width=width, height=height, dataURL=dataURL),
steps, step=intermediate_state.step,
total_steps=node["steps"],
) )
def diffusers_step_callback_adapter(*cb_args, **kwargs):
"""
txt2img gives us a Tensor in the step_callbak, while img2img gives us a PipelineIntermediateState.
This adapter grabs the needed data and passes it along to the callback function.
"""
if isinstance(cb_args[0], PipelineIntermediateState):
progress_state: PipelineIntermediateState = cb_args[0]
return fast_latents_step_callback(
progress_state.latents, progress_state.step, **kwargs
)
else:
return fast_latents_step_callback(*cb_args, **kwargs)

View File

@@ -0,0 +1,15 @@
import os
from PIL import Image
def get_thumbnail_name(image_name: str) -> str:
"""Formats given an image name, returns the appropriate thumbnail image name"""
thumbnail_name = os.path.splitext(image_name)[0] + ".webp"
return thumbnail_name
def make_thumbnail(image: Image.Image, size: int = 256) -> Image.Image:
"""Makes a thumbnail from a PIL Image"""
thumbnail = image.copy()
thumbnail.thumbnail(size=(size, size))
return thumbnail

View File

@@ -10,7 +10,7 @@ from .generator import (
Img2Img, Img2Img,
Inpaint Inpaint
) )
from .model_management import ModelManager from .model_management import ModelManager, SDModelComponent
from .safety_checker import SafetyChecker from .safety_checker import SafetyChecker
from .args import Args from .args import Args
from .globals import Globals from .globals import Globals

View File

@@ -96,6 +96,7 @@ from pathlib import Path
from typing import List from typing import List
import invokeai.version import invokeai.version
import invokeai.backend.util.logging as logger
from invokeai.backend.image_util import retrieve_metadata from invokeai.backend.image_util import retrieve_metadata
from .globals import Globals from .globals import Globals
@@ -189,7 +190,7 @@ class Args(object):
print(f"{APP_NAME} {APP_VERSION}") print(f"{APP_NAME} {APP_VERSION}")
sys.exit(0) sys.exit(0)
print("* Initializing, be patient...") logger.info("Initializing, be patient...")
Globals.root = Path(os.path.abspath(switches.root_dir or Globals.root)) Globals.root = Path(os.path.abspath(switches.root_dir or Globals.root))
Globals.try_patchmatch = switches.patchmatch Globals.try_patchmatch = switches.patchmatch
@@ -197,14 +198,13 @@ class Args(object):
initfile = os.path.expanduser(os.path.join(Globals.root, Globals.initfile)) initfile = os.path.expanduser(os.path.join(Globals.root, Globals.initfile))
legacyinit = os.path.expanduser("~/.invokeai") legacyinit = os.path.expanduser("~/.invokeai")
if os.path.exists(initfile): if os.path.exists(initfile):
print( logger.info(
f">> Initialization file {initfile} found. Loading...", f"Initialization file {initfile} found. Loading...",
file=sys.stderr,
) )
sysargs.insert(0, f"@{initfile}") sysargs.insert(0, f"@{initfile}")
elif os.path.exists(legacyinit): elif os.path.exists(legacyinit):
print( logger.warning(
f">> WARNING: Old initialization file found at {legacyinit}. This location is deprecated. Please move it to {Globals.root}/invokeai.init." f"Old initialization file found at {legacyinit}. This location is deprecated. Please move it to {Globals.root}/invokeai.init."
) )
sysargs.insert(0, f"@{legacyinit}") sysargs.insert(0, f"@{legacyinit}")
Globals.log_tokenization = self._arg_parser.parse_args( Globals.log_tokenization = self._arg_parser.parse_args(
@@ -214,7 +214,7 @@ class Args(object):
self._arg_switches = self._arg_parser.parse_args(sysargs) self._arg_switches = self._arg_parser.parse_args(sysargs)
return self._arg_switches return self._arg_switches
except Exception as e: except Exception as e:
print(f"An exception has occurred: {e}") logger.error(f"An exception has occurred: {e}")
return None return None
def parse_cmd(self, cmd_string): def parse_cmd(self, cmd_string):
@@ -1154,7 +1154,7 @@ class Args(object):
def format_metadata(**kwargs): def format_metadata(**kwargs):
print("format_metadata() is deprecated. Please use metadata_dumps()") logger.warning("format_metadata() is deprecated. Please use metadata_dumps()")
return metadata_dumps(kwargs) return metadata_dumps(kwargs)
@@ -1326,7 +1326,7 @@ def metadata_loads(metadata) -> list:
import sys import sys
import traceback import traceback
print(">> could not read metadata", file=sys.stderr) logger.error("Could not read metadata")
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
return results return results

View File

@@ -27,6 +27,7 @@ from diffusers.utils.import_utils import is_xformers_available
from omegaconf import OmegaConf from omegaconf import OmegaConf
from pathlib import Path from pathlib import Path
import invokeai.backend.util.logging as logger
from .args import metadata_from_png from .args import metadata_from_png
from .generator import infill_methods from .generator import infill_methods
from .globals import Globals, global_cache_dir from .globals import Globals, global_cache_dir
@@ -195,12 +196,12 @@ class Generate:
# device to Generate(). However the device was then ignored, so # device to Generate(). However the device was then ignored, so
# it wasn't actually doing anything. This logic could be reinstated. # it wasn't actually doing anything. This logic could be reinstated.
self.device = torch.device(choose_torch_device()) self.device = torch.device(choose_torch_device())
print(f">> Using device_type {self.device.type}") logger.info(f"Using device_type {self.device.type}")
if full_precision: if full_precision:
if self.precision != "auto": if self.precision != "auto":
raise ValueError("Remove --full_precision / -F if using --precision") raise ValueError("Remove --full_precision / -F if using --precision")
print("Please remove deprecated --full_precision / -F") logger.warning("Please remove deprecated --full_precision / -F")
print("If auto config does not work you can use --precision=float32") logger.warning("If auto config does not work you can use --precision=float32")
self.precision = "float32" self.precision = "float32"
if self.precision == "auto": if self.precision == "auto":
self.precision = choose_precision(self.device) self.precision = choose_precision(self.device)
@@ -208,13 +209,13 @@ class Generate:
if is_xformers_available(): if is_xformers_available():
if torch.cuda.is_available() and not Globals.disable_xformers: if torch.cuda.is_available() and not Globals.disable_xformers:
print(">> xformers memory-efficient attention is available and enabled") logger.info("xformers memory-efficient attention is available and enabled")
else: else:
print( logger.info(
">> xformers memory-efficient attention is available but disabled" "xformers memory-efficient attention is available but disabled"
) )
else: else:
print(">> xformers not installed") logger.info("xformers not installed")
# model caching system for fast switching # model caching system for fast switching
self.model_manager = ModelManager( self.model_manager = ModelManager(
@@ -229,8 +230,8 @@ class Generate:
fallback = self.model_manager.default_model() or FALLBACK_MODEL_NAME fallback = self.model_manager.default_model() or FALLBACK_MODEL_NAME
model = model or fallback model = model or fallback
if not self.model_manager.valid_model(model): if not self.model_manager.valid_model(model):
print( logger.warning(
f'** "{model}" is not a known model name; falling back to {fallback}.' f'"{model}" is not a known model name; falling back to {fallback}.'
) )
model = None model = None
self.model_name = model or fallback self.model_name = model or fallback
@@ -246,10 +247,10 @@ class Generate:
# load safety checker if requested # load safety checker if requested
if safety_checker: if safety_checker:
print(">> Initializing NSFW checker") logger.info("Initializing NSFW checker")
self.safety_checker = SafetyChecker(self.device) self.safety_checker = SafetyChecker(self.device)
else: else:
print(">> NSFW checker is disabled") logger.info("NSFW checker is disabled")
def prompt2png(self, prompt, outdir, **kwargs): def prompt2png(self, prompt, outdir, **kwargs):
""" """
@@ -567,7 +568,7 @@ class Generate:
self.clear_cuda_cache() self.clear_cuda_cache()
if catch_interrupts: if catch_interrupts:
print("**Interrupted** Partial results will be returned.") logger.warning("Interrupted** Partial results will be returned.")
else: else:
raise KeyboardInterrupt raise KeyboardInterrupt
except RuntimeError: except RuntimeError:
@@ -575,11 +576,11 @@ class Generate:
self.clear_cuda_cache() self.clear_cuda_cache()
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
print(">> Could not generate image.") logger.info("Could not generate image.")
toc = time.time() toc = time.time()
print("\n>> Usage stats:") logger.info("Usage stats:")
print(f">> {len(results)} image(s) generated in", "%4.2fs" % (toc - tic)) logger.info(f"{len(results)} image(s) generated in "+"%4.2fs" % (toc - tic))
self.print_cuda_stats() self.print_cuda_stats()
return results return results
@@ -609,16 +610,16 @@ class Generate:
def print_cuda_stats(self): def print_cuda_stats(self):
if self._has_cuda(): if self._has_cuda():
self.gather_cuda_stats() self.gather_cuda_stats()
print( logger.info(
">> Max VRAM used for this generation:", "Max VRAM used for this generation: "+
"%4.2fG." % (self.max_memory_allocated / 1e9), "%4.2fG. " % (self.max_memory_allocated / 1e9)+
"Current VRAM utilization:", "Current VRAM utilization: "+
"%4.2fG" % (self.memory_allocated / 1e9), "%4.2fG" % (self.memory_allocated / 1e9)
) )
print( logger.info(
">> Max VRAM used since script start: ", "Max VRAM used since script start: " +
"%4.2fG" % (self.session_peakmem / 1e9), "%4.2fG" % (self.session_peakmem / 1e9)
) )
# this needs to be generalized to all sorts of postprocessors, which should be wrapped # this needs to be generalized to all sorts of postprocessors, which should be wrapped
@@ -647,7 +648,7 @@ class Generate:
seed = random.randrange(0, np.iinfo(np.uint32).max) seed = random.randrange(0, np.iinfo(np.uint32).max)
prompt = opt.prompt or args.prompt or "" prompt = opt.prompt or args.prompt or ""
print(f'>> using seed {seed} and prompt "{prompt}" for {image_path}') logger.info(f'using seed {seed} and prompt "{prompt}" for {image_path}')
# try to reuse the same filename prefix as the original file. # try to reuse the same filename prefix as the original file.
# we take everything up to the first period # we take everything up to the first period
@@ -696,8 +697,8 @@ class Generate:
try: try:
extend_instructions[direction] = int(pixels) extend_instructions[direction] = int(pixels)
except ValueError: except ValueError:
print( logger.warning(
'** invalid extension instruction. Use <directions> <pixels>..., as in "top 64 left 128 right 64 bottom 64"' 'invalid extension instruction. Use <directions> <pixels>..., as in "top 64 left 128 right 64 bottom 64"'
) )
opt.seed = seed opt.seed = seed
@@ -720,8 +721,8 @@ class Generate:
# fetch the metadata from the image # fetch the metadata from the image
generator = self.select_generator(embiggen=True) generator = self.select_generator(embiggen=True)
opt.strength = opt.embiggen_strength or 0.40 opt.strength = opt.embiggen_strength or 0.40
print( logger.info(
f">> Setting img2img strength to {opt.strength} for happy embiggening" f"Setting img2img strength to {opt.strength} for happy embiggening"
) )
generator.generate( generator.generate(
prompt, prompt,
@@ -748,12 +749,12 @@ class Generate:
return restorer.process(opt, args, image_callback=callback, prefix=prefix) return restorer.process(opt, args, image_callback=callback, prefix=prefix)
elif tool is None: elif tool is None:
print( logger.warning(
"* please provide at least one postprocessing option, such as -G or -U" "please provide at least one postprocessing option, such as -G or -U"
) )
return None return None
else: else:
print(f"* postprocessing tool {tool} is not yet supported") logger.warning(f"postprocessing tool {tool} is not yet supported")
return None return None
def select_generator( def select_generator(
@@ -797,8 +798,8 @@ class Generate:
image = self._load_img(img) image = self._load_img(img)
if image.width < self.width and image.height < self.height: if image.width < self.width and image.height < self.height:
print( logger.warning(
f">> WARNING: img2img and inpainting may produce unexpected results with initial images smaller than {self.width}x{self.height} in both dimensions" f"img2img and inpainting may produce unexpected results with initial images smaller than {self.width}x{self.height} in both dimensions"
) )
# if image has a transparent area and no mask was provided, then try to generate mask # if image has a transparent area and no mask was provided, then try to generate mask
@@ -809,8 +810,8 @@ class Generate:
if (image.width * image.height) > ( if (image.width * image.height) > (
self.width * self.height self.width * self.height
) and self.size_matters: ) and self.size_matters:
print( logger.info(
">> This input is larger than your defaults. If you run out of memory, please use a smaller image." "This input is larger than your defaults. If you run out of memory, please use a smaller image."
) )
self.size_matters = False self.size_matters = False
@@ -891,11 +892,11 @@ class Generate:
try: try:
model_data = cache.get_model(model_name) model_data = cache.get_model(model_name)
except Exception as e: except Exception as e:
print(f"** model {model_name} could not be loaded: {str(e)}") logger.warning(f"model {model_name} could not be loaded: {str(e)}")
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
if previous_model_name is None: if previous_model_name is None:
raise e raise e
print("** trying to reload previous model") logger.warning("trying to reload previous model")
model_data = cache.get_model(previous_model_name) # load previous model_data = cache.get_model(previous_model_name) # load previous
if model_data is None: if model_data is None:
raise e raise e
@@ -962,15 +963,15 @@ class Generate:
if self.gfpgan is not None or self.codeformer is not None: if self.gfpgan is not None or self.codeformer is not None:
if facetool == "gfpgan": if facetool == "gfpgan":
if self.gfpgan is None: if self.gfpgan is None:
print( logger.info(
">> GFPGAN not found. Face restoration is disabled." "GFPGAN not found. Face restoration is disabled."
) )
else: else:
image = self.gfpgan.process(image, strength, seed) image = self.gfpgan.process(image, strength, seed)
if facetool == "codeformer": if facetool == "codeformer":
if self.codeformer is None: if self.codeformer is None:
print( logger.info(
">> CodeFormer not found. Face restoration is disabled." "CodeFormer not found. Face restoration is disabled."
) )
else: else:
cf_device = ( cf_device = (
@@ -984,7 +985,7 @@ class Generate:
fidelity=codeformer_fidelity, fidelity=codeformer_fidelity,
) )
else: else:
print(">> Face Restoration is disabled.") logger.info("Face Restoration is disabled.")
if upscale is not None: if upscale is not None:
if self.esrgan is not None: if self.esrgan is not None:
if len(upscale) < 2: if len(upscale) < 2:
@@ -997,10 +998,10 @@ class Generate:
denoise_str=upscale_denoise_str, denoise_str=upscale_denoise_str,
) )
else: else:
print(">> ESRGAN is disabled. Image not upscaled.") logger.info("ESRGAN is disabled. Image not upscaled.")
except Exception as e: except Exception as e:
print( logger.info(
f">> Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}" f"Error running RealESRGAN or GFPGAN. Your image was not upscaled.\n{e}"
) )
if image_callback is not None: if image_callback is not None:
@@ -1066,17 +1067,17 @@ class Generate:
if self.sampler_name in scheduler_map: if self.sampler_name in scheduler_map:
sampler_class = scheduler_map[self.sampler_name] sampler_class = scheduler_map[self.sampler_name]
msg = ( msg = (
f">> Setting Sampler to {self.sampler_name} ({sampler_class.__name__})" f"Setting Sampler to {self.sampler_name} ({sampler_class.__name__})"
) )
self.sampler = sampler_class.from_config(self.model.scheduler.config) self.sampler = sampler_class.from_config(self.model.scheduler.config)
else: else:
msg = ( msg = (
f">> Unsupported Sampler: {self.sampler_name} " f" Unsupported Sampler: {self.sampler_name} "+
f"Defaulting to {default}" f"Defaulting to {default}"
) )
self.sampler = default self.sampler = default
print(msg) logger.info(msg)
if not hasattr(self.sampler, "uses_inpainting_model"): if not hasattr(self.sampler, "uses_inpainting_model"):
# FIXME: terrible kludge! # FIXME: terrible kludge!
@@ -1085,17 +1086,17 @@ class Generate:
def _load_img(self, img) -> Image: def _load_img(self, img) -> Image:
if isinstance(img, Image.Image): if isinstance(img, Image.Image):
image = img image = img
print(f">> using provided input image of size {image.width}x{image.height}") logger.info(f"using provided input image of size {image.width}x{image.height}")
elif isinstance(img, str): elif isinstance(img, str):
assert os.path.exists(img), f">> {img}: File not found" assert os.path.exists(img), f"{img}: File not found"
image = Image.open(img) image = Image.open(img)
print( logger.info(
f">> loaded input image of size {image.width}x{image.height} from {img}" f"loaded input image of size {image.width}x{image.height} from {img}"
) )
else: else:
image = Image.open(img) image = Image.open(img)
print(f">> loaded input image of size {image.width}x{image.height}") logger.info(f"loaded input image of size {image.width}x{image.height}")
image = ImageOps.exif_transpose(image) image = ImageOps.exif_transpose(image)
return image return image
@@ -1183,14 +1184,14 @@ class Generate:
def _transparency_check_and_warning(self, image, mask, force_outpaint=False): def _transparency_check_and_warning(self, image, mask, force_outpaint=False):
if not mask: if not mask:
print( logger.info(
">> Initial image has transparent areas. Will inpaint in these regions." "Initial image has transparent areas. Will inpaint in these regions."
) )
if (not force_outpaint) and self._check_for_erasure(image): if (not force_outpaint) and self._check_for_erasure(image):
print( logger.info(
">> WARNING: Colors underneath the transparent region seem to have been erased.\n", "Colors underneath the transparent region seem to have been erased.\n" +
">> Inpainting will be suboptimal. Please preserve the colors when making\n", "Inpainting will be suboptimal. Please preserve the colors when making\n" +
">> a transparency mask, or provide mask explicitly using --init_mask (-M).", "a transparency mask, or provide mask explicitly using --init_mask (-M)."
) )
def _squeeze_image(self, image): def _squeeze_image(self, image):
@@ -1201,11 +1202,11 @@ class Generate:
def _fit_image(self, image, max_dimensions): def _fit_image(self, image, max_dimensions):
w, h = max_dimensions w, h = max_dimensions
print(f">> image will be resized to fit inside a box {w}x{h} in size.") logger.info(f"image will be resized to fit inside a box {w}x{h} in size.")
# note that InitImageResizer does the multiple of 64 truncation internally # note that InitImageResizer does the multiple of 64 truncation internally
image = InitImageResizer(image).resize(width=w, height=h) image = InitImageResizer(image).resize(width=w, height=h)
print( logger.info(
f">> after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}" f"after adjusting image dimensions to be multiples of 64, init image is {image.width}x{image.height}"
) )
return image return image
@@ -1216,8 +1217,8 @@ class Generate:
) # resize to integer multiple of 64 ) # resize to integer multiple of 64
if h != height or w != width: if h != height or w != width:
if log: if log:
print( logger.info(
f">> Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}" f"Provided width and height must be multiples of 64. Auto-resizing to {w}x{h}"
) )
height = h height = h
width = w width = w

View File

@@ -25,6 +25,7 @@ from typing import Callable, List, Iterator, Optional, Type
from dataclasses import dataclass, field from dataclasses import dataclass, field
from diffusers.schedulers import SchedulerMixin as Scheduler from diffusers.schedulers import SchedulerMixin as Scheduler
import invokeai.backend.util.logging as logger
from ..image_util import configure_model_padding from ..image_util import configure_model_padding
from ..util.util import rand_perlin_2d from ..util.util import rand_perlin_2d
from ..safety_checker import SafetyChecker from ..safety_checker import SafetyChecker
@@ -372,7 +373,7 @@ class Generator:
try: try:
x_T = self.get_noise(width, height) x_T = self.get_noise(width, height)
except: except:
print("** An error occurred while getting initial noise **") logger.error("An error occurred while getting initial noise")
print(traceback.format_exc()) print(traceback.format_exc())
# Pass on the seed in case a layer beneath us needs to generate noise on its own. # Pass on the seed in case a layer beneath us needs to generate noise on its own.
@@ -607,7 +608,7 @@ class Generator:
image = self.sample_to_image(sample) image = self.sample_to_image(sample)
dirname = os.path.dirname(filepath) or "." dirname = os.path.dirname(filepath) or "."
if not os.path.exists(dirname): if not os.path.exists(dirname):
print(f"** creating directory {dirname}") logger.info(f"creating directory {dirname}")
os.makedirs(dirname, exist_ok=True) os.makedirs(dirname, exist_ok=True)
image.save(filepath, "PNG") image.save(filepath, "PNG")

View File

@@ -8,10 +8,11 @@ import torch
from PIL import Image from PIL import Image
from tqdm import trange from tqdm import trange
import invokeai.backend.util.logging as logger
from .base import Generator from .base import Generator
from .img2img import Img2Img from .img2img import Img2Img
class Embiggen(Generator): class Embiggen(Generator):
def __init__(self, model, precision): def __init__(self, model, precision):
super().__init__(model, precision) super().__init__(model, precision)
@@ -72,22 +73,22 @@ class Embiggen(Generator):
embiggen = [1.0] # If not specified, assume no scaling embiggen = [1.0] # If not specified, assume no scaling
elif embiggen[0] < 0: elif embiggen[0] < 0:
embiggen[0] = 1.0 embiggen[0] = 1.0
print( logger.warning(
">> Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !" "Embiggen scaling factor cannot be negative, fell back to the default of 1.0 !"
) )
if len(embiggen) < 2: if len(embiggen) < 2:
embiggen.append(0.75) embiggen.append(0.75)
elif embiggen[1] > 1.0 or embiggen[1] < 0: elif embiggen[1] > 1.0 or embiggen[1] < 0:
embiggen[1] = 0.75 embiggen[1] = 0.75
print( logger.warning(
">> Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !" "Embiggen upscaling strength for ESRGAN must be between 0 and 1, fell back to the default of 0.75 !"
) )
if len(embiggen) < 3: if len(embiggen) < 3:
embiggen.append(0.25) embiggen.append(0.25)
elif embiggen[2] < 0: elif embiggen[2] < 0:
embiggen[2] = 0.25 embiggen[2] = 0.25
print( logger.warning(
">> Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !" "Overlap size for Embiggen must be a positive ratio between 0 and 1 OR a number of pixels, fell back to the default of 0.25 !"
) )
# Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math # Convert tiles from their user-freindly count-from-one to count-from-zero, because we need to do modulo math
@@ -97,8 +98,8 @@ class Embiggen(Generator):
embiggen_tiles.sort() embiggen_tiles.sort()
if strength >= 0.5: if strength >= 0.5:
print( logger.warning(
f"* WARNING: Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45." f"Embiggen may produce mirror motifs if the strength (-f) is too high (currently {strength}). Try values between 0.35-0.45."
) )
# Prep img2img generator, since we wrap over it # Prep img2img generator, since we wrap over it
@@ -121,8 +122,8 @@ class Embiggen(Generator):
from ..restoration.realesrgan import ESRGAN from ..restoration.realesrgan import ESRGAN
esrgan = ESRGAN() esrgan = ESRGAN()
print( logger.info(
f">> ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}" f"ESRGAN upscaling init image prior to cutting with Embiggen with strength {embiggen[1]}"
) )
if embiggen[0] > 2: if embiggen[0] > 2:
initsuperimage = esrgan.process( initsuperimage = esrgan.process(
@@ -312,10 +313,10 @@ class Embiggen(Generator):
def make_image(): def make_image():
# Make main tiles ------------------------------------------------- # Make main tiles -------------------------------------------------
if embiggen_tiles: if embiggen_tiles:
print(f">> Making {len(embiggen_tiles)} Embiggen tiles...") logger.info(f"Making {len(embiggen_tiles)} Embiggen tiles...")
else: else:
print( logger.info(
f">> Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..." f"Making {(emb_tiles_x * emb_tiles_y)} Embiggen tiles ({emb_tiles_x}x{emb_tiles_y})..."
) )
emb_tile_store = [] emb_tile_store = []
@@ -361,11 +362,11 @@ class Embiggen(Generator):
# newinitimage.save(newinitimagepath) # newinitimage.save(newinitimagepath)
if embiggen_tiles: if embiggen_tiles:
print( logger.debug(
f"Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)" f"Making tile #{tile + 1} ({embiggen_tiles.index(tile) + 1} of {len(embiggen_tiles)} requested)"
) )
else: else:
print(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles") logger.debug(f"Starting {tile + 1} of {(emb_tiles_x * emb_tiles_y)} tiles")
# create a torch tensor from an Image # create a torch tensor from an Image
newinitimage = np.array(newinitimage).astype(np.float32) / 255.0 newinitimage = np.array(newinitimage).astype(np.float32) / 255.0
@@ -547,8 +548,8 @@ class Embiggen(Generator):
# Layer tile onto final image # Layer tile onto final image
outputsuperimage.alpha_composite(intileimage, (left, top)) outputsuperimage.alpha_composite(intileimage, (left, top))
else: else:
print( logger.error(
"Error: could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation." "Could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation."
) )
# after internal loops and patching up return Embiggen image # after internal loops and patching up return Embiggen image

View File

@@ -14,6 +14,8 @@ from ..stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeli
from ..stable_diffusion.diffusers_pipeline import ConditioningData from ..stable_diffusion.diffusers_pipeline import ConditioningData
from ..stable_diffusion.diffusers_pipeline import trim_to_multiple_of from ..stable_diffusion.diffusers_pipeline import trim_to_multiple_of
import invokeai.backend.util.logging as logger
class Txt2Img2Img(Generator): class Txt2Img2Img(Generator):
def __init__(self, model, precision): def __init__(self, model, precision):
super().__init__(model, precision) super().__init__(model, precision)
@@ -77,8 +79,8 @@ class Txt2Img2Img(Generator):
# the message below is accurate. # the message below is accurate.
init_width = first_pass_latent_output.size()[3] * self.downsampling_factor init_width = first_pass_latent_output.size()[3] * self.downsampling_factor
init_height = first_pass_latent_output.size()[2] * self.downsampling_factor init_height = first_pass_latent_output.size()[2] * self.downsampling_factor
print( logger.info(
f"\n>> Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling" f"Interpolating from {init_width}x{init_height} to {width}x{height} using DDIM sampling"
) )
# resizing # resizing

View File

@@ -5,10 +5,9 @@ wraps the actual patchmatch object. It respects the global
be suppressed or deferred be suppressed or deferred
""" """
import numpy as np import numpy as np
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals from invokeai.backend.globals import Globals
class PatchMatch: class PatchMatch:
""" """
Thin class wrapper around the patchmatch function. Thin class wrapper around the patchmatch function.
@@ -28,12 +27,12 @@ class PatchMatch:
from patchmatch import patch_match as pm from patchmatch import patch_match as pm
if pm.patchmatch_available: if pm.patchmatch_available:
print(">> Patchmatch initialized") logger.info("Patchmatch initialized")
else: else:
print(">> Patchmatch not loaded (nonfatal)") logger.info("Patchmatch not loaded (nonfatal)")
self.patch_match = pm self.patch_match = pm
else: else:
print(">> Patchmatch loading disabled") logger.info("Patchmatch loading disabled")
self.tried_load = True self.tried_load = True
@classmethod @classmethod

View File

@@ -30,9 +30,9 @@ work fine.
import numpy as np import numpy as np
import torch import torch
from PIL import Image, ImageOps from PIL import Image, ImageOps
from torchvision import transforms
from transformers import AutoProcessor, CLIPSegForImageSegmentation from transformers import AutoProcessor, CLIPSegForImageSegmentation
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import global_cache_dir from invokeai.backend.globals import global_cache_dir
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined" CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
@@ -83,7 +83,7 @@ class Txt2Mask(object):
""" """
def __init__(self, device="cpu", refined=False): def __init__(self, device="cpu", refined=False):
print(">> Initializing clipseg model for text to mask inference") logger.info("Initializing clipseg model for text to mask inference")
# BUG: we are not doing anything with the device option at this time # BUG: we are not doing anything with the device option at this time
self.device = device self.device = device
@@ -101,18 +101,6 @@ class Txt2Mask(object):
provided image and returns a SegmentedGrayscale object in which the brighter provided image and returns a SegmentedGrayscale object in which the brighter
pixels indicate where the object is inferred to be. pixels indicate where the object is inferred to be.
""" """
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
transforms.Resize(
(CLIPSEG_SIZE, CLIPSEG_SIZE)
), # must be multiple of 64...
]
)
if type(image) is str: if type(image) is str:
image = Image.open(image).convert("RGB") image = Image.open(image).convert("RGB")

View File

@@ -5,6 +5,7 @@ from .convert_ckpt_to_diffusers import (
convert_ckpt_to_diffusers, convert_ckpt_to_diffusers,
load_pipeline_from_original_stable_diffusion_ckpt, load_pipeline_from_original_stable_diffusion_ckpt,
) )
from .model_manager import ModelManager from .model_manager import ModelManager,SDModelComponent

View File

@@ -25,6 +25,7 @@ from typing import Union
import torch import torch
from safetensors.torch import load_file from safetensors.torch import load_file
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import global_cache_dir, global_config_dir from invokeai.backend.globals import global_cache_dir, global_config_dir
from .model_manager import ModelManager, SDLegacyType from .model_manager import ModelManager, SDLegacyType
@@ -372,9 +373,9 @@ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False
unet_key = "model.diffusion_model." unet_key = "model.diffusion_model."
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
if sum(k.startswith("model_ema") for k in keys) > 100: if sum(k.startswith("model_ema") for k in keys) > 100:
print(f" | Checkpoint {path} has both EMA and non-EMA weights.") logger.debug(f"Checkpoint {path} has both EMA and non-EMA weights.")
if extract_ema: if extract_ema:
print(" | Extracting EMA weights (usually better for inference)") logger.debug("Extracting EMA weights (usually better for inference)")
for key in keys: for key in keys:
if key.startswith("model.diffusion_model"): if key.startswith("model.diffusion_model"):
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
@@ -392,8 +393,8 @@ def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False
key key
) )
else: else:
print( logger.debug(
" | Extracting only the non-EMA weights (usually better for fine-tuning)" "Extracting only the non-EMA weights (usually better for fine-tuning)"
) )
for key in keys: for key in keys:
@@ -1115,7 +1116,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
if "global_step" in checkpoint: if "global_step" in checkpoint:
global_step = checkpoint["global_step"] global_step = checkpoint["global_step"]
else: else:
print(" | global_step key not found in model") logger.debug("global_step key not found in model")
global_step = None global_step = None
# sometimes there is a state_dict key and sometimes not # sometimes there is a state_dict key and sometimes not
@@ -1229,15 +1230,15 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
# If a replacement VAE path was specified, we'll incorporate that into # If a replacement VAE path was specified, we'll incorporate that into
# the checkpoint model and then convert it # the checkpoint model and then convert it
if vae_path: if vae_path:
print(f" | Converting VAE {vae_path}") logger.debug(f"Converting VAE {vae_path}")
replace_checkpoint_vae(checkpoint,vae_path) replace_checkpoint_vae(checkpoint,vae_path)
# otherwise we use the original VAE, provided that # otherwise we use the original VAE, provided that
# an externally loaded diffusers VAE was not passed # an externally loaded diffusers VAE was not passed
elif not vae: elif not vae:
print(" | Using checkpoint model's original VAE") logger.debug("Using checkpoint model's original VAE")
if vae: if vae:
print(" | Using replacement diffusers VAE") logger.debug("Using replacement diffusers VAE")
else: # convert the original or replacement VAE else: # convert the original or replacement VAE
vae_config = create_vae_diffusers_config( vae_config = create_vae_diffusers_config(
original_config, image_size=image_size original_config, image_size=image_size

View File

@@ -18,12 +18,13 @@ import warnings
from enum import Enum, auto from enum import Enum, auto
from pathlib import Path from pathlib import Path
from shutil import move, rmtree from shutil import move, rmtree
from typing import Any, Optional, Union, Callable from typing import Any, Optional, Union, Callable, types
import safetensors import safetensors
import safetensors.torch import safetensors.torch
import torch import torch
import transformers import transformers
import invokeai.backend.util.logging as logger
from diffusers import ( from diffusers import (
AutoencoderKL, AutoencoderKL,
UNet2DConditionModel, UNet2DConditionModel,
@@ -75,6 +76,8 @@ class ModelManager(object):
Model manager handles loading, caching, importing, deleting, converting, and editing models. Model manager handles loading, caching, importing, deleting, converting, and editing models.
""" """
logger: types.ModuleType = logger
def __init__( def __init__(
self, self,
config: OmegaConf | Path, config: OmegaConf | Path,
@@ -83,6 +86,7 @@ class ModelManager(object):
max_loaded_models=DEFAULT_MAX_MODELS, max_loaded_models=DEFAULT_MAX_MODELS,
sequential_offload=False, sequential_offload=False,
embedding_path: Path = None, embedding_path: Path = None,
logger: types.ModuleType = logger,
): ):
""" """
Initialize with the path to the models.yaml config file or Initialize with the path to the models.yaml config file or
@@ -104,6 +108,7 @@ class ModelManager(object):
self.current_model = None self.current_model = None
self.sequential_offload = sequential_offload self.sequential_offload = sequential_offload
self.embedding_path = embedding_path self.embedding_path = embedding_path
self.logger = logger
def valid_model(self, model_name: str) -> bool: def valid_model(self, model_name: str) -> bool:
""" """
@@ -132,8 +137,8 @@ class ModelManager(object):
) )
if not self.valid_model(model_name): if not self.valid_model(model_name):
print( self.logger.error(
f'** "{model_name}" is not a known model name. Please check your models.yaml file' f'"{model_name}" is not a known model name. Please check your models.yaml file'
) )
return self.current_model return self.current_model
@@ -144,7 +149,7 @@ class ModelManager(object):
if model_name in self.models: if model_name in self.models:
requested_model = self.models[model_name]["model"] requested_model = self.models[model_name]["model"]
print(f">> Retrieving model {model_name} from system RAM cache") self.logger.info(f"Retrieving model {model_name} from system RAM cache")
requested_model.ready() requested_model.ready()
width = self.models[model_name]["width"] width = self.models[model_name]["width"]
height = self.models[model_name]["height"] height = self.models[model_name]["height"]
@@ -379,7 +384,7 @@ class ModelManager(object):
""" """
omega = self.config omega = self.config
if model_name not in omega: if model_name not in omega:
print(f"** Unknown model {model_name}") self.logger.error(f"Unknown model {model_name}")
return return
# save these for use in deletion later # save these for use in deletion later
conf = omega[model_name] conf = omega[model_name]
@@ -392,13 +397,13 @@ class ModelManager(object):
self.stack.remove(model_name) self.stack.remove(model_name)
if delete_files: if delete_files:
if weights: if weights:
print(f"** Deleting file {weights}") self.logger.info(f"Deleting file {weights}")
Path(weights).unlink(missing_ok=True) Path(weights).unlink(missing_ok=True)
elif path: elif path:
print(f"** Deleting directory {path}") self.logger.info(f"Deleting directory {path}")
rmtree(path, ignore_errors=True) rmtree(path, ignore_errors=True)
elif repo_id: elif repo_id:
print(f"** Deleting the cached model directory for {repo_id}") self.logger.info(f"Deleting the cached model directory for {repo_id}")
self._delete_model_from_cache(repo_id) self._delete_model_from_cache(repo_id)
def add_model( def add_model(
@@ -439,7 +444,7 @@ class ModelManager(object):
def _load_model(self, model_name: str): def _load_model(self, model_name: str):
"""Load and initialize the model from configuration variables passed at object creation time""" """Load and initialize the model from configuration variables passed at object creation time"""
if model_name not in self.config: if model_name not in self.config:
print( self.logger.error(
f'"{model_name}" is not a known model name. Please check your models.yaml file' f'"{model_name}" is not a known model name. Please check your models.yaml file'
) )
return return
@@ -457,7 +462,7 @@ class ModelManager(object):
model_format = mconfig.get("format", "ckpt") model_format = mconfig.get("format", "ckpt")
if model_format == "ckpt": if model_format == "ckpt":
weights = mconfig.weights weights = mconfig.weights
print(f">> Loading {model_name} from {weights}") self.logger.info(f"Loading {model_name} from {weights}")
model, width, height, model_hash = self._load_ckpt_model( model, width, height, model_hash = self._load_ckpt_model(
model_name, mconfig model_name, mconfig
) )
@@ -473,13 +478,15 @@ class ModelManager(object):
# usage statistics # usage statistics
toc = time.time() toc = time.time()
print(">> Model loaded in", "%4.2fs" % (toc - tic)) self.logger.info("Model loaded in " + "%4.2fs" % (toc - tic))
if self._has_cuda(): if self._has_cuda():
print( self.logger.info(
">> Max VRAM used to load the model:", "Max VRAM used to load the model: "+
"%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9), "%4.2fG" % (torch.cuda.max_memory_allocated() / 1e9)
"\n>> Current VRAM usage:" )
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9), self.logger.info(
"Current VRAM usage: "+
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9)
) )
return model, width, height, model_hash return model, width, height, model_hash
@@ -487,11 +494,11 @@ class ModelManager(object):
name_or_path = self.model_name_or_path(mconfig) name_or_path = self.model_name_or_path(mconfig)
using_fp16 = self.precision == "float16" using_fp16 = self.precision == "float16"
print(f">> Loading diffusers model from {name_or_path}") self.logger.info(f"Loading diffusers model from {name_or_path}")
if using_fp16: if using_fp16:
print(" | Using faster float16 precision") self.logger.debug("Using faster float16 precision")
else: else:
print(" | Using more accurate float32 precision") self.logger.debug("Using more accurate float32 precision")
# TODO: scan weights maybe? # TODO: scan weights maybe?
pipeline_args: dict[str, Any] = dict( pipeline_args: dict[str, Any] = dict(
@@ -523,8 +530,8 @@ class ModelManager(object):
if str(e).startswith("fp16 is not a valid"): if str(e).startswith("fp16 is not a valid"):
pass pass
else: else:
print( self.logger.error(
f"** An unexpected error occurred while downloading the model: {e})" f"An unexpected error occurred while downloading the model: {e})"
) )
if pipeline: if pipeline:
break break
@@ -542,7 +549,7 @@ class ModelManager(object):
# square images??? # square images???
width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor width = pipeline.unet.config.sample_size * pipeline.vae_scale_factor
height = width height = width
print(f" | Default image dimensions = {width} x {height}") self.logger.debug(f"Default image dimensions = {width} x {height}")
return pipeline, width, height, model_hash return pipeline, width, height, model_hash
@@ -559,14 +566,14 @@ class ModelManager(object):
weights = os.path.normpath(os.path.join(Globals.root, weights)) weights = os.path.normpath(os.path.join(Globals.root, weights))
# Convert to diffusers and return a diffusers pipeline # Convert to diffusers and return a diffusers pipeline
print(f">> Converting legacy checkpoint {model_name} into a diffusers model...") self.logger.info(f"Converting legacy checkpoint {model_name} into a diffusers model...")
from . import load_pipeline_from_original_stable_diffusion_ckpt from . import load_pipeline_from_original_stable_diffusion_ckpt
try: try:
if self.list_models()[self.current_model]["status"] == "active": if self.list_models()[self.current_model]["status"] == "active":
self.offload_model(self.current_model) self.offload_model(self.current_model)
except Exception as e: except Exception:
pass pass
vae_path = None vae_path = None
@@ -624,7 +631,7 @@ class ModelManager(object):
if model_name not in self.models: if model_name not in self.models:
return return
print(f">> Offloading {model_name} to CPU") self.logger.info(f"Offloading {model_name} to CPU")
model = self.models[model_name]["model"] model = self.models[model_name]["model"]
model.offload_all() model.offload_all()
self.current_model = None self.current_model = None
@@ -640,30 +647,26 @@ class ModelManager(object):
and option to exit if an infected file is identified. and option to exit if an infected file is identified.
""" """
# scan model # scan model
print(f" | Scanning Model: {model_name}") self.logger.debug(f"Scanning Model: {model_name}")
scan_result = scan_file_path(checkpoint) scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0: if scan_result.infected_files != 0:
if scan_result.infected_files == 1: if scan_result.infected_files == 1:
print(f"\n### Issues Found In Model: {scan_result.issues_count}") self.logger.critical(f"Issues Found In Model: {scan_result.issues_count}")
print( self.logger.critical("The model you are trying to load seems to be infected.")
"### WARNING: The model you are trying to load seems to be infected." self.logger.critical("For your safety, InvokeAI will not load this model.")
) self.logger.critical("Please use checkpoints from trusted sources.")
print("### For your safety, InvokeAI will not load this model.") self.logger.critical("Exiting InvokeAI")
print("### Please use checkpoints from trusted sources.")
print("### Exiting InvokeAI")
sys.exit() sys.exit()
else: else:
print( self.logger.warning("InvokeAI was unable to scan the model you are using.")
"\n### WARNING: InvokeAI was unable to scan the model you are using."
)
model_safe_check_fail = ask_user( model_safe_check_fail = ask_user(
"Do you want to to continue loading the model?", ["y", "n"] "Do you want to to continue loading the model?", ["y", "n"]
) )
if model_safe_check_fail.lower() != "y": if model_safe_check_fail.lower() != "y":
print("### Exiting InvokeAI") self.logger.critical("Exiting InvokeAI")
sys.exit() sys.exit()
else: else:
print(" | Model scanned ok") self.logger.debug("Model scanned ok")
def import_diffuser_model( def import_diffuser_model(
self, self,
@@ -780,26 +783,24 @@ class ModelManager(object):
model_path: Path = None model_path: Path = None
thing = path_url_or_repo # to save typing thing = path_url_or_repo # to save typing
print(f">> Probing {thing} for import") self.logger.info(f"Probing {thing} for import")
if thing.startswith(("http:", "https:", "ftp:")): if thing.startswith(("http:", "https:", "ftp:")):
print(f" | {thing} appears to be a URL") self.logger.info(f"{thing} appears to be a URL")
model_path = self._resolve_path( model_path = self._resolve_path(
thing, "models/ldm/stable-diffusion-v1" thing, "models/ldm/stable-diffusion-v1"
) # _resolve_path does a download if needed ) # _resolve_path does a download if needed
elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")): elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")):
if Path(thing).stem in ["model", "diffusion_pytorch_model"]: if Path(thing).stem in ["model", "diffusion_pytorch_model"]:
print( self.logger.debug(f"{Path(thing).name} appears to be part of a diffusers model. Skipping import")
f" | {Path(thing).name} appears to be part of a diffusers model. Skipping import"
)
return return
else: else:
print(f" | {thing} appears to be a checkpoint file on disk") self.logger.debug(f"{thing} appears to be a checkpoint file on disk")
model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1") model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1")
elif Path(thing).is_dir() and Path(thing, "model_index.json").exists(): elif Path(thing).is_dir() and Path(thing, "model_index.json").exists():
print(f" | {thing} appears to be a diffusers file on disk") self.logger.debug(f"{thing} appears to be a diffusers file on disk")
model_name = self.import_diffuser_model( model_name = self.import_diffuser_model(
thing, thing,
vae=dict(repo_id="stabilityai/sd-vae-ft-mse"), vae=dict(repo_id="stabilityai/sd-vae-ft-mse"),
@@ -810,34 +811,30 @@ class ModelManager(object):
elif Path(thing).is_dir(): elif Path(thing).is_dir():
if (Path(thing) / "model_index.json").exists(): if (Path(thing) / "model_index.json").exists():
print(f" | {thing} appears to be a diffusers model.") self.logger.debug(f"{thing} appears to be a diffusers model.")
model_name = self.import_diffuser_model( model_name = self.import_diffuser_model(
thing, commit_to_conf=commit_to_conf thing, commit_to_conf=commit_to_conf
) )
else: else:
print( self.logger.debug(f"{thing} appears to be a directory. Will scan for models to import")
f" |{thing} appears to be a directory. Will scan for models to import"
)
for m in list(Path(thing).rglob("*.ckpt")) + list( for m in list(Path(thing).rglob("*.ckpt")) + list(
Path(thing).rglob("*.safetensors") Path(thing).rglob("*.safetensors")
): ):
if model_name := self.heuristic_import( if model_name := self.heuristic_import(
str(m), commit_to_conf=commit_to_conf str(m), commit_to_conf=commit_to_conf
): ):
print(f" >> {model_name} successfully imported") self.logger.info(f"{model_name} successfully imported")
return model_name return model_name
elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing): elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing):
print(f" | {thing} appears to be a HuggingFace diffusers repo_id") self.logger.debug(f"{thing} appears to be a HuggingFace diffusers repo_id")
model_name = self.import_diffuser_model( model_name = self.import_diffuser_model(
thing, commit_to_conf=commit_to_conf thing, commit_to_conf=commit_to_conf
) )
pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name]) pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name])
return model_name return model_name
else: else:
print( self.logger.warning(f"{thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id")
f"** {thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id"
)
# Model_path is set in the event of a legacy checkpoint file. # Model_path is set in the event of a legacy checkpoint file.
# If not set, we're all done # If not set, we're all done
@@ -845,7 +842,7 @@ class ModelManager(object):
return return
if model_path.stem in self.config: # already imported if model_path.stem in self.config: # already imported
print(" | Already imported. Skipping") self.logger.debug("Already imported. Skipping")
return model_path.stem return model_path.stem
# another round of heuristics to guess the correct config file. # another round of heuristics to guess the correct config file.
@@ -861,39 +858,39 @@ class ModelManager(object):
# look for a like-named .yaml file in same directory # look for a like-named .yaml file in same directory
if model_path.with_suffix(".yaml").exists(): if model_path.with_suffix(".yaml").exists():
model_config_file = model_path.with_suffix(".yaml") model_config_file = model_path.with_suffix(".yaml")
print(f" | Using config file {model_config_file.name}") self.logger.debug(f"Using config file {model_config_file.name}")
else: else:
model_type = self.probe_model_type(checkpoint) model_type = self.probe_model_type(checkpoint)
if model_type == SDLegacyType.V1: if model_type == SDLegacyType.V1:
print(" | SD-v1 model detected") self.logger.debug("SD-v1 model detected")
model_config_file = Path( model_config_file = Path(
Globals.root, "configs/stable-diffusion/v1-inference.yaml" Globals.root, "configs/stable-diffusion/v1-inference.yaml"
) )
elif model_type == SDLegacyType.V1_INPAINT: elif model_type == SDLegacyType.V1_INPAINT:
print(" | SD-v1 inpainting model detected") self.logger.debug("SD-v1 inpainting model detected")
model_config_file = Path( model_config_file = Path(
Globals.root, Globals.root,
"configs/stable-diffusion/v1-inpainting-inference.yaml", "configs/stable-diffusion/v1-inpainting-inference.yaml",
) )
elif model_type == SDLegacyType.V2_v: elif model_type == SDLegacyType.V2_v:
print(" | SD-v2-v model detected") self.logger.debug("SD-v2-v model detected")
model_config_file = Path( model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference-v.yaml" Globals.root, "configs/stable-diffusion/v2-inference-v.yaml"
) )
elif model_type == SDLegacyType.V2_e: elif model_type == SDLegacyType.V2_e:
print(" | SD-v2-e model detected") self.logger.debug("SD-v2-e model detected")
model_config_file = Path( model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference.yaml" Globals.root, "configs/stable-diffusion/v2-inference.yaml"
) )
elif model_type == SDLegacyType.V2: elif model_type == SDLegacyType.V2:
print( self.logger.warning(
f"** {thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path." f"{thing} is a V2 checkpoint file, but its parameterization cannot be determined. Please provide configuration file path."
) )
return return
else: else:
print( self.logger.warning(
f"** {thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path." f"{thing} is a legacy checkpoint file but not a known Stable Diffusion model. Please provide configuration file path."
) )
return return
@@ -909,7 +906,7 @@ class ModelManager(object):
for suffix in ["pt", "ckpt", "safetensors"]: for suffix in ["pt", "ckpt", "safetensors"]:
if (model_path.with_suffix(f".vae.{suffix}")).exists(): if (model_path.with_suffix(f".vae.{suffix}")).exists():
vae_path = model_path.with_suffix(f".vae.{suffix}") vae_path = model_path.with_suffix(f".vae.{suffix}")
print(f" | Using VAE file {vae_path.name}") self.logger.debug(f"Using VAE file {vae_path.name}")
vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse") vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse")
diffuser_path = Path( diffuser_path = Path(
@@ -955,14 +952,14 @@ class ModelManager(object):
from . import convert_ckpt_to_diffusers from . import convert_ckpt_to_diffusers
if diffusers_path.exists(): if diffusers_path.exists():
print( self.logger.error(
f"ERROR: The path {str(diffusers_path)} already exists. Please move or remove it and try again." f"The path {str(diffusers_path)} already exists. Please move or remove it and try again."
) )
return return
model_name = model_name or diffusers_path.name model_name = model_name or diffusers_path.name
model_description = model_description or f"Converted version of {model_name}" model_description = model_description or f"Converted version of {model_name}"
print(f" | Converting {model_name} to diffusers (30-60s)") self.logger.debug(f"Converting {model_name} to diffusers (30-60s)")
try: try:
# By passing the specified VAE to the conversion function, the autoencoder # By passing the specified VAE to the conversion function, the autoencoder
# will be built into the model rather than tacked on afterward via the config file # will be built into the model rather than tacked on afterward via the config file
@@ -979,10 +976,10 @@ class ModelManager(object):
vae_path=vae_path, vae_path=vae_path,
scan_needed=scan_needed, scan_needed=scan_needed,
) )
print( self.logger.debug(
f" | Success. Converted model is now located at {str(diffusers_path)}" f"Success. Converted model is now located at {str(diffusers_path)}"
) )
print(f" | Writing new config file entry for {model_name}") self.logger.debug(f"Writing new config file entry for {model_name}")
new_config = dict( new_config = dict(
path=str(diffusers_path), path=str(diffusers_path),
description=model_description, description=model_description,
@@ -993,17 +990,17 @@ class ModelManager(object):
self.add_model(model_name, new_config, True) self.add_model(model_name, new_config, True)
if commit_to_conf: if commit_to_conf:
self.commit(commit_to_conf) self.commit(commit_to_conf)
print(" | Conversion succeeded") self.logger.debug("Conversion succeeded")
except Exception as e: except Exception as e:
print(f"** Conversion failed: {str(e)}") self.logger.warning(f"Conversion failed: {str(e)}")
print( self.logger.warning(
"** If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)" "If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)"
) )
return model_name return model_name
def search_models(self, search_folder): def search_models(self, search_folder):
print(f">> Finding Models In: {search_folder}") self.logger.info(f"Finding Models In: {search_folder}")
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt") models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
models_folder_safetensors = Path(search_folder).glob("**/*.safetensors") models_folder_safetensors = Path(search_folder).glob("**/*.safetensors")
@@ -1027,8 +1024,8 @@ class ModelManager(object):
num_loaded_models = len(self.models) num_loaded_models = len(self.models)
if num_loaded_models >= self.max_loaded_models: if num_loaded_models >= self.max_loaded_models:
least_recent_model = self._pop_oldest_model() least_recent_model = self._pop_oldest_model()
print( self.logger.info(
f">> Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}" f"Cache limit (max={self.max_loaded_models}) reached. Purging {least_recent_model}"
) )
if least_recent_model is not None: if least_recent_model is not None:
del self.models[least_recent_model] del self.models[least_recent_model]
@@ -1036,8 +1033,8 @@ class ModelManager(object):
def print_vram_usage(self) -> None: def print_vram_usage(self) -> None:
if self._has_cuda: if self._has_cuda:
print( self.logger.info(
">> Current VRAM usage: ", "Current VRAM usage:"+
"%4.2fG" % (torch.cuda.memory_allocated() / 1e9), "%4.2fG" % (torch.cuda.memory_allocated() / 1e9),
) )
@@ -1126,10 +1123,10 @@ class ModelManager(object):
dest = hub / model.stem dest = hub / model.stem
if dest.exists() and not source.exists(): if dest.exists() and not source.exists():
continue continue
print(f"** {source} => {dest}") cls.logger.info(f"{source} => {dest}")
if source.exists(): if source.exists():
if dest.is_symlink(): if dest.is_symlink():
print(f"** Found symlink at {dest.name}. Not migrating.") logger.warning(f"Found symlink at {dest.name}. Not migrating.")
elif dest.exists(): elif dest.exists():
if source.is_dir(): if source.is_dir():
rmtree(source) rmtree(source)
@@ -1146,7 +1143,7 @@ class ModelManager(object):
] ]
for d in empty: for d in empty:
os.rmdir(d) os.rmdir(d)
print("** Migration is done. Continuing...") cls.logger.info("Migration is done. Continuing...")
def _resolve_path( def _resolve_path(
self, source: Union[str, Path], dest_directory: str self, source: Union[str, Path], dest_directory: str
@@ -1189,15 +1186,15 @@ class ModelManager(object):
def _add_embeddings_to_model(self, model: StableDiffusionGeneratorPipeline): def _add_embeddings_to_model(self, model: StableDiffusionGeneratorPipeline):
if self.embedding_path is not None: if self.embedding_path is not None:
print(f">> Loading embeddings from {self.embedding_path}") self.logger.info(f"Loading embeddings from {self.embedding_path}")
for root, _, files in os.walk(self.embedding_path): for root, _, files in os.walk(self.embedding_path):
for name in files: for name in files:
ti_path = os.path.join(root, name) ti_path = os.path.join(root, name)
model.textual_inversion_manager.load_textual_inversion( model.textual_inversion_manager.load_textual_inversion(
ti_path, defer_injecting_tokens=True ti_path, defer_injecting_tokens=True
) )
print( self.logger.info(
f'>> Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}' f'Textual inversion triggers: {", ".join(sorted(model.textual_inversion_manager.get_all_trigger_strings()))}'
) )
def _has_cuda(self) -> bool: def _has_cuda(self) -> bool:
@@ -1219,7 +1216,7 @@ class ModelManager(object):
with open(hashpath) as f: with open(hashpath) as f:
hash = f.read() hash = f.read()
return hash return hash
print(" | Calculating sha256 hash of model files") self.logger.debug("Calculating sha256 hash of model files")
tic = time.time() tic = time.time()
sha = hashlib.sha256() sha = hashlib.sha256()
count = 0 count = 0
@@ -1231,7 +1228,7 @@ class ModelManager(object):
sha.update(chunk) sha.update(chunk)
hash = sha.hexdigest() hash = sha.hexdigest()
toc = time.time() toc = time.time()
print(f" | sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic)) self.logger.debug(f"sha256 = {hash} ({count} files hashed in", "%4.2fs)" % (toc - tic))
with open(hashpath, "w") as f: with open(hashpath, "w") as f:
f.write(hash) f.write(hash)
return hash return hash
@@ -1249,13 +1246,13 @@ class ModelManager(object):
hash = f.read() hash = f.read()
return hash return hash
print(" | Calculating sha256 hash of weights file") self.logger.debug("Calculating sha256 hash of weights file")
tic = time.time() tic = time.time()
sha = hashlib.sha256() sha = hashlib.sha256()
sha.update(data) sha.update(data)
hash = sha.hexdigest() hash = sha.hexdigest()
toc = time.time() toc = time.time()
print(f">> sha256 = {hash}", "(%4.2fs)" % (toc - tic)) self.logger.debug(f"sha256 = {hash} "+"(%4.2fs)" % (toc - tic))
with open(hashpath, "w") as f: with open(hashpath, "w") as f:
f.write(hash) f.write(hash)
@@ -1276,12 +1273,12 @@ class ModelManager(object):
local_files_only=not Globals.internet_available, local_files_only=not Globals.internet_available,
) )
print(f" | Loading diffusers VAE from {name_or_path}") self.logger.debug(f"Loading diffusers VAE from {name_or_path}")
if using_fp16: if using_fp16:
vae_args.update(torch_dtype=torch.float16) vae_args.update(torch_dtype=torch.float16)
fp_args_list = [{"revision": "fp16"}, {}] fp_args_list = [{"revision": "fp16"}, {}]
else: else:
print(" | Using more accurate float32 precision") self.logger.debug("Using more accurate float32 precision")
fp_args_list = [{}] fp_args_list = [{}]
vae = None vae = None
@@ -1305,12 +1302,12 @@ class ModelManager(object):
break break
if not vae and deferred_error: if not vae and deferred_error:
print(f"** Could not load VAE {name_or_path}: {str(deferred_error)}") self.logger.warning(f"Could not load VAE {name_or_path}: {str(deferred_error)}")
return vae return vae
@staticmethod @classmethod
def _delete_model_from_cache(repo_id): def _delete_model_from_cache(cls,repo_id):
cache_info = scan_cache_dir(global_cache_dir("hub")) cache_info = scan_cache_dir(global_cache_dir("hub"))
# I'm sure there is a way to do this with comprehensions # I'm sure there is a way to do this with comprehensions
@@ -1321,8 +1318,8 @@ class ModelManager(object):
for revision in repo.revisions: for revision in repo.revisions:
hashes_to_delete.add(revision.commit_hash) hashes_to_delete.add(revision.commit_hash)
strategy = cache_info.delete_revisions(*hashes_to_delete) strategy = cache_info.delete_revisions(*hashes_to_delete)
print( cls.logger.warning(
f"** Deletion of this model is expected to free {strategy.expected_freed_size_str}" f"Deletion of this model is expected to free {strategy.expected_freed_size_str}"
) )
strategy.execute() strategy.execute()

View File

@@ -18,6 +18,7 @@ from compel.prompt_parser import (
PromptParser, PromptParser,
) )
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals from invokeai.backend.globals import Globals
from ..stable_diffusion import InvokeAIDiffuserComponent from ..stable_diffusion import InvokeAIDiffuserComponent
@@ -162,8 +163,8 @@ def log_tokenization(
negative_prompt: Union[Blend, FlattenedPrompt], negative_prompt: Union[Blend, FlattenedPrompt],
tokenizer, tokenizer,
): ):
print(f"\n>> [TOKENLOG] Parsed Prompt: {positive_prompt}") logger.info(f"[TOKENLOG] Parsed Prompt: {positive_prompt}")
print(f"\n>> [TOKENLOG] Parsed Negative Prompt: {negative_prompt}") logger.info(f"[TOKENLOG] Parsed Negative Prompt: {negative_prompt}")
log_tokenization_for_prompt_object(positive_prompt, tokenizer) log_tokenization_for_prompt_object(positive_prompt, tokenizer)
log_tokenization_for_prompt_object( log_tokenization_for_prompt_object(
@@ -237,12 +238,12 @@ def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_t
usedTokens += 1 usedTokens += 1
if usedTokens > 0: if usedTokens > 0:
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):') logger.info(f'[TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
print(f"{tokenized}\x1b[0m") logger.debug(f"{tokenized}\x1b[0m")
if discarded != "": if discarded != "":
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):") logger.info(f"[TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
print(f"{discarded}\x1b[0m") logger.debug(f"{discarded}\x1b[0m")
def try_parse_legacy_blend(text: str, skip_normalize: bool = False) -> Optional[Blend]: def try_parse_legacy_blend(text: str, skip_normalize: bool = False) -> Optional[Blend]:
@@ -295,8 +296,8 @@ def split_weighted_subprompts(text, skip_normalize=False) -> list:
return parsed_prompts return parsed_prompts
weight_sum = sum(map(lambda x: x[1], parsed_prompts)) weight_sum = sum(map(lambda x: x[1], parsed_prompts))
if weight_sum == 0: if weight_sum == 0:
print( logger.warning(
"* Warning: Subprompt weights add up to zero. Discarding and using even weights instead." "Subprompt weights add up to zero. Discarding and using even weights instead."
) )
equal_weight = 1 / max(len(parsed_prompts), 1) equal_weight = 1 / max(len(parsed_prompts), 1)
return [(x[0], equal_weight) for x in parsed_prompts] return [(x[0], equal_weight) for x in parsed_prompts]

View File

@@ -1,3 +1,5 @@
import invokeai.backend.util.logging as logger
class Restoration: class Restoration:
def __init__(self) -> None: def __init__(self) -> None:
pass pass
@@ -8,17 +10,17 @@ class Restoration:
# Load GFPGAN # Load GFPGAN
gfpgan = self.load_gfpgan(gfpgan_model_path) gfpgan = self.load_gfpgan(gfpgan_model_path)
if gfpgan.gfpgan_model_exists: if gfpgan.gfpgan_model_exists:
print(">> GFPGAN Initialized") logger.info("GFPGAN Initialized")
else: else:
print(">> GFPGAN Disabled") logger.info("GFPGAN Disabled")
gfpgan = None gfpgan = None
# Load CodeFormer # Load CodeFormer
codeformer = self.load_codeformer() codeformer = self.load_codeformer()
if codeformer.codeformer_model_exists: if codeformer.codeformer_model_exists:
print(">> CodeFormer Initialized") logger.info("CodeFormer Initialized")
else: else:
print(">> CodeFormer Disabled") logger.info("CodeFormer Disabled")
codeformer = None codeformer = None
return gfpgan, codeformer return gfpgan, codeformer
@@ -39,5 +41,5 @@ class Restoration:
from .realesrgan import ESRGAN from .realesrgan import ESRGAN
esrgan = ESRGAN(esrgan_bg_tile) esrgan = ESRGAN(esrgan_bg_tile)
print(">> ESRGAN Initialized") logger.info("ESRGAN Initialized")
return esrgan return esrgan

View File

@@ -5,6 +5,7 @@ import warnings
import numpy as np import numpy as np
import torch import torch
import invokeai.backend.util.logging as logger
from ..globals import Globals from ..globals import Globals
pretrained_model_url = ( pretrained_model_url = (
@@ -23,12 +24,12 @@ class CodeFormerRestoration:
self.codeformer_model_exists = os.path.isfile(self.model_path) self.codeformer_model_exists = os.path.isfile(self.model_path)
if not self.codeformer_model_exists: if not self.codeformer_model_exists:
print("## NOT FOUND: CodeFormer model not found at " + self.model_path) logger.error("NOT FOUND: CodeFormer model not found at " + self.model_path)
sys.path.append(os.path.abspath(codeformer_dir)) sys.path.append(os.path.abspath(codeformer_dir))
def process(self, image, strength, device, seed=None, fidelity=0.75): def process(self, image, strength, device, seed=None, fidelity=0.75):
if seed is not None: if seed is not None:
print(f">> CodeFormer - Restoring Faces for image seed:{seed}") logger.info(f"CodeFormer - Restoring Faces for image seed:{seed}")
with warnings.catch_warnings(): with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=UserWarning)
@@ -97,7 +98,7 @@ class CodeFormerRestoration:
del output del output
torch.cuda.empty_cache() torch.cuda.empty_cache()
except RuntimeError as error: except RuntimeError as error:
print(f"\tFailed inference for CodeFormer: {error}.") logger.error(f"Failed inference for CodeFormer: {error}.")
restored_face = cropped_face restored_face = cropped_face
restored_face = restored_face.astype("uint8") restored_face = restored_face.astype("uint8")

View File

@@ -6,9 +6,9 @@ import numpy as np
import torch import torch
from PIL import Image from PIL import Image
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals from invokeai.backend.globals import Globals
class GFPGAN: class GFPGAN:
def __init__(self, gfpgan_model_path="models/gfpgan/GFPGANv1.4.pth") -> None: def __init__(self, gfpgan_model_path="models/gfpgan/GFPGANv1.4.pth") -> None:
if not os.path.isabs(gfpgan_model_path): if not os.path.isabs(gfpgan_model_path):
@@ -19,7 +19,7 @@ class GFPGAN:
self.gfpgan_model_exists = os.path.isfile(self.model_path) self.gfpgan_model_exists = os.path.isfile(self.model_path)
if not self.gfpgan_model_exists: if not self.gfpgan_model_exists:
print("## NOT FOUND: GFPGAN model not found at " + self.model_path) logger.error("NOT FOUND: GFPGAN model not found at " + self.model_path)
return None return None
def model_exists(self): def model_exists(self):
@@ -27,7 +27,7 @@ class GFPGAN:
def process(self, image, strength: float, seed: str = None): def process(self, image, strength: float, seed: str = None):
if seed is not None: if seed is not None:
print(f">> GFPGAN - Restoring Faces for image seed:{seed}") logger.info(f"GFPGAN - Restoring Faces for image seed:{seed}")
with warnings.catch_warnings(): with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=DeprecationWarning)
@@ -47,14 +47,14 @@ class GFPGAN:
except Exception: except Exception:
import traceback import traceback
print(">> Error loading GFPGAN:", file=sys.stderr) logger.error("Error loading GFPGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
os.chdir(cwd) os.chdir(cwd)
if self.gfpgan is None: if self.gfpgan is None:
print(f">> WARNING: GFPGAN not initialized.") logger.warning("WARNING: GFPGAN not initialized.")
print( logger.warning(
f">> Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}" f"Download https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth to {self.model_path}"
) )
image = image.convert("RGB") image = image.convert("RGB")

View File

@@ -1,7 +1,7 @@
import math import math
from PIL import Image from PIL import Image
import invokeai.backend.util.logging as logger
class Outcrop(object): class Outcrop(object):
def __init__( def __init__(
@@ -82,7 +82,7 @@ class Outcrop(object):
pixels = extents[direction] pixels = extents[direction]
# round pixels up to the nearest 64 # round pixels up to the nearest 64
pixels = math.ceil(pixels / 64) * 64 pixels = math.ceil(pixels / 64) * 64
print(f">> extending image {direction}ward by {pixels} pixels") logger.info(f"extending image {direction}ward by {pixels} pixels")
image = self._rotate(image, direction) image = self._rotate(image, direction)
image = self._extend(image, pixels) image = self._extend(image, pixels)
image = self._rotate(image, direction, reverse=True) image = self._rotate(image, direction, reverse=True)

View File

@@ -6,18 +6,13 @@ import torch
from PIL import Image from PIL import Image
from PIL.Image import Image as ImageType from PIL.Image import Image as ImageType
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals from invokeai.backend.globals import Globals
class ESRGAN: class ESRGAN:
def __init__(self, bg_tile_size=400) -> None: def __init__(self, bg_tile_size=400) -> None:
self.bg_tile_size = bg_tile_size self.bg_tile_size = bg_tile_size
if not torch.cuda.is_available(): # CPU or MPS on M1
use_half_precision = False
else:
use_half_precision = True
def load_esrgan_bg_upsampler(self, denoise_str): def load_esrgan_bg_upsampler(self, denoise_str):
if not torch.cuda.is_available(): # CPU or MPS on M1 if not torch.cuda.is_available(): # CPU or MPS on M1
use_half_precision = False use_half_precision = False
@@ -74,16 +69,16 @@ class ESRGAN:
import sys import sys
import traceback import traceback
print(">> Error loading Real-ESRGAN:", file=sys.stderr) logger.error("Error loading Real-ESRGAN:")
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
if upsampler_scale == 0: if upsampler_scale == 0:
print(">> Real-ESRGAN: Invalid scaling option. Image not upscaled.") logger.warning("Real-ESRGAN: Invalid scaling option. Image not upscaled.")
return image return image
if seed is not None: if seed is not None:
print( logger.info(
f">> Real-ESRGAN Upscaling seed:{seed}, scale:{upsampler_scale}x, tile:{self.bg_tile_size}, denoise:{denoise_str}" f"Real-ESRGAN Upscaling seed:{seed}, scale:{upsampler_scale}x, tile:{self.bg_tile_size}, denoise:{denoise_str}"
) )
# ESRGAN outputs images with partial transparency if given RGBA images; convert to RGB # ESRGAN outputs images with partial transparency if given RGBA images; convert to RGB
image = image.convert("RGB") image = image.convert("RGB")

View File

@@ -14,6 +14,7 @@ from PIL import Image, ImageFilter
from transformers import AutoFeatureExtractor from transformers import AutoFeatureExtractor
import invokeai.assets.web as web_assets import invokeai.assets.web as web_assets
import invokeai.backend.util.logging as logger
from .globals import global_cache_dir from .globals import global_cache_dir
from .util import CPU_DEVICE from .util import CPU_DEVICE
@@ -40,8 +41,8 @@ class SafetyChecker(object):
cache_dir=safety_model_path, cache_dir=safety_model_path,
) )
except Exception: except Exception:
print( logger.error(
"** An error was encountered while installing the safety checker:" "An error was encountered while installing the safety checker:"
) )
print(traceback.format_exc()) print(traceback.format_exc())
@@ -65,8 +66,8 @@ class SafetyChecker(object):
) )
self.safety_checker.to(CPU_DEVICE) # offload self.safety_checker.to(CPU_DEVICE) # offload
if has_nsfw_concept[0]: if has_nsfw_concept[0]:
print( logger.warning(
"** An image with potential non-safe content has been detected. A blurred image will be returned. **" "An image with potential non-safe content has been detected. A blurred image will be returned."
) )
return self.blur(image) return self.blur(image)
else: else:

View File

@@ -17,6 +17,7 @@ from huggingface_hub import (
hf_hub_url, hf_hub_url,
) )
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals from invokeai.backend.globals import Globals
@@ -57,7 +58,7 @@ class HuggingFaceConceptsLibrary(object):
self.concept_list.extend(list(local_concepts_to_add)) self.concept_list.extend(list(local_concepts_to_add))
return self.concept_list return self.concept_list
return self.concept_list return self.concept_list
else: elif Globals.internet_available is True:
try: try:
models = self.hf_api.list_models( models = self.hf_api.list_models(
filter=ModelFilter(model_name="sd-concepts-library/") filter=ModelFilter(model_name="sd-concepts-library/")
@@ -66,13 +67,15 @@ class HuggingFaceConceptsLibrary(object):
# when init, add all in dir. when not init, add only concepts added between init and now # when init, add all in dir. when not init, add only concepts added between init and now
self.concept_list.extend(list(local_concepts_to_add)) self.concept_list.extend(list(local_concepts_to_add))
except Exception as e: except Exception as e:
print( logger.warning(
f" ** WARNING: Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}." f"Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}."
) )
print( logger.warning(
" ** You may load .bin and .pt file(s) manually using the --embedding_directory argument." "You may load .bin and .pt file(s) manually using the --embedding_directory argument."
) )
return self.concept_list return self.concept_list
else:
return self.concept_list
def get_concept_model_path(self, concept_name: str) -> str: def get_concept_model_path(self, concept_name: str) -> str:
""" """
@@ -81,7 +84,7 @@ class HuggingFaceConceptsLibrary(object):
be downloaded. be downloaded.
""" """
if not concept_name in self.list_concepts(): if not concept_name in self.list_concepts():
print( logger.warning(
f"{concept_name} is not a local embedding trigger, nor is it a HuggingFace concept. Generation will continue without the concept." f"{concept_name} is not a local embedding trigger, nor is it a HuggingFace concept. Generation will continue without the concept."
) )
return None return None
@@ -219,7 +222,7 @@ class HuggingFaceConceptsLibrary(object):
if chunk == 0: if chunk == 0:
bytes += total bytes += total
print(f">> Downloading {repo_id}...", end="") logger.info(f"Downloading {repo_id}...", end="")
try: try:
for file in ( for file in (
"README.md", "README.md",
@@ -233,22 +236,22 @@ class HuggingFaceConceptsLibrary(object):
) )
except ul_error.HTTPError as e: except ul_error.HTTPError as e:
if e.code == 404: if e.code == 404:
print( logger.warning(
f"Concept {concept_name} is not known to the Hugging Face library. Generation will continue without the concept." f"Concept {concept_name} is not known to the Hugging Face library. Generation will continue without the concept."
) )
else: else:
print( logger.warning(
f"Failed to download {concept_name}/{file} ({str(e)}. Generation will continue without the concept.)" f"Failed to download {concept_name}/{file} ({str(e)}. Generation will continue without the concept.)"
) )
os.rmdir(dest) os.rmdir(dest)
return False return False
except ul_error.URLError as e: except ul_error.URLError as e:
print( logger.error(
f"ERROR while downloading {concept_name}: {str(e)}. This may reflect a network issue. Generation will continue without the concept." f"an error occurred while downloading {concept_name}: {str(e)}. This may reflect a network issue. Generation will continue without the concept."
) )
os.rmdir(dest) os.rmdir(dest)
return False return False
print("...{:.2f}Kb".format(bytes / 1024)) logger.info("...{:.2f}Kb".format(bytes / 1024))
return succeeded return succeeded
def _concept_id(self, concept_name: str) -> str: def _concept_id(self, concept_name: str) -> str:

View File

@@ -445,8 +445,15 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
@property @property
def _submodels(self) -> Sequence[torch.nn.Module]: def _submodels(self) -> Sequence[torch.nn.Module]:
module_names, _, _ = self.extract_init_dict(dict(self.config)) module_names, _, _ = self.extract_init_dict(dict(self.config))
values = [getattr(self, name) for name in module_names.keys()] submodels = []
return [m for m in values if isinstance(m, torch.nn.Module)] for name in module_names.keys():
if hasattr(self, name):
value = getattr(self, name)
else:
value = getattr(self.config, name)
if isinstance(value, torch.nn.Module):
submodels.append(value)
return submodels
def image_from_embeddings( def image_from_embeddings(
self, self,
@@ -544,7 +551,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
yield PipelineIntermediateState( yield PipelineIntermediateState(
run_id=run_id, run_id=run_id,
step=-1, step=-1,
timestep=self.scheduler.num_train_timesteps, timestep=self.scheduler.config.num_train_timesteps,
latents=latents, latents=latents,
) )
@@ -915,7 +922,7 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
@property @property
def channels(self) -> int: def channels(self) -> int:
"""Compatible with DiffusionWrapper""" """Compatible with DiffusionWrapper"""
return self.unet.in_channels return self.unet.config.in_channels
def decode_latents(self, latents): def decode_latents(self, latents):
# Explicit call to get the vae loaded, since `decode` isn't the forward method. # Explicit call to get the vae loaded, since `decode` isn't the forward method.

View File

@@ -10,13 +10,12 @@ import diffusers
import psutil import psutil
import torch import torch
from compel.cross_attention_control import Arguments from compel.cross_attention_control import Arguments
from diffusers.models.cross_attention import AttnProcessor from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from torch import nn from torch import nn
import invokeai.backend.util.logging as logger
from ...util import torch_dtype from ...util import torch_dtype
class CrossAttentionType(enum.Enum): class CrossAttentionType(enum.Enum):
SELF = 1 SELF = 1
TOKENS = 2 TOKENS = 2
@@ -188,7 +187,7 @@ class Context:
class InvokeAICrossAttentionMixin: class InvokeAICrossAttentionMixin:
""" """
Enable InvokeAI-flavoured CrossAttention calculation, which does aggressive low-memory slicing and calls Enable InvokeAI-flavoured Attention calculation, which does aggressive low-memory slicing and calls
through both to an attention_slice_wrangler and a slicing_strategy_getter for custom attention map wrangling through both to an attention_slice_wrangler and a slicing_strategy_getter for custom attention map wrangling
and dymamic slicing strategy selection. and dymamic slicing strategy selection.
""" """
@@ -209,7 +208,7 @@ class InvokeAICrossAttentionMixin:
Set custom attention calculator to be called when attention is calculated Set custom attention calculator to be called when attention is calculated
:param wrangler: Callback, with args (module, suggested_attention_slice, dim, offset, slice_size), :param wrangler: Callback, with args (module, suggested_attention_slice, dim, offset, slice_size),
which returns either the suggested_attention_slice or an adjusted equivalent. which returns either the suggested_attention_slice or an adjusted equivalent.
`module` is the current CrossAttention module for which the callback is being invoked. `module` is the current Attention module for which the callback is being invoked.
`suggested_attention_slice` is the default-calculated attention slice `suggested_attention_slice` is the default-calculated attention slice
`dim` is -1 if the attenion map has not been sliced, or 0 or 1 for dimension-0 or dimension-1 slicing. `dim` is -1 if the attenion map has not been sliced, or 0 or 1 for dimension-0 or dimension-1 slicing.
If `dim` is >= 0, `offset` and `slice_size` specify the slice start and length. If `dim` is >= 0, `offset` and `slice_size` specify the slice start and length.
@@ -345,11 +344,11 @@ class InvokeAICrossAttentionMixin:
def restore_default_cross_attention( def restore_default_cross_attention(
model, model,
is_running_diffusers: bool, is_running_diffusers: bool,
restore_attention_processor: Optional[AttnProcessor] = None, restore_attention_processor: Optional[AttentionProcessor] = None,
): ):
if is_running_diffusers: if is_running_diffusers:
unet = model unet = model
unet.set_attn_processor(restore_attention_processor or CrossAttnProcessor()) unet.set_attn_processor(restore_attention_processor or AttnProcessor())
else: else:
remove_attention_function(model) remove_attention_function(model)
@@ -408,12 +407,9 @@ def override_cross_attention(model, context: Context, is_running_diffusers=False
def get_cross_attention_modules( def get_cross_attention_modules(
model, which: CrossAttentionType model, which: CrossAttentionType
) -> list[tuple[str, InvokeAICrossAttentionMixin]]: ) -> list[tuple[str, InvokeAICrossAttentionMixin]]:
from ldm.modules.attention import CrossAttention # avoid circular import
cross_attention_class: type = ( cross_attention_class: type = (
InvokeAIDiffusersCrossAttention InvokeAIDiffusersCrossAttention
if isinstance(model, UNet2DConditionModel)
else CrossAttention
) )
which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2" which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2"
attention_module_tuples = [ attention_module_tuples = [
@@ -425,13 +421,13 @@ def get_cross_attention_modules(
expected_count = 16 expected_count = 16
if cross_attention_modules_in_model_count != expected_count: if cross_attention_modules_in_model_count != expected_count:
# non-fatal error but .swap() won't work. # non-fatal error but .swap() won't work.
print( logger.error(
f"Error! CrossAttentionControl found an unexpected number of {cross_attention_class} modules in the model " f"Error! CrossAttentionControl found an unexpected number of {cross_attention_class} modules in the model "
+ f"(expected {expected_count}, found {cross_attention_modules_in_model_count}). Either monkey-patching failed " + f"(expected {expected_count}, found {cross_attention_modules_in_model_count}). Either monkey-patching failed "
+ f"or some assumption has changed about the structure of the model itself. Please fix the monkey-patching, " + "or some assumption has changed about the structure of the model itself. Please fix the monkey-patching, "
+ f"and/or update the {expected_count} above to an appropriate number, and/or find and inform someone who knows " + f"and/or update the {expected_count} above to an appropriate number, and/or find and inform someone who knows "
+ f"what it means. This error is non-fatal, but it is likely that .swap() and attention map display will not " + "what it means. This error is non-fatal, but it is likely that .swap() and attention map display will not "
+ f"work properly until it is fixed." + "work properly until it is fixed."
) )
return attention_module_tuples return attention_module_tuples
@@ -550,7 +546,7 @@ def get_mem_free_total(device):
class InvokeAIDiffusersCrossAttention( class InvokeAIDiffusersCrossAttention(
diffusers.models.attention.CrossAttention, InvokeAICrossAttentionMixin diffusers.models.attention.Attention, InvokeAICrossAttentionMixin
): ):
def __init__(self, **kwargs): def __init__(self, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
@@ -572,8 +568,8 @@ class InvokeAIDiffusersCrossAttention(
""" """
# base implementation # base implementation
class CrossAttnProcessor: class AttnProcessor:
def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None): def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length)
@@ -601,9 +597,9 @@ class CrossAttnProcessor:
from dataclasses import dataclass, field from dataclasses import dataclass, field
import torch import torch
from diffusers.models.cross_attention import ( from diffusers.models.attention_processor import (
CrossAttention, Attention,
CrossAttnProcessor, AttnProcessor,
SlicedAttnProcessor, SlicedAttnProcessor,
) )
@@ -653,7 +649,7 @@ class SlicedSwapCrossAttnProcesser(SlicedAttnProcessor):
def __call__( def __call__(
self, self,
attn: CrossAttention, attn: Attention,
hidden_states, hidden_states,
encoder_hidden_states=None, encoder_hidden_states=None,
attention_mask=None, attention_mask=None,

View File

@@ -5,9 +5,10 @@ from typing import Any, Callable, Dict, Optional, Union
import numpy as np import numpy as np
import torch import torch
from diffusers.models.cross_attention import AttnProcessor from diffusers.models.attention_processor import AttentionProcessor
from typing_extensions import TypeAlias from typing_extensions import TypeAlias
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals from invokeai.backend.globals import Globals
from .cross_attention_control import ( from .cross_attention_control import (
@@ -101,7 +102,7 @@ class InvokeAIDiffuserComponent:
def override_cross_attention( def override_cross_attention(
self, conditioning: ExtraConditioningInfo, step_count: int self, conditioning: ExtraConditioningInfo, step_count: int
) -> Dict[str, AttnProcessor]: ) -> Dict[str, AttentionProcessor]:
""" """
setup cross attention .swap control. for diffusers this replaces the attention processor, so setup cross attention .swap control. for diffusers this replaces the attention processor, so
the previous attention processor is returned so that the caller can restore it later. the previous attention processor is returned so that the caller can restore it later.
@@ -118,7 +119,7 @@ class InvokeAIDiffuserComponent:
) )
def restore_default_cross_attention( def restore_default_cross_attention(
self, restore_attention_processor: Optional["AttnProcessor"] = None self, restore_attention_processor: Optional["AttentionProcessor"] = None
): ):
self.conditioning = None self.conditioning = None
self.cross_attention_control_context = None self.cross_attention_control_context = None
@@ -262,7 +263,7 @@ class InvokeAIDiffuserComponent:
# TODO remove when compvis codepath support is dropped # TODO remove when compvis codepath support is dropped
if step_index is None and sigma is None: if step_index is None and sigma is None:
raise ValueError( raise ValueError(
f"Either step_index or sigma is required when doing cross attention control, but both are None." "Either step_index or sigma is required when doing cross attention control, but both are None."
) )
percent_through = self.estimate_percent_through(step_index, sigma) percent_through = self.estimate_percent_through(step_index, sigma)
return percent_through return percent_through
@@ -466,10 +467,14 @@ class InvokeAIDiffuserComponent:
outside = torch.count_nonzero( outside = torch.count_nonzero(
(latents < -current_threshold) | (latents > current_threshold) (latents < -current_threshold) | (latents > current_threshold)
) )
print( logger.info(
f"\nThreshold: %={percent_through} threshold={current_threshold:.3f} (of {threshold:.3f})\n" f"Threshold: %={percent_through} threshold={current_threshold:.3f} (of {threshold:.3f})"
f" | min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}\n" )
f" | {outside / latents.numel() * 100:.2f}% values outside threshold" logger.debug(
f"min, mean, max = {minval:.3f}, {mean:.3f}, {maxval:.3f}\tstd={std}"
)
logger.debug(
f"{outside / latents.numel() * 100:.2f}% values outside threshold"
) )
if maxval < current_threshold and minval > -current_threshold: if maxval < current_threshold and minval > -current_threshold:
@@ -496,9 +501,11 @@ class InvokeAIDiffuserComponent:
) )
if self.debug_thresholding: if self.debug_thresholding:
print( logger.debug(
f" | min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})\n" f"min, , max = {minval:.3f}, , {maxval:.3f}\t(scaled by {scale})"
f" | {num_altered / latents.numel() * 100:.2f}% values altered" )
logger.debug(
f"{num_altered / latents.numel() * 100:.2f}% values altered"
) )
return latents return latents
@@ -599,7 +606,6 @@ class InvokeAIDiffuserComponent:
) )
# below is fugly omg # below is fugly omg
num_actual_conditionings = len(c_or_weighted_c_list)
conditionings = [uc] + [c for c, weight in weighted_cond_list] conditionings = [uc] + [c for c, weight in weighted_cond_list]
weights = [1] + [weight for c, weight in weighted_cond_list] weights = [1] + [weight for c, weight in weighted_cond_list]
chunk_count = ceil(len(conditionings) / 2) chunk_count = ceil(len(conditionings) / 2)

View File

@@ -10,7 +10,7 @@ from torchvision.utils import make_grid
# import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py # import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
import invokeai.backend.util.logging as logger
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
@@ -191,7 +191,7 @@ def mkdirs(paths):
def mkdir_and_rename(path): def mkdir_and_rename(path):
if os.path.exists(path): if os.path.exists(path):
new_name = path + "_archived_" + get_timestamp() new_name = path + "_archived_" + get_timestamp()
print("Path already exists. Rename it to [{:s}]".format(new_name)) logger.error("Path already exists. Rename it to [{:s}]".format(new_name))
os.replace(path, new_name) os.replace(path, new_name)
os.makedirs(path) os.makedirs(path)

View File

@@ -10,6 +10,7 @@ from compel.embeddings_provider import BaseTextualInversionManager
from picklescan.scanner import scan_file_path from picklescan.scanner import scan_file_path
from transformers import CLIPTextModel, CLIPTokenizer from transformers import CLIPTextModel, CLIPTokenizer
import invokeai.backend.util.logging as logger
from .concepts_lib import HuggingFaceConceptsLibrary from .concepts_lib import HuggingFaceConceptsLibrary
@dataclass @dataclass
@@ -59,12 +60,12 @@ class TextualInversionManager(BaseTextualInversionManager):
or self.has_textual_inversion_for_trigger_string(concept_name) or self.has_textual_inversion_for_trigger_string(concept_name)
or self.has_textual_inversion_for_trigger_string(f"<{concept_name}>") or self.has_textual_inversion_for_trigger_string(f"<{concept_name}>")
): # in case a token with literal angle brackets encountered ): # in case a token with literal angle brackets encountered
print(f">> Loaded local embedding for trigger {concept_name}") logger.info(f"Loaded local embedding for trigger {concept_name}")
continue continue
bin_file = self.hf_concepts_library.get_concept_model_path(concept_name) bin_file = self.hf_concepts_library.get_concept_model_path(concept_name)
if not bin_file: if not bin_file:
continue continue
print(f">> Loaded remote embedding for trigger {concept_name}") logger.info(f"Loaded remote embedding for trigger {concept_name}")
self.load_textual_inversion(bin_file) self.load_textual_inversion(bin_file)
self.hf_concepts_library.concepts_loaded[concept_name] = True self.hf_concepts_library.concepts_loaded[concept_name] = True
@@ -85,8 +86,8 @@ class TextualInversionManager(BaseTextualInversionManager):
embedding_list = self._parse_embedding(str(ckpt_path)) embedding_list = self._parse_embedding(str(ckpt_path))
for embedding_info in embedding_list: for embedding_info in embedding_list:
if (self.text_encoder.get_input_embeddings().weight.data[0].shape[0] != embedding_info.token_dim): if (self.text_encoder.get_input_embeddings().weight.data[0].shape[0] != embedding_info.token_dim):
print( logger.warning(
f" ** Notice: {ckpt_path.parents[0].name}/{ckpt_path.name} was trained on a model with an incompatible token dimension: {self.text_encoder.get_input_embeddings().weight.data[0].shape[0]} vs {embedding_info.token_dim}." f"Notice: {ckpt_path.parents[0].name}/{ckpt_path.name} was trained on a model with an incompatible token dimension: {self.text_encoder.get_input_embeddings().weight.data[0].shape[0]} vs {embedding_info.token_dim}."
) )
continue continue
@@ -105,8 +106,8 @@ class TextualInversionManager(BaseTextualInversionManager):
if ckpt_path.name == "learned_embeds.bin" if ckpt_path.name == "learned_embeds.bin"
else f"<{ckpt_path.stem}>" else f"<{ckpt_path.stem}>"
) )
print( logger.info(
f">> {sourcefile}: Trigger token '{trigger_str}' is already claimed by '{self.trigger_to_sourcefile[trigger_str]}'. Trigger this concept with {replacement_trigger_str}" f"{sourcefile}: Trigger token '{trigger_str}' is already claimed by '{self.trigger_to_sourcefile[trigger_str]}'. Trigger this concept with {replacement_trigger_str}"
) )
trigger_str = replacement_trigger_str trigger_str = replacement_trigger_str
@@ -120,8 +121,8 @@ class TextualInversionManager(BaseTextualInversionManager):
self.trigger_to_sourcefile[trigger_str] = sourcefile self.trigger_to_sourcefile[trigger_str] = sourcefile
except ValueError as e: except ValueError as e:
print(f' | Ignoring incompatible embedding {embedding_info["name"]}') logger.debug(f'Ignoring incompatible embedding {embedding_info["name"]}')
print(f" | The error was {str(e)}") logger.debug(f"The error was {str(e)}")
def _add_textual_inversion( def _add_textual_inversion(
self, trigger_str, embedding, defer_injecting_tokens=False self, trigger_str, embedding, defer_injecting_tokens=False
@@ -133,8 +134,8 @@ class TextualInversionManager(BaseTextualInversionManager):
:return: The token id for the added embedding, either existing or newly-added. :return: The token id for the added embedding, either existing or newly-added.
""" """
if trigger_str in [ti.trigger_string for ti in self.textual_inversions]: if trigger_str in [ti.trigger_string for ti in self.textual_inversions]:
print( logger.warning(
f"** TextualInversionManager refusing to overwrite already-loaded token '{trigger_str}'" f"TextualInversionManager refusing to overwrite already-loaded token '{trigger_str}'"
) )
return return
if not self.full_precision: if not self.full_precision:
@@ -155,11 +156,11 @@ class TextualInversionManager(BaseTextualInversionManager):
except ValueError as e: except ValueError as e:
if str(e).startswith("Warning"): if str(e).startswith("Warning"):
print(f">> {str(e)}") logger.warning(f"{str(e)}")
else: else:
traceback.print_exc() traceback.print_exc()
print( logger.error(
f"** TextualInversionManager was unable to add a textual inversion with trigger string {trigger_str}." f"TextualInversionManager was unable to add a textual inversion with trigger string {trigger_str}."
) )
raise raise
@@ -219,16 +220,16 @@ class TextualInversionManager(BaseTextualInversionManager):
for ti in self.textual_inversions: for ti in self.textual_inversions:
if ti.trigger_token_id is None and ti.trigger_string in prompt_string: if ti.trigger_token_id is None and ti.trigger_string in prompt_string:
if ti.embedding_vector_length > 1: if ti.embedding_vector_length > 1:
print( logger.info(
f">> Preparing tokens for textual inversion {ti.trigger_string}..." f"Preparing tokens for textual inversion {ti.trigger_string}..."
) )
try: try:
self._inject_tokens_and_assign_embeddings(ti) self._inject_tokens_and_assign_embeddings(ti)
except ValueError as e: except ValueError as e:
print( logger.debug(
f" | Ignoring incompatible embedding trigger {ti.trigger_string}" f"Ignoring incompatible embedding trigger {ti.trigger_string}"
) )
print(f" | The error was {str(e)}") logger.debug(f"The error was {str(e)}")
continue continue
injected_token_ids.append(ti.trigger_token_id) injected_token_ids.append(ti.trigger_token_id)
injected_token_ids.extend(ti.pad_token_ids) injected_token_ids.extend(ti.pad_token_ids)
@@ -306,16 +307,16 @@ class TextualInversionManager(BaseTextualInversionManager):
if suffix in [".pt",".ckpt",".bin"]: if suffix in [".pt",".ckpt",".bin"]:
scan_result = scan_file_path(embedding_file) scan_result = scan_file_path(embedding_file)
if scan_result.infected_files > 0: if scan_result.infected_files > 0:
print( logger.critical(
f" ** Security Issues Found in Model: {scan_result.issues_count}" f"Security Issues Found in Model: {scan_result.issues_count}"
) )
print(" ** For your safety, InvokeAI will not load this embed.") logger.critical("For your safety, InvokeAI will not load this embed.")
return list() return list()
ckpt = torch.load(embedding_file,map_location="cpu") ckpt = torch.load(embedding_file,map_location="cpu")
else: else:
ckpt = safetensors.torch.load_file(embedding_file) ckpt = safetensors.torch.load_file(embedding_file)
except Exception as e: except Exception as e:
print(f" ** Notice: unrecognized embedding file format: {embedding_file}: {e}") logger.warning(f"Notice: unrecognized embedding file format: {embedding_file}: {e}")
return list() return list()
# try to figure out what kind of embedding file it is and parse accordingly # try to figure out what kind of embedding file it is and parse accordingly
@@ -334,7 +335,7 @@ class TextualInversionManager(BaseTextualInversionManager):
def _parse_embedding_v1(self, embedding_ckpt: dict, file_path: str)->List[EmbeddingInfo]: def _parse_embedding_v1(self, embedding_ckpt: dict, file_path: str)->List[EmbeddingInfo]:
basename = Path(file_path).stem basename = Path(file_path).stem
print(f' | Loading v1 embedding file: {basename}') logger.debug(f'Loading v1 embedding file: {basename}')
embeddings = list() embeddings = list()
token_counter = -1 token_counter = -1
@@ -342,7 +343,7 @@ class TextualInversionManager(BaseTextualInversionManager):
if token_counter < 0: if token_counter < 0:
trigger = embedding_ckpt["name"] trigger = embedding_ckpt["name"]
elif token_counter == 0: elif token_counter == 0:
trigger = f'<basename>' trigger = '<basename>'
else: else:
trigger = f'<{basename}-{int(token_counter:=token_counter)}>' trigger = f'<{basename}-{int(token_counter:=token_counter)}>'
token_counter += 1 token_counter += 1
@@ -365,7 +366,7 @@ class TextualInversionManager(BaseTextualInversionManager):
This handles embedding .pt file variant #2. This handles embedding .pt file variant #2.
""" """
basename = Path(file_path).stem basename = Path(file_path).stem
print(f' | Loading v2 embedding file: {basename}') logger.debug(f'Loading v2 embedding file: {basename}')
embeddings = list() embeddings = list()
if isinstance( if isinstance(
@@ -384,7 +385,7 @@ class TextualInversionManager(BaseTextualInversionManager):
) )
embeddings.append(embedding_info) embeddings.append(embedding_info)
else: else:
print(f" ** {basename}: Unrecognized embedding format") logger.warning(f"{basename}: Unrecognized embedding format")
return embeddings return embeddings
@@ -393,7 +394,7 @@ class TextualInversionManager(BaseTextualInversionManager):
Parse 'version 3' of the .pt textual inversion embedding files. Parse 'version 3' of the .pt textual inversion embedding files.
""" """
basename = Path(file_path).stem basename = Path(file_path).stem
print(f' | Loading v3 embedding file: {basename}') logger.debug(f'Loading v3 embedding file: {basename}')
embedding = embedding_ckpt['emb_params'] embedding = embedding_ckpt['emb_params']
embedding_info = EmbeddingInfo( embedding_info = EmbeddingInfo(
name = f'<{basename}>', name = f'<{basename}>',
@@ -411,11 +412,11 @@ class TextualInversionManager(BaseTextualInversionManager):
basename = Path(filepath).stem basename = Path(filepath).stem
short_path = Path(filepath).parents[0].name+'/'+Path(filepath).name short_path = Path(filepath).parents[0].name+'/'+Path(filepath).name
print(f' | Loading v4 embedding file: {short_path}') logger.debug(f'Loading v4 embedding file: {short_path}')
embeddings = list() embeddings = list()
if list(embedding_ckpt.keys()) == 0: if list(embedding_ckpt.keys()) == 0:
print(f" ** Invalid embeddings file: {short_path}") logger.warning(f"Invalid embeddings file: {short_path}")
else: else:
for token,embedding in embedding_ckpt.items(): for token,embedding in embedding_ckpt.items():
embedding_info = EmbeddingInfo( embedding_info = EmbeddingInfo(

View File

@@ -0,0 +1,109 @@
# Copyright (c) 2023 Lincoln D. Stein and The InvokeAI Development Team
"""invokeai.util.logging
Logging class for InvokeAI that produces console messages that follow
the conventions established in InvokeAI 1.X through 2.X.
One way to use it:
from invokeai.backend.util.logging import InvokeAILogger
logger = InvokeAILogger.getLogger(__name__)
logger.critical('this is critical')
logger.error('this is an error')
logger.warning('this is a warning')
logger.info('this is info')
logger.debug('this is debugging')
Console messages:
### this is critical
*** this is an error ***
** this is a warning
>> this is info
| this is debugging
Another way:
import invokeai.backend.util.logging as ialog
ialogger.debug('this is a debugging message')
"""
import logging
# module level functions
def debug(msg, *args, **kwargs):
InvokeAILogger.getLogger().debug(msg, *args, **kwargs)
def info(msg, *args, **kwargs):
InvokeAILogger.getLogger().info(msg, *args, **kwargs)
def warning(msg, *args, **kwargs):
InvokeAILogger.getLogger().warning(msg, *args, **kwargs)
def error(msg, *args, **kwargs):
InvokeAILogger.getLogger().error(msg, *args, **kwargs)
def critical(msg, *args, **kwargs):
InvokeAILogger.getLogger().critical(msg, *args, **kwargs)
def log(level, msg, *args, **kwargs):
InvokeAILogger.getLogger().log(level, msg, *args, **kwargs)
def disable(level=logging.CRITICAL):
InvokeAILogger.getLogger().disable(level)
def basicConfig(**kwargs):
InvokeAILogger.getLogger().basicConfig(**kwargs)
def getLogger(name: str=None)->logging.Logger:
return InvokeAILogger.getLogger(name)
class InvokeAILogFormatter(logging.Formatter):
'''
Repurposed from:
https://stackoverflow.com/questions/14844970/modifying-logging-message-format-based-on-message-logging-level-in-python3
'''
crit_fmt = "### %(msg)s"
err_fmt = "*** %(msg)s"
warn_fmt = "** %(msg)s"
info_fmt = ">> %(msg)s"
dbg_fmt = " | %(msg)s"
def __init__(self):
super().__init__(fmt="%(levelno)d: %(msg)s", datefmt=None, style='%')
def format(self, record):
# Remember the format used when the logging module
# was installed (in the event that this formatter is
# used with the vanilla logging module.
format_orig = self._style._fmt
if record.levelno == logging.DEBUG:
self._style._fmt = InvokeAILogFormatter.dbg_fmt
if record.levelno == logging.INFO:
self._style._fmt = InvokeAILogFormatter.info_fmt
if record.levelno == logging.WARNING:
self._style._fmt = InvokeAILogFormatter.warn_fmt
if record.levelno == logging.ERROR:
self._style._fmt = InvokeAILogFormatter.err_fmt
if record.levelno == logging.CRITICAL:
self._style._fmt = InvokeAILogFormatter.crit_fmt
# parent class does the work
result = super().format(record)
self._style._fmt = format_orig
return result
class InvokeAILogger(object):
loggers = dict()
@classmethod
def getLogger(self, name:str='invokeai')->logging.Logger:
if name not in self.loggers:
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
fmt = InvokeAILogFormatter()
ch.setFormatter(fmt)
logger.addHandler(ch)
self.loggers[name] = logger
return self.loggers[name]

View File

@@ -18,6 +18,7 @@ import torch
from PIL import Image, ImageDraw, ImageFont from PIL import Image, ImageDraw, ImageFont
from tqdm import tqdm from tqdm import tqdm
import invokeai.backend.util.logging as logger
from .devices import torch_dtype from .devices import torch_dtype
@@ -38,7 +39,7 @@ def log_txt_as_img(wh, xc, size=10):
try: try:
draw.text((0, 0), lines, fill="black", font=font) draw.text((0, 0), lines, fill="black", font=font)
except UnicodeEncodeError: except UnicodeEncodeError:
print("Cant encode string for logging. Skipping.") logger.warning("Cant encode string for logging. Skipping.")
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt) txts.append(txt)
@@ -80,8 +81,8 @@ def mean_flat(tensor):
def count_params(model, verbose=False): def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters()) total_params = sum(p.numel() for p in model.parameters())
if verbose: if verbose:
print( logger.debug(
f" | {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params." f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params."
) )
return total_params return total_params
@@ -132,8 +133,8 @@ def parallel_data_prefetch(
raise ValueError("list expected but function got ndarray.") raise ValueError("list expected but function got ndarray.")
elif isinstance(data, abc.Iterable): elif isinstance(data, abc.Iterable):
if isinstance(data, dict): if isinstance(data, dict):
print( logger.warning(
'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.' '"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
) )
data = list(data.values()) data = list(data.values())
if target_data_type == "ndarray": if target_data_type == "ndarray":
@@ -175,7 +176,7 @@ def parallel_data_prefetch(
processes += [p] processes += [p]
# start processes # start processes
print("Start prefetching...") logger.info("Start prefetching...")
import time import time
start = time.time() start = time.time()
@@ -194,7 +195,7 @@ def parallel_data_prefetch(
gather_res[res[0]] = res[1] gather_res[res[0]] = res[1]
except Exception as e: except Exception as e:
print("Exception: ", e) logger.error("Exception: ", e)
for p in processes: for p in processes:
p.terminate() p.terminate()
@@ -202,7 +203,7 @@ def parallel_data_prefetch(
finally: finally:
for p in processes: for p in processes:
p.join() p.join()
print(f"Prefetching complete. [{time.time() - start} sec.]") logger.info(f"Prefetching complete. [{time.time() - start} sec.]")
if target_data_type == "ndarray": if target_data_type == "ndarray":
if not isinstance(gather_res[0], np.ndarray): if not isinstance(gather_res[0], np.ndarray):
@@ -318,23 +319,23 @@ def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path
resp = requests.get(url, headers=header, stream=True) # new request with range resp = requests.get(url, headers=header, stream=True) # new request with range
if exist_size > content_length: if exist_size > content_length:
print("* corrupt existing file found. re-downloading") logger.warning("corrupt existing file found. re-downloading")
os.remove(dest) os.remove(dest)
exist_size = 0 exist_size = 0
if resp.status_code == 416 or exist_size == content_length: if resp.status_code == 416 or exist_size == content_length:
print(f"* {dest}: complete file found. Skipping.") logger.warning(f"{dest}: complete file found. Skipping.")
return dest return dest
elif resp.status_code == 206 or exist_size > 0: elif resp.status_code == 206 or exist_size > 0:
print(f"* {dest}: partial file found. Resuming...") logger.warning(f"{dest}: partial file found. Resuming...")
elif resp.status_code != 200: elif resp.status_code != 200:
print(f"** An error occurred during downloading {dest}: {resp.reason}") logger.error(f"An error occurred during downloading {dest}: {resp.reason}")
else: else:
print(f"* {dest}: Downloading...") logger.error(f"{dest}: Downloading...")
try: try:
if content_length < 2000: if content_length < 2000:
print(f"*** ERROR DOWNLOADING {url}: {resp.text}") logger.error(f"ERROR DOWNLOADING {url}: {resp.text}")
return None return None
with open(dest, open_mode) as file, tqdm( with open(dest, open_mode) as file, tqdm(
@@ -349,7 +350,7 @@ def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path
size = file.write(data) size = file.write(data)
bar.update(size) bar.update(size)
except Exception as e: except Exception as e:
print(f"An error occurred while downloading {dest}: {str(e)}") logger.error(f"An error occurred while downloading {dest}: {str(e)}")
return None return None
return dest return dest

View File

@@ -19,6 +19,7 @@ from PIL import Image
from PIL.Image import Image as ImageType from PIL.Image import Image as ImageType
from werkzeug.utils import secure_filename from werkzeug.utils import secure_filename
import invokeai.backend.util.logging as logger
import invokeai.frontend.web.dist as frontend import invokeai.frontend.web.dist as frontend
from .. import Generate from .. import Generate
@@ -77,7 +78,6 @@ class InvokeAIWebServer:
mimetypes.add_type("application/javascript", ".js") mimetypes.add_type("application/javascript", ".js")
mimetypes.add_type("text/css", ".css") mimetypes.add_type("text/css", ".css")
# Socket IO # Socket IO
logger = True if args.web_verbose else False
engineio_logger = True if args.web_verbose else False engineio_logger = True if args.web_verbose else False
max_http_buffer_size = 10000000 max_http_buffer_size = 10000000
@@ -213,7 +213,7 @@ class InvokeAIWebServer:
self.load_socketio_listeners(self.socketio) self.load_socketio_listeners(self.socketio)
if args.gui: if args.gui:
print(">> Launching Invoke AI GUI") logger.info("Launching Invoke AI GUI")
try: try:
from flaskwebgui import FlaskUI from flaskwebgui import FlaskUI
@@ -231,17 +231,17 @@ class InvokeAIWebServer:
sys.exit(0) sys.exit(0)
else: else:
useSSL = args.certfile or args.keyfile useSSL = args.certfile or args.keyfile
print(">> Started Invoke AI Web Server") logger.info("Started Invoke AI Web Server")
if self.host == "0.0.0.0": if self.host == "0.0.0.0":
print( logger.info(
f"Point your browser at http{'s' if useSSL else ''}://localhost:{self.port} or use the host's DNS name or IP address." f"Point your browser at http{'s' if useSSL else ''}://localhost:{self.port} or use the host's DNS name or IP address."
) )
else: else:
print( logger.info(
">> Default host address now 127.0.0.1 (localhost). Use --host 0.0.0.0 to bind any address." "Default host address now 127.0.0.1 (localhost). Use --host 0.0.0.0 to bind any address."
) )
print( logger.info(
f">> Point your browser at http{'s' if useSSL else ''}://{self.host}:{self.port}" f"Point your browser at http{'s' if useSSL else ''}://{self.host}:{self.port}"
) )
if not useSSL: if not useSSL:
self.socketio.run(app=self.app, host=self.host, port=self.port) self.socketio.run(app=self.app, host=self.host, port=self.port)
@@ -273,7 +273,7 @@ class InvokeAIWebServer:
# path for thumbnail images # path for thumbnail images
self.thumbnail_image_path = os.path.join(self.result_path, "thumbnails/") self.thumbnail_image_path = os.path.join(self.result_path, "thumbnails/")
# txt log # txt log
self.log_path = os.path.join(self.result_path, "invoke_log.txt") self.log_path = os.path.join(self.result_path, "invoke_logger.txt")
# make all output paths # make all output paths
[ [
os.makedirs(path, exist_ok=True) os.makedirs(path, exist_ok=True)
@@ -290,7 +290,7 @@ class InvokeAIWebServer:
def load_socketio_listeners(self, socketio): def load_socketio_listeners(self, socketio):
@socketio.on("requestSystemConfig") @socketio.on("requestSystemConfig")
def handle_request_capabilities(): def handle_request_capabilities():
print(">> System config requested") logger.info("System config requested")
config = self.get_system_config() config = self.get_system_config()
config["model_list"] = self.generate.model_manager.list_models() config["model_list"] = self.generate.model_manager.list_models()
config["infill_methods"] = infill_methods() config["infill_methods"] = infill_methods()
@@ -330,7 +330,7 @@ class InvokeAIWebServer:
if model_name in current_model_list: if model_name in current_model_list:
update = True update = True
print(f">> Adding New Model: {model_name}") logger.info(f"Adding New Model: {model_name}")
self.generate.model_manager.add_model( self.generate.model_manager.add_model(
model_name=model_name, model_name=model_name,
@@ -348,14 +348,14 @@ class InvokeAIWebServer:
"update": update, "update": update,
}, },
) )
print(f">> New Model Added: {model_name}") logger.info(f"New Model Added: {model_name}")
except Exception as e: except Exception as e:
self.handle_exceptions(e) self.handle_exceptions(e)
@socketio.on("deleteModel") @socketio.on("deleteModel")
def handle_delete_model(model_name: str): def handle_delete_model(model_name: str):
try: try:
print(f">> Deleting Model: {model_name}") logger.info(f"Deleting Model: {model_name}")
self.generate.model_manager.del_model(model_name) self.generate.model_manager.del_model(model_name)
self.generate.model_manager.commit(opt.conf) self.generate.model_manager.commit(opt.conf)
updated_model_list = self.generate.model_manager.list_models() updated_model_list = self.generate.model_manager.list_models()
@@ -366,14 +366,14 @@ class InvokeAIWebServer:
"model_list": updated_model_list, "model_list": updated_model_list,
}, },
) )
print(f">> Model Deleted: {model_name}") logger.info(f"Model Deleted: {model_name}")
except Exception as e: except Exception as e:
self.handle_exceptions(e) self.handle_exceptions(e)
@socketio.on("requestModelChange") @socketio.on("requestModelChange")
def handle_set_model(model_name: str): def handle_set_model(model_name: str):
try: try:
print(f">> Model change requested: {model_name}") logger.info(f"Model change requested: {model_name}")
model = self.generate.set_model(model_name) model = self.generate.set_model(model_name)
model_list = self.generate.model_manager.list_models() model_list = self.generate.model_manager.list_models()
if model is None: if model is None:
@@ -454,7 +454,7 @@ class InvokeAIWebServer:
"update": True, "update": True,
}, },
) )
print(f">> Model Converted: {model_name}") logger.info(f"Model Converted: {model_name}")
except Exception as e: except Exception as e:
self.handle_exceptions(e) self.handle_exceptions(e)
@@ -490,7 +490,7 @@ class InvokeAIWebServer:
if vae := self.generate.model_manager.config[models_to_merge[0]].get( if vae := self.generate.model_manager.config[models_to_merge[0]].get(
"vae", None "vae", None
): ):
print(f">> Using configured VAE assigned to {models_to_merge[0]}") logger.info(f"Using configured VAE assigned to {models_to_merge[0]}")
merged_model_config.update(vae=vae) merged_model_config.update(vae=vae)
self.generate.model_manager.import_diffuser_model( self.generate.model_manager.import_diffuser_model(
@@ -507,8 +507,8 @@ class InvokeAIWebServer:
"update": True, "update": True,
}, },
) )
print(f">> Models Merged: {models_to_merge}") logger.info(f"Models Merged: {models_to_merge}")
print(f">> New Model Added: {model_merge_info['merged_model_name']}") logger.info(f"New Model Added: {model_merge_info['merged_model_name']}")
except Exception as e: except Exception as e:
self.handle_exceptions(e) self.handle_exceptions(e)
@@ -698,7 +698,7 @@ class InvokeAIWebServer:
} }
) )
except Exception as e: except Exception as e:
print(f">> Unable to load {path}") logger.info(f"Unable to load {path}")
socketio.emit( socketio.emit(
"error", {"message": f"Unable to load {path}: {str(e)}"} "error", {"message": f"Unable to load {path}: {str(e)}"}
) )
@@ -735,9 +735,9 @@ class InvokeAIWebServer:
printable_parameters["init_mask"][:64] + "..." printable_parameters["init_mask"][:64] + "..."
) )
print(f"\n>> Image Generation Parameters:\n\n{printable_parameters}\n") logger.info(f"Image Generation Parameters:\n\n{printable_parameters}\n")
print(f">> ESRGAN Parameters: {esrgan_parameters}") logger.info(f"ESRGAN Parameters: {esrgan_parameters}")
print(f">> Facetool Parameters: {facetool_parameters}") logger.info(f"Facetool Parameters: {facetool_parameters}")
self.generate_images( self.generate_images(
generation_parameters, generation_parameters,
@@ -750,8 +750,8 @@ class InvokeAIWebServer:
@socketio.on("runPostprocessing") @socketio.on("runPostprocessing")
def handle_run_postprocessing(original_image, postprocessing_parameters): def handle_run_postprocessing(original_image, postprocessing_parameters):
try: try:
print( logger.info(
f'>> Postprocessing requested for "{original_image["url"]}": {postprocessing_parameters}' f'Postprocessing requested for "{original_image["url"]}": {postprocessing_parameters}'
) )
progress = Progress() progress = Progress()
@@ -861,14 +861,14 @@ class InvokeAIWebServer:
@socketio.on("cancel") @socketio.on("cancel")
def handle_cancel(): def handle_cancel():
print(">> Cancel processing requested") logger.info("Cancel processing requested")
self.canceled.set() self.canceled.set()
# TODO: I think this needs a safety mechanism. # TODO: I think this needs a safety mechanism.
@socketio.on("deleteImage") @socketio.on("deleteImage")
def handle_delete_image(url, thumbnail, uuid, category): def handle_delete_image(url, thumbnail, uuid, category):
try: try:
print(f'>> Delete requested "{url}"') logger.info(f'Delete requested "{url}"')
from send2trash import send2trash from send2trash import send2trash
path = self.get_image_path_from_url(url) path = self.get_image_path_from_url(url)
@@ -1263,7 +1263,7 @@ class InvokeAIWebServer:
image, os.path.basename(path), self.thumbnail_image_path image, os.path.basename(path), self.thumbnail_image_path
) )
print(f'\n\n>> Image generated: "{path}"\n') logger.info(f'Image generated: "{path}"\n')
self.write_log_message(f'[Generated] "{path}": {command}') self.write_log_message(f'[Generated] "{path}": {command}')
if progress.total_iterations > progress.current_iteration: if progress.total_iterations > progress.current_iteration:
@@ -1329,7 +1329,7 @@ class InvokeAIWebServer:
except Exception as e: except Exception as e:
# Clear the CUDA cache on an exception # Clear the CUDA cache on an exception
self.empty_cuda_cache() self.empty_cuda_cache()
print(e) logger.error(e)
self.handle_exceptions(e) self.handle_exceptions(e)
def empty_cuda_cache(self): def empty_cuda_cache(self):

View File

@@ -16,6 +16,7 @@ if sys.platform == "darwin":
import pyparsing # type: ignore import pyparsing # type: ignore
import invokeai.version as invokeai import invokeai.version as invokeai
import invokeai.backend.util.logging as logger
from ...backend import Generate, ModelManager from ...backend import Generate, ModelManager
from ...backend.args import Args, dream_cmd_from_png, metadata_dumps, metadata_from_png from ...backend.args import Args, dream_cmd_from_png, metadata_dumps, metadata_from_png
@@ -69,7 +70,7 @@ def main():
# run any post-install patches needed # run any post-install patches needed
run_patches() run_patches()
print(f">> Internet connectivity is {Globals.internet_available}") logger.info(f"Internet connectivity is {Globals.internet_available}")
if not args.conf: if not args.conf:
config_file = os.path.join(Globals.root, "configs", "models.yaml") config_file = os.path.join(Globals.root, "configs", "models.yaml")
@@ -78,8 +79,8 @@ def main():
opt, FileNotFoundError(f"The file {config_file} could not be found.") opt, FileNotFoundError(f"The file {config_file} could not be found.")
) )
print(f">> {invokeai.__app_name__}, version {invokeai.__version__}") logger.info(f"{invokeai.__app_name__}, version {invokeai.__version__}")
print(f'>> InvokeAI runtime directory is "{Globals.root}"') logger.info(f'InvokeAI runtime directory is "{Globals.root}"')
# loading here to avoid long delays on startup # loading here to avoid long delays on startup
# these two lines prevent a horrible warning message from appearing # these two lines prevent a horrible warning message from appearing
@@ -121,7 +122,7 @@ def main():
else: else:
raise FileNotFoundError(f"{opt.infile} not found.") raise FileNotFoundError(f"{opt.infile} not found.")
except (FileNotFoundError, IOError) as e: except (FileNotFoundError, IOError) as e:
print(f"{e}. Aborting.") logger.critical('Aborted',exc_info=True)
sys.exit(-1) sys.exit(-1)
# creating a Generate object: # creating a Generate object:
@@ -142,12 +143,12 @@ def main():
) )
except (FileNotFoundError, TypeError, AssertionError) as e: except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(opt, e) report_model_error(opt, e)
except (IOError, KeyError) as e: except (IOError, KeyError):
print(f"{e}. Aborting.") logger.critical("Aborted",exc_info=True)
sys.exit(-1) sys.exit(-1)
if opt.seamless: if opt.seamless:
print(">> changed to seamless tiling mode") logger.info("Changed to seamless tiling mode")
# preload the model # preload the model
try: try:
@@ -180,9 +181,7 @@ def main():
f'\nGoodbye!\nYou can start InvokeAI again by running the "invoke.bat" (or "invoke.sh") script from {Globals.root}' f'\nGoodbye!\nYou can start InvokeAI again by running the "invoke.bat" (or "invoke.sh") script from {Globals.root}'
) )
except Exception: except Exception:
print(">> An error occurred:") logger.error("An error occurred",exc_info=True)
traceback.print_exc()
# TODO: main_loop() has gotten busy. Needs to be refactored. # TODO: main_loop() has gotten busy. Needs to be refactored.
def main_loop(gen, opt): def main_loop(gen, opt):
@@ -248,7 +247,7 @@ def main_loop(gen, opt):
if not opt.prompt: if not opt.prompt:
oldargs = metadata_from_png(opt.init_img) oldargs = metadata_from_png(opt.init_img)
opt.prompt = oldargs.prompt opt.prompt = oldargs.prompt
print(f'>> Retrieved old prompt "{opt.prompt}" from {opt.init_img}') logger.info(f'Retrieved old prompt "{opt.prompt}" from {opt.init_img}')
except (OSError, AttributeError, KeyError): except (OSError, AttributeError, KeyError):
pass pass
@@ -265,9 +264,9 @@ def main_loop(gen, opt):
if opt.init_img is not None and re.match("^-\\d+$", opt.init_img): if opt.init_img is not None and re.match("^-\\d+$", opt.init_img):
try: try:
opt.init_img = last_results[int(opt.init_img)][0] opt.init_img = last_results[int(opt.init_img)][0]
print(f">> Reusing previous image {opt.init_img}") logger.info(f"Reusing previous image {opt.init_img}")
except IndexError: except IndexError:
print(f">> No previous initial image at position {opt.init_img} found") logger.info(f"No previous initial image at position {opt.init_img} found")
opt.init_img = None opt.init_img = None
continue continue
@@ -288,9 +287,9 @@ def main_loop(gen, opt):
if opt.seed is not None and opt.seed < 0 and operation != "postprocess": if opt.seed is not None and opt.seed < 0 and operation != "postprocess":
try: try:
opt.seed = last_results[opt.seed][1] opt.seed = last_results[opt.seed][1]
print(f">> Reusing previous seed {opt.seed}") logger.info(f"Reusing previous seed {opt.seed}")
except IndexError: except IndexError:
print(f">> No previous seed at position {opt.seed} found") logger.info(f"No previous seed at position {opt.seed} found")
opt.seed = None opt.seed = None
continue continue
@@ -309,7 +308,7 @@ def main_loop(gen, opt):
subdir = subdir[: (path_max - 39 - len(os.path.abspath(opt.outdir)))] subdir = subdir[: (path_max - 39 - len(os.path.abspath(opt.outdir)))]
current_outdir = os.path.join(opt.outdir, subdir) current_outdir = os.path.join(opt.outdir, subdir)
print('Writing files to directory: "' + current_outdir + '"') logger.info('Writing files to directory: "' + current_outdir + '"')
# make sure the output directory exists # make sure the output directory exists
if not os.path.exists(current_outdir): if not os.path.exists(current_outdir):
@@ -438,15 +437,14 @@ def main_loop(gen, opt):
catch_interrupts=catch_ctrl_c, catch_interrupts=catch_ctrl_c,
**vars(opt), **vars(opt),
) )
except (PromptParser.ParsingException, pyparsing.ParseException) as e: except (PromptParser.ParsingException, pyparsing.ParseException):
print("** An error occurred while processing your prompt **") logger.error("An error occurred while processing your prompt",exc_info=True)
print(f"** {str(e)} **")
elif operation == "postprocess": elif operation == "postprocess":
print(f">> fixing {opt.prompt}") logger.info(f"fixing {opt.prompt}")
opt.last_operation = do_postprocess(gen, opt, image_writer) opt.last_operation = do_postprocess(gen, opt, image_writer)
elif operation == "mask": elif operation == "mask":
print(f">> generating masks from {opt.prompt}") logger.info(f"generating masks from {opt.prompt}")
do_textmask(gen, opt, image_writer) do_textmask(gen, opt, image_writer)
if opt.grid and len(grid_images) > 0: if opt.grid and len(grid_images) > 0:
@@ -469,12 +467,12 @@ def main_loop(gen, opt):
) )
results = [[path, formatted_dream_prompt]] results = [[path, formatted_dream_prompt]]
except AssertionError as e: except AssertionError:
print(e) logger.error(e)
continue continue
except OSError as e: except OSError as e:
print(e) logger.error(e)
continue continue
print("Outputs:") print("Outputs:")
@@ -513,7 +511,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
gen.set_model(model_name) gen.set_model(model_name)
add_embedding_terms(gen, completer) add_embedding_terms(gen, completer)
except KeyError as e: except KeyError as e:
print(str(e)) logger.error(e)
except Exception as e: except Exception as e:
report_model_error(opt, e) report_model_error(opt, e)
completer.add_history(command) completer.add_history(command)
@@ -527,8 +525,8 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith("!import"): elif command.startswith("!import"):
path = shlex.split(command) path = shlex.split(command)
if len(path) < 2: if len(path) < 2:
print( logger.warning(
"** please provide (1) a URL to a .ckpt file to import; (2) a local path to a .ckpt file; or (3) a diffusers repository id in the form stabilityai/stable-diffusion-2-1" "please provide (1) a URL to a .ckpt file to import; (2) a local path to a .ckpt file; or (3) a diffusers repository id in the form stabilityai/stable-diffusion-2-1"
) )
else: else:
try: try:
@@ -541,7 +539,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith(("!convert", "!optimize")): elif command.startswith(("!convert", "!optimize")):
path = shlex.split(command) path = shlex.split(command)
if len(path) < 2: if len(path) < 2:
print("** please provide the path to a .ckpt or .safetensors model") logger.warning("please provide the path to a .ckpt or .safetensors model")
else: else:
try: try:
convert_model(path[1], gen, opt, completer) convert_model(path[1], gen, opt, completer)
@@ -553,7 +551,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith("!edit"): elif command.startswith("!edit"):
path = shlex.split(command) path = shlex.split(command)
if len(path) < 2: if len(path) < 2:
print("** please provide the name of a model") logger.warning("please provide the name of a model")
else: else:
edit_model(path[1], gen, opt, completer) edit_model(path[1], gen, opt, completer)
completer.add_history(command) completer.add_history(command)
@@ -562,7 +560,7 @@ def do_command(command: str, gen, opt: Args, completer) -> tuple:
elif command.startswith("!del"): elif command.startswith("!del"):
path = shlex.split(command) path = shlex.split(command)
if len(path) < 2: if len(path) < 2:
print("** please provide the name of a model") logger.warning("please provide the name of a model")
else: else:
del_config(path[1], gen, opt, completer) del_config(path[1], gen, opt, completer)
completer.add_history(command) completer.add_history(command)
@@ -642,8 +640,8 @@ def import_model(model_path: str, gen, opt, completer):
try: try:
default_name = url_attachment_name(model_path) default_name = url_attachment_name(model_path)
default_name = Path(default_name).stem default_name = Path(default_name).stem
except Exception as e: except Exception:
print(f"** URL: {str(e)}") logger.warning(f"A problem occurred while assigning the name of the downloaded model",exc_info=True)
model_name, model_desc = _get_model_name_and_desc( model_name, model_desc = _get_model_name_and_desc(
gen.model_manager, gen.model_manager,
completer, completer,
@@ -664,11 +662,11 @@ def import_model(model_path: str, gen, opt, completer):
model_config_file=config_file, model_config_file=config_file,
) )
if not imported_name: if not imported_name:
print("** Aborting import.") logger.error("Aborting import.")
return return
if not _verify_load(imported_name, gen): if not _verify_load(imported_name, gen):
print("** model failed to load. Discarding configuration entry") logger.error("model failed to load. Discarding configuration entry")
gen.model_manager.del_model(imported_name) gen.model_manager.del_model(imported_name)
return return
if click.confirm("Make this the default model?", default=False): if click.confirm("Make this the default model?", default=False):
@@ -676,7 +674,7 @@ def import_model(model_path: str, gen, opt, completer):
gen.model_manager.commit(opt.conf) gen.model_manager.commit(opt.conf)
completer.update_models(gen.model_manager.list_models()) completer.update_models(gen.model_manager.list_models())
print(f">> {imported_name} successfully installed") logger.info(f"{imported_name} successfully installed")
def _pick_configuration_file(completer)->Path: def _pick_configuration_file(completer)->Path:
print( print(
@@ -720,21 +718,21 @@ Please select the type of this model:
return choice return choice
def _verify_load(model_name: str, gen) -> bool: def _verify_load(model_name: str, gen) -> bool:
print(">> Verifying that new model loads...") logger.info("Verifying that new model loads...")
current_model = gen.model_name current_model = gen.model_name
try: try:
if not gen.set_model(model_name): if not gen.set_model(model_name):
return return
except Exception as e: except Exception as e:
print(f"** model failed to load: {str(e)}") logger.warning(f"model failed to load: {str(e)}")
print( logger.warning(
"** note that importing 2.X checkpoints is not supported. Please use !convert_model instead." "** note that importing 2.X checkpoints is not supported. Please use !convert_model instead."
) )
return False return False
if click.confirm("Keep model loaded?", default=True): if click.confirm("Keep model loaded?", default=True):
gen.set_model(model_name) gen.set_model(model_name)
else: else:
print(">> Restoring previous model") logger.info("Restoring previous model")
gen.set_model(current_model) gen.set_model(current_model)
return True return True
@@ -757,7 +755,7 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
ckpt_path = None ckpt_path = None
original_config_file = None original_config_file = None
if model_name_or_path == gen.model_name: if model_name_or_path == gen.model_name:
print("** Can't convert the active model. !switch to another model first. **") logger.warning("Can't convert the active model. !switch to another model first. **")
return return
elif model_info := manager.model_info(model_name_or_path): elif model_info := manager.model_info(model_name_or_path):
if "weights" in model_info: if "weights" in model_info:
@@ -767,7 +765,7 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
model_description = model_info["description"] model_description = model_info["description"]
vae_path = model_info.get("vae") vae_path = model_info.get("vae")
else: else:
print(f"** {model_name_or_path} is not a legacy .ckpt weights file") logger.warning(f"{model_name_or_path} is not a legacy .ckpt weights file")
return return
model_name = manager.convert_and_import( model_name = manager.convert_and_import(
ckpt_path, ckpt_path,
@@ -788,16 +786,16 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
manager.commit(opt.conf) manager.commit(opt.conf)
if click.confirm(f"Delete the original .ckpt file at {ckpt_path}?", default=False): if click.confirm(f"Delete the original .ckpt file at {ckpt_path}?", default=False):
ckpt_path.unlink(missing_ok=True) ckpt_path.unlink(missing_ok=True)
print(f"{ckpt_path} deleted") logger.warning(f"{ckpt_path} deleted")
def del_config(model_name: str, gen, opt, completer): def del_config(model_name: str, gen, opt, completer):
current_model = gen.model_name current_model = gen.model_name
if model_name == current_model: if model_name == current_model:
print("** Can't delete active model. !switch to another model first. **") logger.warning("Can't delete active model. !switch to another model first. **")
return return
if model_name not in gen.model_manager.config: if model_name not in gen.model_manager.config:
print(f"** Unknown model {model_name}") logger.warning(f"Unknown model {model_name}")
return return
if not click.confirm( if not click.confirm(
@@ -810,17 +808,17 @@ def del_config(model_name: str, gen, opt, completer):
) )
gen.model_manager.del_model(model_name, delete_files=delete_completely) gen.model_manager.del_model(model_name, delete_files=delete_completely)
gen.model_manager.commit(opt.conf) gen.model_manager.commit(opt.conf)
print(f"** {model_name} deleted") logger.warning(f"{model_name} deleted")
completer.update_models(gen.model_manager.list_models()) completer.update_models(gen.model_manager.list_models())
def edit_model(model_name: str, gen, opt, completer): def edit_model(model_name: str, gen, opt, completer):
manager = gen.model_manager manager = gen.model_manager
if not (info := manager.model_info(model_name)): if not (info := manager.model_info(model_name)):
print(f"** Unknown model {model_name}") logger.warning(f"** Unknown model {model_name}")
return return
print()
print(f"\n>> Editing model {model_name} from configuration file {opt.conf}") logger.info(f"Editing model {model_name} from configuration file {opt.conf}")
new_name = _get_model_name(manager.list_models(), completer, model_name) new_name = _get_model_name(manager.list_models(), completer, model_name)
for attribute in info.keys(): for attribute in info.keys():
@@ -858,7 +856,7 @@ def edit_model(model_name: str, gen, opt, completer):
manager.set_default_model(new_name) manager.set_default_model(new_name)
manager.commit(opt.conf) manager.commit(opt.conf)
completer.update_models(manager.list_models()) completer.update_models(manager.list_models())
print(">> Model successfully updated") logger.info("Model successfully updated")
def _get_model_name(existing_names, completer, default_name: str = "") -> str: def _get_model_name(existing_names, completer, default_name: str = "") -> str:
@@ -869,11 +867,11 @@ def _get_model_name(existing_names, completer, default_name: str = "") -> str:
if len(model_name) == 0: if len(model_name) == 0:
model_name = default_name model_name = default_name
if not re.match("^[\w._+:/-]+$", model_name): if not re.match("^[\w._+:/-]+$", model_name):
print( logger.warning(
'** model name must contain only words, digits and the characters "._+:/-" **' 'model name must contain only words, digits and the characters "._+:/-" **'
) )
elif model_name != default_name and model_name in existing_names: elif model_name != default_name and model_name in existing_names:
print(f"** the name {model_name} is already in use. Pick another.") logger.warning(f"the name {model_name} is already in use. Pick another.")
else: else:
done = True done = True
return model_name return model_name
@@ -940,11 +938,10 @@ def do_postprocess(gen, opt, callback):
opt=opt, opt=opt,
) )
except OSError: except OSError:
print(traceback.format_exc(), file=sys.stderr) logger.error(f"{file_path}: file could not be read",exc_info=True)
print(f"** {file_path}: file could not be read")
return return
except (KeyError, AttributeError): except (KeyError, AttributeError):
print(traceback.format_exc(), file=sys.stderr) logger.error(f"an error occurred while applying the {tool} postprocessor",exc_info=True)
return return
return opt.last_operation return opt.last_operation
@@ -999,13 +996,13 @@ def prepare_image_metadata(
try: try:
filename = opt.fnformat.format(**wildcards) filename = opt.fnformat.format(**wildcards)
except KeyError as e: except KeyError as e:
print( logger.error(
f"** The filename format contains an unknown key '{e.args[0]}'. Will use {{prefix}}.{{seed}}.png' instead" f"The filename format contains an unknown key '{e.args[0]}'. Will use {{prefix}}.{{seed}}.png' instead"
) )
filename = f"{prefix}.{seed}.png" filename = f"{prefix}.{seed}.png"
except IndexError: except IndexError:
print( logger.error(
"** The filename format is broken or complete. Will use '{prefix}.{seed}.png' instead" "The filename format is broken or complete. Will use '{prefix}.{seed}.png' instead"
) )
filename = f"{prefix}.{seed}.png" filename = f"{prefix}.{seed}.png"
@@ -1094,14 +1091,14 @@ def split_variations(variations_string) -> list:
for part in variations_string.split(","): for part in variations_string.split(","):
seed_and_weight = part.split(":") seed_and_weight = part.split(":")
if len(seed_and_weight) != 2: if len(seed_and_weight) != 2:
print(f'** Could not parse with_variation part "{part}"') logger.warning(f'Could not parse with_variation part "{part}"')
broken = True broken = True
break break
try: try:
seed = int(seed_and_weight[0]) seed = int(seed_and_weight[0])
weight = float(seed_and_weight[1]) weight = float(seed_and_weight[1])
except ValueError: except ValueError:
print(f'** Could not parse with_variation part "{part}"') logger.warning(f'Could not parse with_variation part "{part}"')
broken = True broken = True
break break
parts.append([seed, weight]) parts.append([seed, weight])
@@ -1125,23 +1122,23 @@ def load_face_restoration(opt):
opt.gfpgan_model_path opt.gfpgan_model_path
) )
else: else:
print(">> Face restoration disabled") logger.info("Face restoration disabled")
if opt.esrgan: if opt.esrgan:
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile) esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
else: else:
print(">> Upscaling disabled") logger.info("Upscaling disabled")
else: else:
print(">> Face restoration and upscaling disabled") logger.info("Face restoration and upscaling disabled")
except (ModuleNotFoundError, ImportError): except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
print(">> You may need to install the ESRGAN and/or GFPGAN modules") logger.info("You may need to install the ESRGAN and/or GFPGAN modules")
return gfpgan, codeformer, esrgan return gfpgan, codeformer, esrgan
def make_step_callback(gen, opt, prefix): def make_step_callback(gen, opt, prefix):
destination = os.path.join(opt.outdir, "intermediates", prefix) destination = os.path.join(opt.outdir, "intermediates", prefix)
os.makedirs(destination, exist_ok=True) os.makedirs(destination, exist_ok=True)
print(f">> Intermediate images will be written into {destination}") logger.info(f"Intermediate images will be written into {destination}")
def callback(state: PipelineIntermediateState): def callback(state: PipelineIntermediateState):
latents = state.latents latents = state.latents
@@ -1183,21 +1180,20 @@ def retrieve_dream_command(opt, command, completer):
try: try:
cmd = dream_cmd_from_png(path) cmd = dream_cmd_from_png(path)
except OSError: except OSError:
print(f"## {tokens[0]}: file could not be read") logger.error(f"{tokens[0]}: file could not be read")
except (KeyError, AttributeError, IndexError): except (KeyError, AttributeError, IndexError):
print(f"## {tokens[0]}: file has no metadata") logger.error(f"{tokens[0]}: file has no metadata")
except: except:
print(f"## {tokens[0]}: file could not be processed") logger.error(f"{tokens[0]}: file could not be processed")
if len(cmd) > 0: if len(cmd) > 0:
completer.set_line(cmd) completer.set_line(cmd)
def write_commands(opt, file_path: str, outfilepath: str): def write_commands(opt, file_path: str, outfilepath: str):
dir, basename = os.path.split(file_path) dir, basename = os.path.split(file_path)
try: try:
paths = sorted(list(Path(dir).glob(basename))) paths = sorted(list(Path(dir).glob(basename)))
except ValueError: except ValueError:
print(f'## "{basename}": unacceptable pattern') logger.error(f'"{basename}": unacceptable pattern')
return return
commands = [] commands = []
@@ -1206,9 +1202,9 @@ def write_commands(opt, file_path: str, outfilepath: str):
try: try:
cmd = dream_cmd_from_png(path) cmd = dream_cmd_from_png(path)
except (KeyError, AttributeError, IndexError): except (KeyError, AttributeError, IndexError):
print(f"## {path}: file has no metadata") logger.error(f"{path}: file has no metadata")
except: except:
print(f"## {path}: file could not be processed") logger.error(f"{path}: file could not be processed")
if cmd: if cmd:
commands.append(f"# {path}") commands.append(f"# {path}")
commands.append(cmd) commands.append(cmd)
@@ -1218,18 +1214,18 @@ def write_commands(opt, file_path: str, outfilepath: str):
outfilepath = os.path.join(opt.outdir, basename) outfilepath = os.path.join(opt.outdir, basename)
with open(outfilepath, "w", encoding="utf-8") as f: with open(outfilepath, "w", encoding="utf-8") as f:
f.write("\n".join(commands)) f.write("\n".join(commands))
print(f">> File {outfilepath} with commands created") logger.info(f"File {outfilepath} with commands created")
def report_model_error(opt: Namespace, e: Exception): def report_model_error(opt: Namespace, e: Exception):
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"') logger.warning(f'An error occurred while attempting to initialize the model: "{str(e)}"')
print( logger.warning(
"** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models." "This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models."
) )
yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE") yes_to_all = os.environ.get("INVOKE_MODEL_RECONFIGURE")
if yes_to_all: if yes_to_all:
print( logger.warning(
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE" "Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
) )
else: else:
if not click.confirm( if not click.confirm(
@@ -1238,7 +1234,7 @@ def report_model_error(opt: Namespace, e: Exception):
): ):
return return
print("invokeai-configure is launching....\n") logger.info("invokeai-configure is launching....\n")
# Match arguments that were set on the CLI # Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed # only the arguments accepted by the configuration script are parsed
@@ -1255,7 +1251,7 @@ def report_model_error(opt: Namespace, e: Exception):
from ..install import invokeai_configure from ..install import invokeai_configure
invokeai_configure() invokeai_configure()
print("** InvokeAI will now restart") logger.warning("InvokeAI will now restart")
sys.argv = previous_args sys.argv = previous_args
main() # would rather do a os.exec(), but doesn't exist? main() # would rather do a os.exec(), but doesn't exist?
sys.exit(0) sys.exit(0)

View File

@@ -1,10 +1,9 @@
""" '''
Minimalist updater script. Prompts user for the tag or branch to update to and runs Minimalist updater script. Prompts user for the tag or branch to update to and runs
pip install <path_to_git_source>. pip install <path_to_git_source>.
""" '''
import os import os
import platform import platform
import requests import requests
from rich import box, print from rich import box, print
from rich.console import Console, Group, group from rich.console import Console, Group, group
@@ -16,8 +15,10 @@ from rich.text import Text
from invokeai.version import __version__ from invokeai.version import __version__
INVOKE_AI_SRC = "https://github.com/invoke-ai/InvokeAI/archive" INVOKE_AI_SRC="https://github.com/invoke-ai/InvokeAI/archive"
INVOKE_AI_REL = "https://api.github.com/repos/invoke-ai/InvokeAI/releases" INVOKE_AI_TAG="https://github.com/invoke-ai/InvokeAI/archive/refs/tags"
INVOKE_AI_BRANCH="https://github.com/invoke-ai/InvokeAI/archive/refs/heads"
INVOKE_AI_REL="https://api.github.com/repos/invoke-ai/InvokeAI/releases"
OS = platform.uname().system OS = platform.uname().system
ARCH = platform.uname().machine ARCH = platform.uname().machine
@@ -28,22 +29,22 @@ if OS == "Windows":
else: else:
console = Console(style=Style(color="grey74", bgcolor="grey19")) console = Console(style=Style(color="grey74", bgcolor="grey19"))
def get_versions()->dict:
def get_versions() -> dict:
return requests.get(url=INVOKE_AI_REL).json() return requests.get(url=INVOKE_AI_REL).json()
def welcome(versions: dict): def welcome(versions: dict):
@group() @group()
def text(): def text():
yield f"InvokeAI Version: [bold yellow]{__version__}" yield f'InvokeAI Version: [bold yellow]{__version__}'
yield "" yield ''
yield "This script will update InvokeAI to the latest release, or to a development version of your choice." yield 'This script will update InvokeAI to the latest release, or to a development version of your choice.'
yield "" yield ''
yield "[bold yellow]Options:" yield '[bold yellow]Options:'
yield f"""[1] Update to the latest official release ([italic]{versions[0]['tag_name']}[/italic]) yield f'''[1] Update to the latest official release ([italic]{versions[0]['tag_name']}[/italic])
[2] Update to the bleeding-edge development version ([italic]main[/italic]) [2] Update to the bleeding-edge development version ([italic]main[/italic])
[3] Manually enter the tag or branch name you wish to update""" [3] Manually enter the [bold]tag name[/bold] for the version you wish to update to
[4] Manually enter the [bold]branch name[/bold] for the version you wish to update to'''
console.rule() console.rule()
print( print(
@@ -59,33 +60,41 @@ def welcome(versions: dict):
) )
console.line() console.line()
def main(): def main():
versions = get_versions() versions = get_versions()
welcome(versions) welcome(versions)
tag = None tag = None
choice = Prompt.ask("Choice:", choices=["1", "2", "3"], default="1") branch = None
release = None
choice = Prompt.ask('Choice:',choices=['1','2','3','4'],default='1')
if choice=='1':
release = versions[0]['tag_name']
elif choice=='2':
release = 'main'
elif choice=='3':
tag = Prompt.ask('Enter an InvokeAI tag name')
elif choice=='4':
branch = Prompt.ask('Enter an InvokeAI branch name')
if choice == "1": print(f':crossed_fingers: Upgrading to [yellow]{tag if tag else release}[/yellow]')
tag = versions[0]["tag_name"] if release:
elif choice == "2": cmd = f'pip install {INVOKE_AI_SRC}/{release}.zip --use-pep517 --upgrade'
tag = "main" elif tag:
elif choice == "3": cmd = f'pip install {INVOKE_AI_TAG}/{tag}.zip --use-pep517 --upgrade'
tag = Prompt.ask("Enter an InvokeAI tag or branch name")
print(f":crossed_fingers: Upgrading to [yellow]{tag}[/yellow]")
cmd = f"pip install {INVOKE_AI_SRC}/{tag}.zip --use-pep517"
print("")
print("")
if os.system(cmd) == 0:
print(f":heavy_check_mark: Upgrade successful")
else: else:
print(f":exclamation: [bold red]Upgrade failed[/red bold]") cmd = f'pip install {INVOKE_AI_BRANCH}/{branch}.zip --use-pep517 --upgrade'
print('')
print('')
if os.system(cmd)==0:
print(f':heavy_check_mark: Upgrade successful')
else:
print(f':exclamation: [bold red]Upgrade failed[/red bold]')
if __name__ == "__main__": if __name__ == "__main__":
try: try:
main() main()
except KeyboardInterrupt: except KeyboardInterrupt:
pass pass

View File

@@ -22,6 +22,7 @@ import torch
from npyscreen import widget from npyscreen import widget
from omegaconf import OmegaConf from omegaconf import OmegaConf
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals, global_config_dir from invokeai.backend.globals import Globals, global_config_dir
from ...backend.config.model_install_backend import ( from ...backend.config.model_install_backend import (
@@ -455,8 +456,8 @@ def main():
Globals.root = os.path.expanduser(get_root(opt.root) or "") Globals.root = os.path.expanduser(get_root(opt.root) or "")
if not global_config_dir().exists(): if not global_config_dir().exists():
print( logger.info(
">> Your InvokeAI root directory is not set up. Calling invokeai-configure." "Your InvokeAI root directory is not set up. Calling invokeai-configure."
) )
from invokeai.frontend.install import invokeai_configure from invokeai.frontend.install import invokeai_configure
@@ -466,18 +467,18 @@ def main():
try: try:
select_and_download_models(opt) select_and_download_models(opt)
except AssertionError as e: except AssertionError as e:
print(str(e)) logger.error(e)
sys.exit(-1) sys.exit(-1)
except KeyboardInterrupt: except KeyboardInterrupt:
print("\nGoodbye! Come back soon.") logger.info("Goodbye! Come back soon.")
except widget.NotEnoughSpaceForWidget as e: except widget.NotEnoughSpaceForWidget as e:
if str(e).startswith("Height of 1 allocated"): if str(e).startswith("Height of 1 allocated"):
print( logger.error(
"** Insufficient vertical space for the interface. Please make your window taller and try again" "Insufficient vertical space for the interface. Please make your window taller and try again"
) )
elif str(e).startswith("addwstr"): elif str(e).startswith("addwstr"):
print( logger.error(
"** Insufficient horizontal space for the interface. Please make your window wider and try again." "Insufficient horizontal space for the interface. Please make your window wider and try again."
) )

View File

@@ -27,6 +27,8 @@ from ...backend.globals import (
global_models_dir, global_models_dir,
global_set_root, global_set_root,
) )
import invokeai.backend.util.logging as logger
from ...backend.model_management import ModelManager from ...backend.model_management import ModelManager
from ...frontend.install.widgets import FloatTitleSlider from ...frontend.install.widgets import FloatTitleSlider
@@ -113,7 +115,7 @@ def merge_diffusion_models_and_commit(
model_name=merged_model_name, description=f'Merge of models {", ".join(models)}' model_name=merged_model_name, description=f'Merge of models {", ".join(models)}'
) )
if vae := model_manager.config[models[0]].get("vae", None): if vae := model_manager.config[models[0]].get("vae", None):
print(f">> Using configured VAE assigned to {models[0]}") logger.info(f"Using configured VAE assigned to {models[0]}")
import_args.update(vae=vae) import_args.update(vae=vae)
model_manager.import_diffuser_model(dump_path, **import_args) model_manager.import_diffuser_model(dump_path, **import_args)
model_manager.commit(config_file) model_manager.commit(config_file)
@@ -391,10 +393,8 @@ class mergeModelsForm(npyscreen.FormMultiPageAction):
for name in self.model_manager.model_names() for name in self.model_manager.model_names()
if self.model_manager.model_info(name).get("format") == "diffusers" if self.model_manager.model_info(name).get("format") == "diffusers"
] ]
print(model_names)
return sorted(model_names) return sorted(model_names)
class Mergeapp(npyscreen.NPSAppManaged): class Mergeapp(npyscreen.NPSAppManaged):
def __init__(self): def __init__(self):
super().__init__() super().__init__()
@@ -414,7 +414,7 @@ def run_gui(args: Namespace):
args = mergeapp.merge_arguments args = mergeapp.merge_arguments
merge_diffusion_models_and_commit(**args) merge_diffusion_models_and_commit(**args)
print(f'>> Models merged into new model: "{args["merged_model_name"]}".') logger.info(f'Models merged into new model: "{args["merged_model_name"]}".')
def run_cli(args: Namespace): def run_cli(args: Namespace):
@@ -425,8 +425,8 @@ def run_cli(args: Namespace):
if not args.merged_model_name: if not args.merged_model_name:
args.merged_model_name = "+".join(args.models) args.merged_model_name = "+".join(args.models)
print( logger.info(
f'>> No --merged_model_name provided. Defaulting to "{args.merged_model_name}"' f'No --merged_model_name provided. Defaulting to "{args.merged_model_name}"'
) )
model_manager = ModelManager(OmegaConf.load(global_config_file())) model_manager = ModelManager(OmegaConf.load(global_config_file()))
@@ -435,7 +435,7 @@ def run_cli(args: Namespace):
), f'A model named "{args.merged_model_name}" already exists. Use --clobber to overwrite.' ), f'A model named "{args.merged_model_name}" already exists. Use --clobber to overwrite.'
merge_diffusion_models_and_commit(**vars(args)) merge_diffusion_models_and_commit(**vars(args))
print(f'>> Models merged into new model: "{args.merged_model_name}".') logger.info(f'Models merged into new model: "{args.merged_model_name}".')
def main(): def main():
@@ -455,17 +455,16 @@ def main():
run_cli(args) run_cli(args)
except widget.NotEnoughSpaceForWidget as e: except widget.NotEnoughSpaceForWidget as e:
if str(e).startswith("Height of 1 allocated"): if str(e).startswith("Height of 1 allocated"):
print( logger.error(
"** You need to have at least two diffusers models defined in models.yaml in order to merge" "You need to have at least two diffusers models defined in models.yaml in order to merge"
) )
else: else:
print( logger.error(
"** Not enough room for the user interface. Try making this window larger." "Not enough room for the user interface. Try making this window larger."
) )
sys.exit(-1) sys.exit(-1)
except Exception: except Exception as e:
print(">> An error occurred:") logger.error(e)
traceback.print_exc()
sys.exit(-1) sys.exit(-1)
except KeyboardInterrupt: except KeyboardInterrupt:
sys.exit(-1) sys.exit(-1)

View File

@@ -20,6 +20,7 @@ import npyscreen
from npyscreen import widget from npyscreen import widget
from omegaconf import OmegaConf from omegaconf import OmegaConf
import invokeai.backend.util.logging as logger
from invokeai.backend.globals import Globals, global_set_root from invokeai.backend.globals import Globals, global_set_root
from ...backend.training import do_textual_inversion_training, parse_args from ...backend.training import do_textual_inversion_training, parse_args
@@ -368,14 +369,14 @@ def copy_to_embeddings_folder(args: dict):
dest_dir_name = args["placeholder_token"].strip("<>") dest_dir_name = args["placeholder_token"].strip("<>")
destination = Path(Globals.root, "embeddings", dest_dir_name) destination = Path(Globals.root, "embeddings", dest_dir_name)
os.makedirs(destination, exist_ok=True) os.makedirs(destination, exist_ok=True)
print(f">> Training completed. Copying learned_embeds.bin into {str(destination)}") logger.info(f"Training completed. Copying learned_embeds.bin into {str(destination)}")
shutil.copy(source, destination) shutil.copy(source, destination)
if ( if (
input("Delete training logs and intermediate checkpoints? [y] ") or "y" input("Delete training logs and intermediate checkpoints? [y] ") or "y"
).startswith(("y", "Y")): ).startswith(("y", "Y")):
shutil.rmtree(Path(args["output_dir"])) shutil.rmtree(Path(args["output_dir"]))
else: else:
print(f'>> Keeping {args["output_dir"]}') logger.info(f'Keeping {args["output_dir"]}')
def save_args(args: dict): def save_args(args: dict):
@@ -422,10 +423,10 @@ def do_front_end(args: Namespace):
do_textual_inversion_training(**args) do_textual_inversion_training(**args)
copy_to_embeddings_folder(args) copy_to_embeddings_folder(args)
except Exception as e: except Exception as e:
print("** An exception occurred during training. The exception was:") logger.error("An exception occurred during training. The exception was:")
print(str(e)) logger.error(str(e))
print("** DETAILS:") logger.error("DETAILS:")
print(traceback.format_exc()) logger.error(traceback.format_exc())
def main(): def main():
@@ -437,21 +438,21 @@ def main():
else: else:
do_textual_inversion_training(**vars(args)) do_textual_inversion_training(**vars(args))
except AssertionError as e: except AssertionError as e:
print(str(e)) logger.error(e)
sys.exit(-1) sys.exit(-1)
except KeyboardInterrupt: except KeyboardInterrupt:
pass pass
except (widget.NotEnoughSpaceForWidget, Exception) as e: except (widget.NotEnoughSpaceForWidget, Exception) as e:
if str(e).startswith("Height of 1 allocated"): if str(e).startswith("Height of 1 allocated"):
print( logger.error(
"** You need to have at least one diffusers models defined in models.yaml in order to train" "You need to have at least one diffusers models defined in models.yaml in order to train"
) )
elif str(e).startswith("addwstr"): elif str(e).startswith("addwstr"):
print( logger.error(
"** Not enough window space for the interface. Please make your window larger and try again." "Not enough window space for the interface. Please make your window larger and try again."
) )
else: else:
print(f"** An error has occurred: {str(e)}") logger.error(e)
sys.exit(-1) sys.exit(-1)

View File

@@ -6,3 +6,5 @@ stats.html
index.html index.html
.yarn/ .yarn/
*.scss *.scss
src/services/api/
src/services/fixtures/*

View File

@@ -3,4 +3,8 @@ dist/
node_modules/ node_modules/
patches/ patches/
stats.html stats.html
index.html
.yarn/ .yarn/
*.scss
src/services/api/
src/services/fixtures/*

View File

@@ -0,0 +1,40 @@
import react from '@vitejs/plugin-react-swc';
import { visualizer } from 'rollup-plugin-visualizer';
import { PluginOption, UserConfig } from 'vite';
import eslint from 'vite-plugin-eslint';
import tsconfigPaths from 'vite-tsconfig-paths';
export const appConfig: UserConfig = {
base: './',
plugins: [
react(),
eslint(),
tsconfigPaths(),
visualizer() as unknown as PluginOption,
],
build: {
chunkSizeWarningLimit: 1500,
},
server: {
// Proxy HTTP requests to the flask server
proxy: {
// Proxy socket.io to the nodes socketio server
'/ws/socket.io': {
target: 'ws://127.0.0.1:9090',
ws: true,
},
// Proxy openapi schema definiton
'/openapi.json': {
target: 'http://127.0.0.1:9090/openapi.json',
rewrite: (path) => path.replace(/^\/openapi.json/, ''),
changeOrigin: true,
},
// proxy nodes api
'/api/v1': {
target: 'http://127.0.0.1:9090/api/v1',
rewrite: (path) => path.replace(/^\/api\/v1/, ''),
changeOrigin: true,
},
},
},
};

View File

@@ -0,0 +1,47 @@
import react from '@vitejs/plugin-react-swc';
import path from 'path';
import { visualizer } from 'rollup-plugin-visualizer';
import { PluginOption, UserConfig } from 'vite';
import dts from 'vite-plugin-dts';
import eslint from 'vite-plugin-eslint';
import tsconfigPaths from 'vite-tsconfig-paths';
export const packageConfig: UserConfig = {
base: './',
plugins: [
react(),
eslint(),
tsconfigPaths(),
visualizer() as unknown as PluginOption,
dts({
insertTypesEntry: true,
}),
],
build: {
chunkSizeWarningLimit: 1500,
lib: {
entry: path.resolve(__dirname, '../src/index.ts'),
name: 'InvokeAIUI',
fileName: (format) => `invoke-ai-ui.${format}.js`,
},
rollupOptions: {
external: ['react', 'react-dom', '@emotion/react'],
output: {
globals: {
react: 'React',
'react-dom': 'ReactDOM',
},
},
},
},
resolve: {
alias: {
app: path.resolve(__dirname, '../src/app'),
assets: path.resolve(__dirname, '../src/assets'),
common: path.resolve(__dirname, '../src/common'),
features: path.resolve(__dirname, '../src/features'),
services: path.resolve(__dirname, '../src/services'),
theme: path.resolve(__dirname, '../src/theme'),
},
},
};

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1,4 +1,4 @@
import{j as y,cN as Ie,r as _,cO as bt,q as Lr,cP as o,cQ as b,cR as v,cS as S,cT as Vr,cU as ut,cV as vt,cM as ft,cW as mt,n as gt,cX as ht,E as pt}from"./index-f7f41e1f.js";import{d as yt,i as St,T as xt,j as $t,h as kt}from"./storeHooks-eaf47ae3.js";var Or=` import{j as y,cO as Ie,r as _,cP as bt,q as Lr,cQ as o,cR as b,cS as v,cT as S,cU as Vr,cV as ut,cW as vt,cN as ft,cX as mt,n as gt,cY as ht,E as pt}from"./index-e53e8108.js";import{d as yt,i as St,T as xt,j as $t,h as kt}from"./storeHooks-5cde7d31.js";var Or=`
:root { :root {
--chakra-vh: 100vh; --chakra-vh: 100vh;
} }

View File

@@ -12,7 +12,7 @@
margin: 0; margin: 0;
} }
</style> </style>
<script type="module" crossorigin src="./assets/index-f7f41e1f.js"></script> <script type="module" crossorigin src="./assets/index-e53e8108.js"></script>
<link rel="stylesheet" href="./assets/index-5483945c.css"> <link rel="stylesheet" href="./assets/index-5483945c.css">
</head> </head>

View File

@@ -8,7 +8,6 @@
"darkTheme": "داكن", "darkTheme": "داكن",
"lightTheme": "فاتح", "lightTheme": "فاتح",
"greenTheme": "أخضر", "greenTheme": "أخضر",
"text2img": "نص إلى صورة",
"img2img": "صورة إلى صورة", "img2img": "صورة إلى صورة",
"unifiedCanvas": "لوحة موحدة", "unifiedCanvas": "لوحة موحدة",
"nodes": "عقد", "nodes": "عقد",

View File

@@ -7,7 +7,6 @@
"darkTheme": "Dunkel", "darkTheme": "Dunkel",
"lightTheme": "Hell", "lightTheme": "Hell",
"greenTheme": "Grün", "greenTheme": "Grün",
"text2img": "Text zu Bild",
"img2img": "Bild zu Bild", "img2img": "Bild zu Bild",
"nodes": "Knoten", "nodes": "Knoten",
"langGerman": "Deutsch", "langGerman": "Deutsch",

View File

@@ -505,7 +505,9 @@
"info": "Info", "info": "Info",
"deleteImage": "Delete Image", "deleteImage": "Delete Image",
"initialImage": "Initial Image", "initialImage": "Initial Image",
"showOptionsPanel": "Show Options Panel" "showOptionsPanel": "Show Options Panel",
"hidePreview": "Hide Preview",
"showPreview": "Show Preview"
}, },
"settings": { "settings": {
"models": "Models", "models": "Models",

View File

@@ -8,7 +8,6 @@
"darkTheme": "Oscuro", "darkTheme": "Oscuro",
"lightTheme": "Claro", "lightTheme": "Claro",
"greenTheme": "Verde", "greenTheme": "Verde",
"text2img": "Texto a Imagen",
"img2img": "Imagen a Imagen", "img2img": "Imagen a Imagen",
"unifiedCanvas": "Lienzo Unificado", "unifiedCanvas": "Lienzo Unificado",
"nodes": "Nodos", "nodes": "Nodos",
@@ -70,7 +69,11 @@
"langHebrew": "Hebreo", "langHebrew": "Hebreo",
"pinOptionsPanel": "Pin del panel de opciones", "pinOptionsPanel": "Pin del panel de opciones",
"loading": "Cargando", "loading": "Cargando",
"loadingInvokeAI": "Cargando invocar a la IA" "loadingInvokeAI": "Cargando invocar a la IA",
"postprocessing": "Tratamiento posterior",
"txt2img": "De texto a imagen",
"accept": "Aceptar",
"cancel": "Cancelar"
}, },
"gallery": { "gallery": {
"generations": "Generaciones", "generations": "Generaciones",
@@ -404,7 +407,8 @@
"none": "ninguno", "none": "ninguno",
"pickModelType": "Elige el tipo de modelo", "pickModelType": "Elige el tipo de modelo",
"v2_768": "v2 (768px)", "v2_768": "v2 (768px)",
"addDifference": "Añadir una diferencia" "addDifference": "Añadir una diferencia",
"scanForModels": "Buscar modelos"
}, },
"parameters": { "parameters": {
"images": "Imágenes", "images": "Imágenes",
@@ -574,7 +578,7 @@
"autoSaveToGallery": "Guardar automáticamente en galería", "autoSaveToGallery": "Guardar automáticamente en galería",
"saveBoxRegionOnly": "Guardar solo región dentro de la caja", "saveBoxRegionOnly": "Guardar solo región dentro de la caja",
"limitStrokesToBox": "Limitar trazos a la caja", "limitStrokesToBox": "Limitar trazos a la caja",
"showCanvasDebugInfo": "Mostrar información de depuración de lienzo", "showCanvasDebugInfo": "Mostrar la información adicional del lienzo",
"clearCanvasHistory": "Limpiar historial de lienzo", "clearCanvasHistory": "Limpiar historial de lienzo",
"clearHistory": "Limpiar historial", "clearHistory": "Limpiar historial",
"clearCanvasHistoryMessage": "Limpiar el historial de lienzo también restablece completamente el lienzo unificado. Esto incluye todo el historial de deshacer/rehacer, las imágenes en el área de preparación y la capa base del lienzo.", "clearCanvasHistoryMessage": "Limpiar el historial de lienzo también restablece completamente el lienzo unificado. Esto incluye todo el historial de deshacer/rehacer, las imágenes en el área de preparación y la capa base del lienzo.",

View File

@@ -8,7 +8,6 @@
"darkTheme": "Sombre", "darkTheme": "Sombre",
"lightTheme": "Clair", "lightTheme": "Clair",
"greenTheme": "Vert", "greenTheme": "Vert",
"text2img": "Texte en image",
"img2img": "Image en image", "img2img": "Image en image",
"unifiedCanvas": "Canvas unifié", "unifiedCanvas": "Canvas unifié",
"nodes": "Nœuds", "nodes": "Nœuds",
@@ -47,7 +46,19 @@
"statusLoadingModel": "Chargement du modèle", "statusLoadingModel": "Chargement du modèle",
"statusModelChanged": "Modèle changé", "statusModelChanged": "Modèle changé",
"discordLabel": "Discord", "discordLabel": "Discord",
"githubLabel": "Github" "githubLabel": "Github",
"accept": "Accepter",
"statusMergingModels": "Mélange des modèles",
"loadingInvokeAI": "Chargement de Invoke AI",
"cancel": "Annuler",
"langEnglish": "Anglais",
"statusConvertingModel": "Conversion du modèle",
"statusModelConverted": "Modèle converti",
"loading": "Chargement",
"pinOptionsPanel": "Épingler la page d'options",
"statusMergedModels": "Modèles mélangés",
"txt2img": "Texte vers image",
"postprocessing": "Post-Traitement"
}, },
"gallery": { "gallery": {
"generations": "Générations", "generations": "Générations",
@@ -518,5 +529,15 @@
"betaDarkenOutside": "Assombrir à l'extérieur", "betaDarkenOutside": "Assombrir à l'extérieur",
"betaLimitToBox": "Limiter à la boîte", "betaLimitToBox": "Limiter à la boîte",
"betaPreserveMasked": "Conserver masqué" "betaPreserveMasked": "Conserver masqué"
},
"accessibility": {
"uploadImage": "Charger une image",
"reset": "Réinitialiser",
"nextImage": "Image suivante",
"previousImage": "Image précédente",
"useThisParameter": "Utiliser ce paramètre",
"zoomIn": "Zoom avant",
"zoomOut": "Zoom arrière",
"showOptionsPanel": "Montrer la page d'options"
} }
} }

View File

@@ -125,7 +125,6 @@
"langSimplifiedChinese": "סינית", "langSimplifiedChinese": "סינית",
"langUkranian": "אוקראינית", "langUkranian": "אוקראינית",
"langSpanish": "ספרדית", "langSpanish": "ספרדית",
"text2img": "טקסט לתמונה",
"img2img": "תמונה לתמונה", "img2img": "תמונה לתמונה",
"unifiedCanvas": "קנבס מאוחד", "unifiedCanvas": "קנבס מאוחד",
"nodes": "צמתים", "nodes": "צמתים",

View File

@@ -8,7 +8,6 @@
"darkTheme": "Scuro", "darkTheme": "Scuro",
"lightTheme": "Chiaro", "lightTheme": "Chiaro",
"greenTheme": "Verde", "greenTheme": "Verde",
"text2img": "Testo a Immagine",
"img2img": "Immagine a Immagine", "img2img": "Immagine a Immagine",
"unifiedCanvas": "Tela unificata", "unifiedCanvas": "Tela unificata",
"nodes": "Nodi", "nodes": "Nodi",
@@ -70,7 +69,11 @@
"loading": "Caricamento in corso", "loading": "Caricamento in corso",
"oceanTheme": "Oceano", "oceanTheme": "Oceano",
"langHebrew": "Ebraico", "langHebrew": "Ebraico",
"loadingInvokeAI": "Caricamento Invoke AI" "loadingInvokeAI": "Caricamento Invoke AI",
"postprocessing": "Post Elaborazione",
"txt2img": "Testo a Immagine",
"accept": "Accetta",
"cancel": "Annulla"
}, },
"gallery": { "gallery": {
"generations": "Generazioni", "generations": "Generazioni",
@@ -404,7 +407,8 @@
"v2_768": "v2 (768px)", "v2_768": "v2 (768px)",
"none": "niente", "none": "niente",
"addDifference": "Aggiungi differenza", "addDifference": "Aggiungi differenza",
"pickModelType": "Scegli il tipo di modello" "pickModelType": "Scegli il tipo di modello",
"scanForModels": "Cerca modelli"
}, },
"parameters": { "parameters": {
"images": "Immagini", "images": "Immagini",
@@ -574,7 +578,7 @@
"autoSaveToGallery": "Salvataggio automatico nella Galleria", "autoSaveToGallery": "Salvataggio automatico nella Galleria",
"saveBoxRegionOnly": "Salva solo l'area di selezione", "saveBoxRegionOnly": "Salva solo l'area di selezione",
"limitStrokesToBox": "Limita i tratti all'area di selezione", "limitStrokesToBox": "Limita i tratti all'area di selezione",
"showCanvasDebugInfo": "Mostra informazioni di debug della Tela", "showCanvasDebugInfo": "Mostra ulteriori informazioni sulla Tela",
"clearCanvasHistory": "Cancella cronologia Tela", "clearCanvasHistory": "Cancella cronologia Tela",
"clearHistory": "Cancella la cronologia", "clearHistory": "Cancella la cronologia",
"clearCanvasHistoryMessage": "La cancellazione della cronologia della tela lascia intatta la tela corrente, ma cancella in modo irreversibile la cronologia degli annullamenti e dei ripristini.", "clearCanvasHistoryMessage": "La cancellazione della cronologia della tela lascia intatta la tela corrente, ma cancella in modo irreversibile la cronologia degli annullamenti e dei ripristini.",
@@ -612,7 +616,7 @@
"copyMetadataJson": "Copia i metadati JSON", "copyMetadataJson": "Copia i metadati JSON",
"exitViewer": "Esci dal visualizzatore", "exitViewer": "Esci dal visualizzatore",
"zoomIn": "Zoom avanti", "zoomIn": "Zoom avanti",
"zoomOut": "Zoom Indietro", "zoomOut": "Zoom indietro",
"rotateCounterClockwise": "Ruotare in senso antiorario", "rotateCounterClockwise": "Ruotare in senso antiorario",
"rotateClockwise": "Ruotare in senso orario", "rotateClockwise": "Ruotare in senso orario",
"flipHorizontally": "Capovolgi orizzontalmente", "flipHorizontally": "Capovolgi orizzontalmente",

View File

@@ -11,7 +11,6 @@
"langArabic": "العربية", "langArabic": "العربية",
"langEnglish": "English", "langEnglish": "English",
"langDutch": "Nederlands", "langDutch": "Nederlands",
"text2img": "텍스트->이미지",
"unifiedCanvas": "통합 캔버스", "unifiedCanvas": "통합 캔버스",
"langFrench": "Français", "langFrench": "Français",
"langGerman": "Deutsch", "langGerman": "Deutsch",

View File

@@ -8,7 +8,6 @@
"darkTheme": "Donker", "darkTheme": "Donker",
"lightTheme": "Licht", "lightTheme": "Licht",
"greenTheme": "Groen", "greenTheme": "Groen",
"text2img": "Tekst naar afbeelding",
"img2img": "Afbeelding naar afbeelding", "img2img": "Afbeelding naar afbeelding",
"unifiedCanvas": "Centraal canvas", "unifiedCanvas": "Centraal canvas",
"nodes": "Knooppunten", "nodes": "Knooppunten",

View File

@@ -8,7 +8,6 @@
"darkTheme": "Ciemny", "darkTheme": "Ciemny",
"lightTheme": "Jasny", "lightTheme": "Jasny",
"greenTheme": "Zielony", "greenTheme": "Zielony",
"text2img": "Tekst na obraz",
"img2img": "Obraz na obraz", "img2img": "Obraz na obraz",
"unifiedCanvas": "Tryb uniwersalny", "unifiedCanvas": "Tryb uniwersalny",
"nodes": "Węzły", "nodes": "Węzły",

View File

@@ -20,7 +20,6 @@
"langSpanish": "Espanhol", "langSpanish": "Espanhol",
"langRussian": "Русский", "langRussian": "Русский",
"langUkranian": "Украї́нська", "langUkranian": "Украї́нська",
"text2img": "Texto para Imagem",
"img2img": "Imagem para Imagem", "img2img": "Imagem para Imagem",
"unifiedCanvas": "Tela Unificada", "unifiedCanvas": "Tela Unificada",
"nodes": "Nós", "nodes": "Nós",

View File

@@ -8,7 +8,6 @@
"darkTheme": "Noite", "darkTheme": "Noite",
"lightTheme": "Dia", "lightTheme": "Dia",
"greenTheme": "Verde", "greenTheme": "Verde",
"text2img": "Texto Para Imagem",
"img2img": "Imagem Para Imagem", "img2img": "Imagem Para Imagem",
"unifiedCanvas": "Tela Unificada", "unifiedCanvas": "Tela Unificada",
"nodes": "Nódulos", "nodes": "Nódulos",

View File

@@ -8,7 +8,6 @@
"darkTheme": "Темная", "darkTheme": "Темная",
"lightTheme": "Светлая", "lightTheme": "Светлая",
"greenTheme": "Зеленая", "greenTheme": "Зеленая",
"text2img": "Изображение из текста (text2img)",
"img2img": "Изображение в изображение (img2img)", "img2img": "Изображение в изображение (img2img)",
"unifiedCanvas": "Универсальный холст", "unifiedCanvas": "Универсальный холст",
"nodes": "Ноды", "nodes": "Ноды",

View File

@@ -8,7 +8,6 @@
"darkTheme": "Темна", "darkTheme": "Темна",
"lightTheme": "Світла", "lightTheme": "Світла",
"greenTheme": "Зелена", "greenTheme": "Зелена",
"text2img": "Зображення із тексту (text2img)",
"img2img": "Зображення із зображення (img2img)", "img2img": "Зображення із зображення (img2img)",
"unifiedCanvas": "Універсальне полотно", "unifiedCanvas": "Універсальне полотно",
"nodes": "Вузли", "nodes": "Вузли",

Some files were not shown because too many files have changed in this diff Show More