mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-21 05:38:05 -05:00
Compare commits
6 Commits
image-capt
...
ryan/peft-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f9fda503a3 | ||
|
|
22c66cf55b | ||
|
|
8260252aeb | ||
|
|
74fe74721a | ||
|
|
3e1af51737 | ||
|
|
6d9fb207f0 |
@@ -9,8 +9,9 @@ from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField
|
|||||||
from invokeai.app.invocations.primitives import ConditioningOutput
|
from invokeai.app.invocations.primitives import ConditioningOutput
|
||||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||||
from invokeai.app.util.ti_utils import generate_ti_list
|
from invokeai.app.util.ti_utils import generate_ti_list
|
||||||
from invokeai.backend.lora import LoRAModelRaw
|
|
||||||
from invokeai.backend.model_patcher import ModelPatcher
|
from invokeai.backend.model_patcher import ModelPatcher
|
||||||
|
from invokeai.backend.peft.peft_model import PeftModel
|
||||||
|
from invokeai.backend.peft.peft_model_patcher import PeftModelPatcher
|
||||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||||
BasicConditioningInfo,
|
BasicConditioningInfo,
|
||||||
ConditioningFieldData,
|
ConditioningFieldData,
|
||||||
@@ -61,15 +62,12 @@ class CompelInvocation(BaseInvocation):
|
|||||||
text_encoder_model = text_encoder_info.model
|
text_encoder_model = text_encoder_info.model
|
||||||
assert isinstance(text_encoder_model, CLIPTextModel)
|
assert isinstance(text_encoder_model, CLIPTextModel)
|
||||||
|
|
||||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
def _lora_loader() -> Iterator[Tuple[PeftModel, float]]:
|
||||||
for lora in self.clip.loras:
|
for lora in self.clip.loras:
|
||||||
lora_info = context.models.load(lora.lora)
|
lora_info = context.models.load(lora.lora)
|
||||||
assert isinstance(lora_info.model, LoRAModelRaw)
|
assert isinstance(lora_info.model, PeftModel)
|
||||||
yield (lora_info.model, lora.weight)
|
yield (lora_info.model, lora.weight)
|
||||||
del lora_info
|
del lora_info
|
||||||
return
|
|
||||||
|
|
||||||
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
|
||||||
|
|
||||||
ti_list = generate_ti_list(self.prompt, text_encoder_info.config.base, context)
|
ti_list = generate_ti_list(self.prompt, text_encoder_info.config.base, context)
|
||||||
|
|
||||||
@@ -80,7 +78,7 @@ class CompelInvocation(BaseInvocation):
|
|||||||
),
|
),
|
||||||
text_encoder_info as text_encoder,
|
text_encoder_info as text_encoder,
|
||||||
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
||||||
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
|
PeftModelPatcher.apply_peft_model_to_text_encoder(text_encoder, _lora_loader(), "text_encoder"),
|
||||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||||
ModelPatcher.apply_clip_skip(text_encoder_model, self.clip.skipped_layers),
|
ModelPatcher.apply_clip_skip(text_encoder_model, self.clip.skipped_layers),
|
||||||
):
|
):
|
||||||
@@ -161,16 +159,13 @@ class SDXLPromptInvocationBase:
|
|||||||
c_pooled = None
|
c_pooled = None
|
||||||
return c, c_pooled, None
|
return c, c_pooled, None
|
||||||
|
|
||||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
def _lora_loader() -> Iterator[Tuple[PeftModel, float]]:
|
||||||
for lora in clip_field.loras:
|
for lora in clip_field.loras:
|
||||||
lora_info = context.models.load(lora.lora)
|
lora_info = context.models.load(lora.lora)
|
||||||
lora_model = lora_info.model
|
lora_model = lora_info.model
|
||||||
assert isinstance(lora_model, LoRAModelRaw)
|
assert isinstance(lora_model, PeftModel)
|
||||||
yield (lora_model, lora.weight)
|
yield (lora_model, lora.weight)
|
||||||
del lora_info
|
del lora_info
|
||||||
return
|
|
||||||
|
|
||||||
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
|
||||||
|
|
||||||
ti_list = generate_ti_list(prompt, text_encoder_info.config.base, context)
|
ti_list = generate_ti_list(prompt, text_encoder_info.config.base, context)
|
||||||
|
|
||||||
@@ -181,7 +176,7 @@ class SDXLPromptInvocationBase:
|
|||||||
),
|
),
|
||||||
text_encoder_info as text_encoder,
|
text_encoder_info as text_encoder,
|
||||||
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
||||||
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
|
PeftModelPatcher.apply_peft_model_to_text_encoder(text_encoder, _lora_loader(), lora_prefix),
|
||||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||||
ModelPatcher.apply_clip_skip(text_encoder_model, clip_field.skipped_layers),
|
ModelPatcher.apply_clip_skip(text_encoder_model, clip_field.skipped_layers),
|
||||||
):
|
):
|
||||||
@@ -259,15 +254,15 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
|||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def invoke(self, context: InvocationContext) -> ConditioningOutput:
|
def invoke(self, context: InvocationContext) -> ConditioningOutput:
|
||||||
c1, c1_pooled, ec1 = self.run_clip_compel(
|
c1, c1_pooled, ec1 = self.run_clip_compel(
|
||||||
context, self.clip, self.prompt, False, "lora_te1_", zero_on_empty=True
|
context, self.clip, self.prompt, False, "text_encoder", zero_on_empty=True
|
||||||
)
|
)
|
||||||
if self.style.strip() == "":
|
if self.style.strip() == "":
|
||||||
c2, c2_pooled, ec2 = self.run_clip_compel(
|
c2, c2_pooled, ec2 = self.run_clip_compel(
|
||||||
context, self.clip2, self.prompt, True, "lora_te2_", zero_on_empty=True
|
context, self.clip2, self.prompt, True, "text_encoder_2", zero_on_empty=True
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
c2, c2_pooled, ec2 = self.run_clip_compel(
|
c2, c2_pooled, ec2 = self.run_clip_compel(
|
||||||
context, self.clip2, self.style, True, "lora_te2_", zero_on_empty=True
|
context, self.clip2, self.style, True, "text_encoder_2", zero_on_empty=True
|
||||||
)
|
)
|
||||||
|
|
||||||
original_size = (self.original_height, self.original_width)
|
original_size = (self.original_height, self.original_width)
|
||||||
|
|||||||
@@ -48,9 +48,10 @@ from invokeai.app.invocations.t2i_adapter import T2IAdapterField
|
|||||||
from invokeai.app.services.shared.invocation_context import InvocationContext
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||||
from invokeai.app.util.controlnet_utils import prepare_control_image
|
from invokeai.app.util.controlnet_utils import prepare_control_image
|
||||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter, IPAdapterPlus
|
||||||
from invokeai.backend.lora import LoRAModelRaw
|
|
||||||
from invokeai.backend.model_manager import BaseModelType, LoadedModel
|
from invokeai.backend.model_manager import BaseModelType, LoadedModel
|
||||||
from invokeai.backend.model_patcher import ModelPatcher
|
from invokeai.backend.model_patcher import ModelPatcher
|
||||||
|
from invokeai.backend.peft.peft_model import PeftModel
|
||||||
|
from invokeai.backend.peft.peft_model_patcher import PeftModelPatcher
|
||||||
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
|
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless
|
||||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData, IPAdapterConditioningInfo
|
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData, IPAdapterConditioningInfo
|
||||||
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
from invokeai.backend.util.silence_warnings import SilenceWarnings
|
||||||
@@ -714,13 +715,12 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
def step_callback(state: PipelineIntermediateState) -> None:
|
def step_callback(state: PipelineIntermediateState) -> None:
|
||||||
context.util.sd_step_callback(state, unet_config.base)
|
context.util.sd_step_callback(state, unet_config.base)
|
||||||
|
|
||||||
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
def _lora_loader() -> Iterator[Tuple[PeftModel, float]]:
|
||||||
for lora in self.unet.loras:
|
for lora in self.unet.loras:
|
||||||
lora_info = context.models.load(lora.lora)
|
lora_info = context.models.load(lora.lora)
|
||||||
assert isinstance(lora_info.model, LoRAModelRaw)
|
assert isinstance(lora_info.model, PeftModel)
|
||||||
yield (lora_info.model, lora.weight)
|
yield (lora_info.model, lora.weight)
|
||||||
del lora_info
|
del lora_info
|
||||||
return
|
|
||||||
|
|
||||||
unet_info = context.models.load(self.unet.unet)
|
unet_info = context.models.load(self.unet.unet)
|
||||||
assert isinstance(unet_info.model, UNet2DConditionModel)
|
assert isinstance(unet_info.model, UNet2DConditionModel)
|
||||||
@@ -730,7 +730,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
|||||||
set_seamless(unet_info.model, self.unet.seamless_axes), # FIXME
|
set_seamless(unet_info.model, self.unet.seamless_axes), # FIXME
|
||||||
unet_info as unet,
|
unet_info as unet,
|
||||||
# Apply the LoRA after unet has been moved to its target device for faster patching.
|
# Apply the LoRA after unet has been moved to its target device for faster patching.
|
||||||
ModelPatcher.apply_lora_unet(unet, _lora_loader()),
|
PeftModelPatcher.apply_peft_model_to_unet(unet, _lora_loader()),
|
||||||
):
|
):
|
||||||
assert isinstance(unet, UNet2DConditionModel)
|
assert isinstance(unet, UNet2DConditionModel)
|
||||||
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
|||||||
@@ -5,7 +5,8 @@ from abc import ABC, abstractmethod
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
from invokeai.app.services.shared.invocation_context import InvocationContextData
|
from invokeai.app.services.shared.invocation_context import InvocationContextData
|
||||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
|
from invokeai.backend.model_manager import AnyModelConfig, SubModelType
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.load import LoadedModel
|
from invokeai.backend.model_manager.load import LoadedModel
|
||||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||||
|
|||||||
@@ -6,7 +6,8 @@ from typing import Optional, Type
|
|||||||
from invokeai.app.services.config import InvokeAIAppConfig
|
from invokeai.app.services.config import InvokeAIAppConfig
|
||||||
from invokeai.app.services.invoker import Invoker
|
from invokeai.app.services.invoker import Invoker
|
||||||
from invokeai.app.services.shared.invocation_context import InvocationContextData
|
from invokeai.app.services.shared.invocation_context import InvocationContextData
|
||||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, SubModelType
|
from invokeai.backend.model_manager import AnyModelConfig, SubModelType
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.load import (
|
from invokeai.backend.model_manager.load import (
|
||||||
LoadedModel,
|
LoadedModel,
|
||||||
ModelLoaderRegistry,
|
ModelLoaderRegistry,
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
"""Initialization file for model manager service."""
|
"""Initialization file for model manager service."""
|
||||||
|
|
||||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelType, SubModelType
|
from invokeai.backend.model_manager import AnyModelConfig, BaseModelType, ModelType, SubModelType
|
||||||
from invokeai.backend.model_manager.load import LoadedModel
|
from invokeai.backend.model_manager.load import LoadedModel
|
||||||
|
|
||||||
from .model_manager_default import ModelManagerService, ModelManagerServiceBase
|
from .model_manager_default import ModelManagerService, ModelManagerServiceBase
|
||||||
@@ -8,7 +8,6 @@ from .model_manager_default import ModelManagerService, ModelManagerServiceBase
|
|||||||
__all__ = [
|
__all__ = [
|
||||||
"ModelManagerServiceBase",
|
"ModelManagerServiceBase",
|
||||||
"ModelManagerService",
|
"ModelManagerService",
|
||||||
"AnyModel",
|
|
||||||
"AnyModelConfig",
|
"AnyModelConfig",
|
||||||
"BaseModelType",
|
"BaseModelType",
|
||||||
"ModelType",
|
"ModelType",
|
||||||
|
|||||||
@@ -12,7 +12,6 @@ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
|||||||
|
|
||||||
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionWeights
|
from invokeai.backend.ip_adapter.ip_attention_weights import IPAttentionWeights
|
||||||
|
|
||||||
from ..raw_model import RawModel
|
|
||||||
from .resampler import Resampler
|
from .resampler import Resampler
|
||||||
|
|
||||||
|
|
||||||
@@ -102,7 +101,7 @@ class MLPProjModel(torch.nn.Module):
|
|||||||
return clip_extra_context_tokens
|
return clip_extra_context_tokens
|
||||||
|
|
||||||
|
|
||||||
class IPAdapter(RawModel):
|
class IPAdapter(torch.nn.Module):
|
||||||
"""IP-Adapter: https://arxiv.org/pdf/2308.06721.pdf"""
|
"""IP-Adapter: https://arxiv.org/pdf/2308.06721.pdf"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
@@ -112,6 +111,7 @@ class IPAdapter(RawModel):
|
|||||||
dtype: torch.dtype = torch.float16,
|
dtype: torch.dtype = torch.float16,
|
||||||
num_tokens: int = 4,
|
num_tokens: int = 4,
|
||||||
):
|
):
|
||||||
|
super().__init__()
|
||||||
self.device = device
|
self.device = device
|
||||||
self.dtype = dtype
|
self.dtype = dtype
|
||||||
|
|
||||||
|
|||||||
@@ -11,8 +11,6 @@ from typing_extensions import Self
|
|||||||
|
|
||||||
from invokeai.backend.model_manager import BaseModelType
|
from invokeai.backend.model_manager import BaseModelType
|
||||||
|
|
||||||
from .raw_model import RawModel
|
|
||||||
|
|
||||||
|
|
||||||
class LoRALayerBase:
|
class LoRALayerBase:
|
||||||
# rank: Optional[int]
|
# rank: Optional[int]
|
||||||
@@ -368,15 +366,13 @@ class IA3Layer(LoRALayerBase):
|
|||||||
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
|
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
|
||||||
|
|
||||||
|
|
||||||
class LoRAModelRaw(RawModel): # (torch.nn.Module):
|
class LoRAModelRaw(torch.nn.Module):
|
||||||
_name: str
|
|
||||||
layers: Dict[str, AnyLoRALayer]
|
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
name: str,
|
name: str,
|
||||||
layers: Dict[str, AnyLoRALayer],
|
layers: Dict[str, AnyLoRALayer],
|
||||||
):
|
):
|
||||||
|
super().__init__()
|
||||||
self._name = name
|
self._name = name
|
||||||
self.layers = layers
|
self.layers = layers
|
||||||
|
|
||||||
|
|||||||
@@ -1,7 +1,6 @@
|
|||||||
"""Re-export frequently-used symbols from the Model Manager backend."""
|
"""Re-export frequently-used symbols from the Model Manager backend."""
|
||||||
|
|
||||||
from .config import (
|
from .config import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
InvalidModelConfigException,
|
InvalidModelConfigException,
|
||||||
@@ -18,7 +17,6 @@ from .probe import ModelProbe
|
|||||||
from .search import ModelSearch
|
from .search import ModelSearch
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"AnyModel",
|
|
||||||
"AnyModelConfig",
|
"AnyModelConfig",
|
||||||
"BaseModelType",
|
"BaseModelType",
|
||||||
"ModelRepoVariant",
|
"ModelRepoVariant",
|
||||||
|
|||||||
12
invokeai/backend/model_manager/any_model_type.py
Normal file
12
invokeai/backend/model_manager/any_model_type.py
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
from typing import Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from diffusers.models.modeling_utils import ModelMixin
|
||||||
|
|
||||||
|
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
||||||
|
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||||
|
from invokeai.backend.peft.peft_model import PeftModel
|
||||||
|
from invokeai.backend.textual_inversion import TextualInversionModelRaw
|
||||||
|
|
||||||
|
# ModelMixin is the base class for all diffusers and transformers models
|
||||||
|
AnyModel = Union[ModelMixin, torch.nn.Module, IPAdapter, PeftModel, TextualInversionModelRaw, IAIOnnxRuntimeModel]
|
||||||
@@ -24,20 +24,12 @@ import time
|
|||||||
from enum import Enum
|
from enum import Enum
|
||||||
from typing import Literal, Optional, Type, TypeAlias, Union
|
from typing import Literal, Optional, Type, TypeAlias, Union
|
||||||
|
|
||||||
import torch
|
|
||||||
from diffusers.models.modeling_utils import ModelMixin
|
|
||||||
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
|
from pydantic import BaseModel, ConfigDict, Discriminator, Field, Tag, TypeAdapter
|
||||||
from typing_extensions import Annotated, Any, Dict
|
from typing_extensions import Annotated, Any, Dict
|
||||||
|
|
||||||
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
|
from invokeai.app.invocations.constants import SCHEDULER_NAME_VALUES
|
||||||
from invokeai.app.util.misc import uuid_string
|
from invokeai.app.util.misc import uuid_string
|
||||||
|
|
||||||
from ..raw_model import RawModel
|
|
||||||
|
|
||||||
# ModelMixin is the base class for all diffusers and transformers models
|
|
||||||
# RawModel is the InvokeAI wrapper class for ip_adapters, loras, textual_inversion and onnx runtime
|
|
||||||
AnyModel = Union[ModelMixin, RawModel, torch.nn.Module]
|
|
||||||
|
|
||||||
|
|
||||||
class InvalidModelConfigException(Exception):
|
class InvalidModelConfigException(Exception):
|
||||||
"""Exception for when config parser doesn't recognized this combination of model type and format."""
|
"""Exception for when config parser doesn't recognized this combination of model type and format."""
|
||||||
|
|||||||
@@ -15,7 +15,7 @@ from diffusers.pipelines.stable_diffusion.convert_from_ckpt import (
|
|||||||
)
|
)
|
||||||
from omegaconf import DictConfig
|
from omegaconf import DictConfig
|
||||||
|
|
||||||
from . import AnyModel
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
|
|
||||||
|
|
||||||
def convert_ldm_vae_to_diffusers(
|
def convert_ldm_vae_to_diffusers(
|
||||||
|
|||||||
@@ -10,8 +10,8 @@ from pathlib import Path
|
|||||||
from typing import Any, Optional
|
from typing import Any, Optional
|
||||||
|
|
||||||
from invokeai.app.services.config import InvokeAIAppConfig
|
from invokeai.app.services.config import InvokeAIAppConfig
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.config import (
|
from invokeai.backend.model_manager.config import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -7,11 +7,11 @@ from typing import Optional
|
|||||||
|
|
||||||
from invokeai.app.services.config import InvokeAIAppConfig
|
from invokeai.app.services.config import InvokeAIAppConfig
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
InvalidModelConfigException,
|
InvalidModelConfigException,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
)
|
)
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.config import DiffusersConfigBase, ModelType
|
from invokeai.backend.model_manager.config import DiffusersConfigBase, ModelType
|
||||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||||
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
|
from invokeai.backend.model_manager.load.load_base import LoadedModel, ModelLoaderBase
|
||||||
|
|||||||
@@ -14,7 +14,8 @@ from typing import Dict, Generic, Optional, TypeVar
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from invokeai.backend.model_manager.config import AnyModel, SubModelType
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
|
from invokeai.backend.model_manager.config import SubModelType
|
||||||
|
|
||||||
|
|
||||||
class ModelLockerBase(ABC):
|
class ModelLockerBase(ABC):
|
||||||
|
|||||||
@@ -28,7 +28,8 @@ from typing import Dict, List, Optional
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from invokeai.backend.model_manager import AnyModel, SubModelType
|
from invokeai.backend.model_manager import SubModelType
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
|
from invokeai.backend.model_manager.load.memory_snapshot import MemorySnapshot, get_pretty_snapshot_diff
|
||||||
from invokeai.backend.util.devices import choose_torch_device
|
from invokeai.backend.util.devices import choose_torch_device
|
||||||
from invokeai.backend.util.logging import InvokeAILogger
|
from invokeai.backend.util.logging import InvokeAILogger
|
||||||
|
|||||||
@@ -4,7 +4,7 @@ Base class and implementation of a class that moves models in and out of VRAM.
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from invokeai.backend.model_manager import AnyModel
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
|
|
||||||
from .model_cache_base import CacheRecord, ModelCacheBase, ModelLockerBase
|
from .model_cache_base import CacheRecord, ModelCacheBase, ModelLockerBase
|
||||||
|
|
||||||
|
|||||||
@@ -5,12 +5,12 @@ from pathlib import Path
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
ModelFormat,
|
ModelFormat,
|
||||||
ModelType,
|
ModelType,
|
||||||
)
|
)
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.config import CheckpointConfigBase
|
from invokeai.backend.model_manager.config import CheckpointConfigBase
|
||||||
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_controlnet_to_diffusers
|
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_controlnet_to_diffusers
|
||||||
|
|
||||||
|
|||||||
@@ -9,7 +9,6 @@ from diffusers.configuration_utils import ConfigMixin
|
|||||||
from diffusers.models.modeling_utils import ModelMixin
|
from diffusers.models.modeling_utils import ModelMixin
|
||||||
|
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
InvalidModelConfigException,
|
InvalidModelConfigException,
|
||||||
@@ -17,6 +16,7 @@ from invokeai.backend.model_manager import (
|
|||||||
ModelType,
|
ModelType,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
)
|
)
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.config import DiffusersConfigBase
|
from invokeai.backend.model_manager.config import DiffusersConfigBase
|
||||||
|
|
||||||
from .. import ModelLoader, ModelLoaderRegistry
|
from .. import ModelLoader, ModelLoaderRegistry
|
||||||
|
|||||||
@@ -7,9 +7,9 @@ from typing import Optional
|
|||||||
import torch
|
import torch
|
||||||
|
|
||||||
from invokeai.backend.ip_adapter.ip_adapter import build_ip_adapter
|
from invokeai.backend.ip_adapter.ip_adapter import build_ip_adapter
|
||||||
from invokeai.backend.model_manager import AnyModel, AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
|
from invokeai.backend.model_manager import AnyModelConfig, BaseModelType, ModelFormat, ModelType, SubModelType
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.load import ModelLoader, ModelLoaderRegistry
|
from invokeai.backend.model_manager.load import ModelLoader, ModelLoaderRegistry
|
||||||
from invokeai.backend.raw_model import RawModel
|
|
||||||
|
|
||||||
|
|
||||||
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.IPAdapter, format=ModelFormat.InvokeAI)
|
@ModelLoaderRegistry.register(base=BaseModelType.Any, type=ModelType.IPAdapter, format=ModelFormat.InvokeAI)
|
||||||
@@ -25,7 +25,7 @@ class IPAdapterInvokeAILoader(ModelLoader):
|
|||||||
if submodel_type is not None:
|
if submodel_type is not None:
|
||||||
raise ValueError("There are no submodels in an IP-Adapter model.")
|
raise ValueError("There are no submodels in an IP-Adapter model.")
|
||||||
model_path = Path(config.path)
|
model_path = Path(config.path)
|
||||||
model: RawModel = build_ip_adapter(
|
model = build_ip_adapter(
|
||||||
ip_adapter_ckpt_path=model_path,
|
ip_adapter_ckpt_path=model_path,
|
||||||
device=torch.device("cpu"),
|
device=torch.device("cpu"),
|
||||||
dtype=self._torch_dtype,
|
dtype=self._torch_dtype,
|
||||||
|
|||||||
@@ -6,17 +6,17 @@ from pathlib import Path
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
from invokeai.app.services.config import InvokeAIAppConfig
|
from invokeai.app.services.config import InvokeAIAppConfig
|
||||||
from invokeai.backend.lora import LoRAModelRaw
|
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
ModelFormat,
|
ModelFormat,
|
||||||
ModelType,
|
ModelType,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
)
|
)
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
from invokeai.backend.model_manager.load.convert_cache import ModelConvertCacheBase
|
||||||
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
from invokeai.backend.model_manager.load.model_cache.model_cache_base import ModelCacheBase
|
||||||
|
from invokeai.backend.peft.peft_model import PeftModel
|
||||||
|
|
||||||
from .. import ModelLoader, ModelLoaderRegistry
|
from .. import ModelLoader, ModelLoaderRegistry
|
||||||
|
|
||||||
@@ -47,7 +47,7 @@ class LoRALoader(ModelLoader):
|
|||||||
raise ValueError("There are no submodels in a LoRA model.")
|
raise ValueError("There are no submodels in a LoRA model.")
|
||||||
model_path = Path(config.path)
|
model_path = Path(config.path)
|
||||||
assert self._model_base is not None
|
assert self._model_base is not None
|
||||||
model = LoRAModelRaw.from_checkpoint(
|
model = PeftModel.from_checkpoint(
|
||||||
file_path=model_path,
|
file_path=model_path,
|
||||||
dtype=self._torch_dtype,
|
dtype=self._torch_dtype,
|
||||||
base_model=self._model_base,
|
base_model=self._model_base,
|
||||||
|
|||||||
@@ -6,13 +6,13 @@ from pathlib import Path
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
ModelFormat,
|
ModelFormat,
|
||||||
ModelType,
|
ModelType,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
)
|
)
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
|
|
||||||
from .. import ModelLoaderRegistry
|
from .. import ModelLoaderRegistry
|
||||||
from .generic_diffusers import GenericDiffusersLoader
|
from .generic_diffusers import GenericDiffusersLoader
|
||||||
|
|||||||
@@ -5,7 +5,6 @@ from pathlib import Path
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
ModelFormat,
|
ModelFormat,
|
||||||
@@ -13,6 +12,7 @@ from invokeai.backend.model_manager import (
|
|||||||
SchedulerPredictionType,
|
SchedulerPredictionType,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
)
|
)
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.config import (
|
from invokeai.backend.model_manager.config import (
|
||||||
CheckpointConfigBase,
|
CheckpointConfigBase,
|
||||||
DiffusersConfigBase,
|
DiffusersConfigBase,
|
||||||
|
|||||||
@@ -5,13 +5,13 @@ from pathlib import Path
|
|||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
from invokeai.backend.model_manager import (
|
from invokeai.backend.model_manager import (
|
||||||
AnyModel,
|
|
||||||
AnyModelConfig,
|
AnyModelConfig,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
ModelFormat,
|
ModelFormat,
|
||||||
ModelType,
|
ModelType,
|
||||||
SubModelType,
|
SubModelType,
|
||||||
)
|
)
|
||||||
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.textual_inversion import TextualInversionModelRaw
|
from invokeai.backend.textual_inversion import TextualInversionModelRaw
|
||||||
|
|
||||||
from .. import ModelLoader, ModelLoaderRegistry
|
from .. import ModelLoader, ModelLoaderRegistry
|
||||||
|
|||||||
@@ -14,7 +14,8 @@ from invokeai.backend.model_manager import (
|
|||||||
ModelFormat,
|
ModelFormat,
|
||||||
ModelType,
|
ModelType,
|
||||||
)
|
)
|
||||||
from invokeai.backend.model_manager.config import AnyModel, CheckpointConfigBase
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
|
from invokeai.backend.model_manager.config import CheckpointConfigBase
|
||||||
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
|
from invokeai.backend.model_manager.convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
|
||||||
|
|
||||||
from .. import ModelLoaderRegistry
|
from .. import ModelLoaderRegistry
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ from typing import Optional
|
|||||||
import torch
|
import torch
|
||||||
from diffusers import DiffusionPipeline
|
from diffusers import DiffusionPipeline
|
||||||
|
|
||||||
from invokeai.backend.model_manager.config import AnyModel
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -17,7 +17,7 @@ def skip_torch_weight_init() -> Generator[None, None, None]:
|
|||||||
completely unnecessary if the intent is to load checkpoint weights from disk for the layer. This context manager
|
completely unnecessary if the intent is to load checkpoint weights from disk for the layer. This context manager
|
||||||
monkey-patches common torch layers to skip the weight initialization step.
|
monkey-patches common torch layers to skip the weight initialization step.
|
||||||
"""
|
"""
|
||||||
torch_modules = [torch.nn.Linear, torch.nn.modules.conv._ConvNd, torch.nn.Embedding]
|
torch_modules = [torch.nn.Linear, torch.nn.modules.conv._ConvNd, torch.nn.Embedding, torch.nn.LayerNorm]
|
||||||
saved_functions = [hasattr(m, "reset_parameters") and m.reset_parameters for m in torch_modules]
|
saved_functions = [hasattr(m, "reset_parameters") and m.reset_parameters for m in torch_modules]
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
|||||||
@@ -13,7 +13,7 @@ from diffusers import OnnxRuntimeModel, UNet2DConditionModel
|
|||||||
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
||||||
|
|
||||||
from invokeai.app.shared.models import FreeUConfig
|
from invokeai.app.shared.models import FreeUConfig
|
||||||
from invokeai.backend.model_manager import AnyModel
|
from invokeai.backend.model_manager.any_model_type import AnyModel
|
||||||
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
|
from invokeai.backend.model_manager.load.optimizations import skip_torch_weight_init
|
||||||
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
from invokeai.backend.onnx.onnx_runtime import IAIOnnxRuntimeModel
|
||||||
|
|
||||||
|
|||||||
@@ -6,17 +6,16 @@ from typing import Any, List, Optional, Tuple, Union
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import onnx
|
import onnx
|
||||||
|
import torch
|
||||||
from onnx import numpy_helper
|
from onnx import numpy_helper
|
||||||
from onnxruntime import InferenceSession, SessionOptions, get_available_providers
|
from onnxruntime import InferenceSession, SessionOptions, get_available_providers
|
||||||
|
|
||||||
from ..raw_model import RawModel
|
|
||||||
|
|
||||||
ONNX_WEIGHTS_NAME = "model.onnx"
|
ONNX_WEIGHTS_NAME = "model.onnx"
|
||||||
|
|
||||||
|
|
||||||
# NOTE FROM LS: This was copied from Stalker's original implementation.
|
# NOTE FROM LS: This was copied from Stalker's original implementation.
|
||||||
# I have not yet gone through and fixed all the type hints
|
# I have not yet gone through and fixed all the type hints
|
||||||
class IAIOnnxRuntimeModel(RawModel):
|
class IAIOnnxRuntimeModel(torch.nn.Module):
|
||||||
class _tensor_access:
|
class _tensor_access:
|
||||||
def __init__(self, model): # type: ignore
|
def __init__(self, model): # type: ignore
|
||||||
self.model = model
|
self.model = model
|
||||||
@@ -103,7 +102,7 @@ class IAIOnnxRuntimeModel(RawModel):
|
|||||||
|
|
||||||
self.proto = onnx.load(model_path, load_external_data=False)
|
self.proto = onnx.load(model_path, load_external_data=False)
|
||||||
"""
|
"""
|
||||||
|
super().__init__()
|
||||||
self.proto = onnx.load(model_path, load_external_data=True)
|
self.proto = onnx.load(model_path, load_external_data=True)
|
||||||
# self.data = dict()
|
# self.data = dict()
|
||||||
# for tensor in self.proto.graph.initializer:
|
# for tensor in self.proto.graph.initializer:
|
||||||
|
|||||||
85
invokeai/backend/peft/peft_format_utils.py
Normal file
85
invokeai/backend/peft/peft_format_utils.py
Normal file
@@ -0,0 +1,85 @@
|
|||||||
|
import torch
|
||||||
|
from diffusers.utils.state_dict_utils import convert_state_dict
|
||||||
|
|
||||||
|
KOHYA_SS_TO_PEFT = {
|
||||||
|
"lora_down": "lora_A",
|
||||||
|
"lora_up": "lora_B",
|
||||||
|
# This is not a comprehensive dict. See `convert_state_dict_to_peft(...)` for more info on the conversion.
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def convert_state_dict_kohya_to_peft(state_dict: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
|
||||||
|
# TODO(ryand): Check that state_dict is in Kohya format.
|
||||||
|
|
||||||
|
peft_partial_state_dict = convert_state_dict(state_dict, KOHYA_SS_TO_PEFT)
|
||||||
|
|
||||||
|
peft_state_dict: dict[str, torch.Tensor] = {}
|
||||||
|
for key, weight in peft_partial_state_dict.items():
|
||||||
|
|
||||||
|
|
||||||
|
for kohya_key, weight in kohya_ss_partial_state_dict.items():
|
||||||
|
if "text_encoder_2." in kohya_key:
|
||||||
|
kohya_key = kohya_key.replace("text_encoder_2.", "lora_te2.")
|
||||||
|
elif "text_encoder." in kohya_key:
|
||||||
|
kohya_key = kohya_key.replace("text_encoder.", "lora_te1.")
|
||||||
|
elif "unet" in kohya_key:
|
||||||
|
kohya_key = kohya_key.replace("unet", "lora_unet")
|
||||||
|
kohya_key = kohya_key.replace(".", "_", kohya_key.count(".") - 2)
|
||||||
|
kohya_key = kohya_key.replace(peft_adapter_name, "") # Kohya doesn't take names
|
||||||
|
kohya_ss_state_dict[kohya_key] = weight
|
||||||
|
if "lora_down" in kohya_key:
|
||||||
|
alpha_key = f'{kohya_key.split(".")[0]}.alpha'
|
||||||
|
kohya_ss_state_dict[alpha_key] = torch.tensor(len(weight))
|
||||||
|
def convert_state_dict_to_kohya(state_dict, original_type=None, **kwargs):
|
||||||
|
r"""
|
||||||
|
Converts a `PEFT` state dict to `Kohya` format that can be used in AUTOMATIC1111, ComfyUI, SD.Next, InvokeAI, etc.
|
||||||
|
The method only supports the conversion from PEFT to Kohya for now.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_dict (`dict[str, torch.Tensor]`):
|
||||||
|
The state dict to convert.
|
||||||
|
original_type (`StateDictType`, *optional*):
|
||||||
|
The original type of the state dict, if not provided, the method will try to infer it automatically.
|
||||||
|
kwargs (`dict`, *args*):
|
||||||
|
Additional arguments to pass to the method.
|
||||||
|
|
||||||
|
- **adapter_name**: For example, in case of PEFT, some keys will be pre-pended
|
||||||
|
with the adapter name, therefore needs a special handling. By default PEFT also takes care of that in
|
||||||
|
`get_peft_model_state_dict` method:
|
||||||
|
https://github.com/huggingface/peft/blob/ba0477f2985b1ba311b83459d29895c809404e99/src/peft/utils/save_and_load.py#L92
|
||||||
|
but we add it here in case we don't want to rely on that method.
|
||||||
|
"""
|
||||||
|
|
||||||
|
peft_adapter_name = kwargs.pop("adapter_name", None)
|
||||||
|
if peft_adapter_name is not None:
|
||||||
|
peft_adapter_name = "." + peft_adapter_name
|
||||||
|
else:
|
||||||
|
peft_adapter_name = ""
|
||||||
|
|
||||||
|
if original_type is None:
|
||||||
|
if any(f".lora_A{peft_adapter_name}.weight" in k for k in state_dict.keys()):
|
||||||
|
original_type = StateDictType.PEFT
|
||||||
|
|
||||||
|
if original_type not in KOHYA_STATE_DICT_MAPPINGS.keys():
|
||||||
|
raise ValueError(f"Original type {original_type} is not supported")
|
||||||
|
|
||||||
|
# Use the convert_state_dict function with the appropriate mapping
|
||||||
|
kohya_ss_partial_state_dict = convert_state_dict(state_dict, KOHYA_STATE_DICT_MAPPINGS[StateDictType.PEFT])
|
||||||
|
kohya_ss_state_dict = {}
|
||||||
|
|
||||||
|
# Additional logic for replacing header, alpha parameters `.` with `_` in all keys
|
||||||
|
for kohya_key, weight in kohya_ss_partial_state_dict.items():
|
||||||
|
if "text_encoder_2." in kohya_key:
|
||||||
|
kohya_key = kohya_key.replace("text_encoder_2.", "lora_te2.")
|
||||||
|
elif "text_encoder." in kohya_key:
|
||||||
|
kohya_key = kohya_key.replace("text_encoder.", "lora_te1.")
|
||||||
|
elif "unet" in kohya_key:
|
||||||
|
kohya_key = kohya_key.replace("unet", "lora_unet")
|
||||||
|
kohya_key = kohya_key.replace(".", "_", kohya_key.count(".") - 2)
|
||||||
|
kohya_key = kohya_key.replace(peft_adapter_name, "") # Kohya doesn't take names
|
||||||
|
kohya_ss_state_dict[kohya_key] = weight
|
||||||
|
if "lora_down" in kohya_key:
|
||||||
|
alpha_key = f'{kohya_key.split(".")[0]}.alpha'
|
||||||
|
kohya_ss_state_dict[alpha_key] = torch.tensor(len(weight))
|
||||||
|
|
||||||
|
return kohya_ss_state_dict
|
||||||
52
invokeai/backend/peft/peft_model.py
Normal file
52
invokeai/backend/peft/peft_model.py
Normal file
@@ -0,0 +1,52 @@
|
|||||||
|
from pathlib import Path
|
||||||
|
from typing import Optional, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from diffusers.loaders.lora_conversion_utils import _convert_kohya_lora_to_diffusers
|
||||||
|
|
||||||
|
from invokeai.backend.model_manager.config import BaseModelType
|
||||||
|
from invokeai.backend.peft.sdxl_format_utils import convert_sdxl_keys_to_diffusers_format
|
||||||
|
from invokeai.backend.util.serialization import load_state_dict
|
||||||
|
|
||||||
|
|
||||||
|
class PeftModel:
|
||||||
|
"""A class for loading and managing parameter-efficient fine-tuning models."""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
name: str,
|
||||||
|
state_dict: dict[str, torch.Tensor],
|
||||||
|
network_alphas: dict[str, torch.Tensor],
|
||||||
|
):
|
||||||
|
self.name = name
|
||||||
|
self.state_dict = state_dict
|
||||||
|
self.network_alphas = network_alphas
|
||||||
|
|
||||||
|
def calc_size(self) -> int:
|
||||||
|
model_size = 0
|
||||||
|
for tensor in self.state_dict.values():
|
||||||
|
model_size += tensor.nelement() * tensor.element_size()
|
||||||
|
return model_size
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_checkpoint(
|
||||||
|
cls,
|
||||||
|
file_path: Union[str, Path],
|
||||||
|
device: Optional[torch.device] = None,
|
||||||
|
dtype: Optional[torch.dtype] = None,
|
||||||
|
base_model: Optional[BaseModelType] = None,
|
||||||
|
):
|
||||||
|
device = device or torch.device("cpu")
|
||||||
|
dtype = dtype or torch.float32
|
||||||
|
|
||||||
|
file_path = Path(file_path)
|
||||||
|
|
||||||
|
state_dict = load_state_dict(file_path, device=str(device))
|
||||||
|
# lora_unet_up_blocks_1_attentions_2_transformer_blocks_1_ff_net_2.lora_down.weight
|
||||||
|
if base_model == BaseModelType.StableDiffusionXL:
|
||||||
|
state_dict = convert_sdxl_keys_to_diffusers_format(state_dict)
|
||||||
|
|
||||||
|
# TODO(ryand): We shouldn't be using an unexported function from diffusers here. Consider opening an upstream PR
|
||||||
|
# to move this function to state_dict_utils.py.
|
||||||
|
state_dict, network_alphas = _convert_kohya_lora_to_diffusers(state_dict)
|
||||||
|
return cls(name=file_path.stem, state_dict=state_dict, network_alphas=network_alphas)
|
||||||
227
invokeai/backend/peft/peft_model_patcher.py
Normal file
227
invokeai/backend/peft/peft_model_patcher.py
Normal file
@@ -0,0 +1,227 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
from contextlib import contextmanager
|
||||||
|
from typing import Iterator, Tuple
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from diffusers.models.lora import text_encoder_attn_modules, text_encoder_mlp_modules
|
||||||
|
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
|
||||||
|
from diffusers.utils.peft_utils import get_peft_kwargs, scale_lora_layers
|
||||||
|
from diffusers.utils.state_dict_utils import convert_state_dict_to_peft, convert_unet_state_dict_to_peft
|
||||||
|
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
|
||||||
|
|
||||||
|
from invokeai.backend.peft.peft_model import PeftModel
|
||||||
|
|
||||||
|
UNET_NAME = "unet"
|
||||||
|
|
||||||
|
|
||||||
|
class PeftModelPatcher:
|
||||||
|
@classmethod
|
||||||
|
@contextmanager
|
||||||
|
@torch.no_grad()
|
||||||
|
def apply_peft_model_to_text_encoder(
|
||||||
|
cls,
|
||||||
|
text_encoder: torch.nn.Module,
|
||||||
|
peft_models: Iterator[Tuple[PeftModel, float]],
|
||||||
|
prefix: str,
|
||||||
|
):
|
||||||
|
original_weights = {}
|
||||||
|
|
||||||
|
try:
|
||||||
|
for peft_model, peft_model_weight in peft_models:
|
||||||
|
keys = list(peft_model.state_dict.keys())
|
||||||
|
|
||||||
|
# Load the layers corresponding to text encoder and make necessary adjustments.
|
||||||
|
text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix]
|
||||||
|
text_encoder_lora_state_dict = {
|
||||||
|
k.replace(f"{prefix}.", ""): v for k, v in peft_model.state_dict.items() if k in text_encoder_keys
|
||||||
|
}
|
||||||
|
|
||||||
|
if len(text_encoder_lora_state_dict) == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if peft_model.name in getattr(text_encoder, "peft_config", {}):
|
||||||
|
raise ValueError(f"Adapter name {peft_model.name} already in use in the text encoder ({prefix}).")
|
||||||
|
|
||||||
|
rank = {}
|
||||||
|
# TODO(ryand): Is this necessary?
|
||||||
|
# text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict)
|
||||||
|
|
||||||
|
text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict)
|
||||||
|
|
||||||
|
for name, _ in text_encoder_attn_modules(text_encoder):
|
||||||
|
rank_key = f"{name}.out_proj.lora_B.weight"
|
||||||
|
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1]
|
||||||
|
|
||||||
|
patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
|
||||||
|
if patch_mlp:
|
||||||
|
for name, _ in text_encoder_mlp_modules(text_encoder):
|
||||||
|
rank_key_fc1 = f"{name}.fc1.lora_B.weight"
|
||||||
|
rank_key_fc2 = f"{name}.fc2.lora_B.weight"
|
||||||
|
|
||||||
|
rank[rank_key_fc1] = text_encoder_lora_state_dict[rank_key_fc1].shape[1]
|
||||||
|
rank[rank_key_fc2] = text_encoder_lora_state_dict[rank_key_fc2].shape[1]
|
||||||
|
|
||||||
|
network_alphas = peft_model.network_alphas
|
||||||
|
if network_alphas is not None:
|
||||||
|
alpha_keys = [
|
||||||
|
k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix
|
||||||
|
]
|
||||||
|
network_alphas = {
|
||||||
|
k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
|
||||||
|
}
|
||||||
|
|
||||||
|
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False)
|
||||||
|
lora_config_kwargs["inference_mode"] = True
|
||||||
|
lora_config = LoraConfig(**lora_config_kwargs)
|
||||||
|
|
||||||
|
new_text_encoder = inject_adapter_in_model(lora_config, text_encoder, peft_model.name)
|
||||||
|
incompatible_keys = set_peft_model_state_dict(
|
||||||
|
new_text_encoder, text_encoder_lora_state_dict, peft_model.name
|
||||||
|
)
|
||||||
|
if incompatible_keys is not None:
|
||||||
|
# check only for unexpected keys
|
||||||
|
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
||||||
|
if unexpected_keys:
|
||||||
|
raise ValueError(f"Failed to inject unexpected PEFT keys: {unexpected_keys}")
|
||||||
|
|
||||||
|
# inject LoRA layers and load the state dict
|
||||||
|
# in transformers we automatically check whether the adapter name is already in use or not
|
||||||
|
# text_encoder.load_adapter(
|
||||||
|
# adapter_name=adapter_name,
|
||||||
|
# adapter_state_dict=text_encoder_lora_state_dict,
|
||||||
|
# peft_config=lora_config,
|
||||||
|
# )
|
||||||
|
|
||||||
|
scale_lora_layers(text_encoder, weight=peft_model_weight)
|
||||||
|
text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype)
|
||||||
|
|
||||||
|
yield
|
||||||
|
finally:
|
||||||
|
# TODO
|
||||||
|
pass
|
||||||
|
# for module_key, weight in original_weights.items():
|
||||||
|
# model.get_submodule(module_key).weight.copy_(weight)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@contextmanager
|
||||||
|
@torch.no_grad()
|
||||||
|
def apply_peft_model_to_unet(
|
||||||
|
cls,
|
||||||
|
unet: UNet2DConditionModel,
|
||||||
|
peft_models: Iterator[Tuple[PeftModel, float]],
|
||||||
|
):
|
||||||
|
try:
|
||||||
|
for peft_model, peft_model_weight in peft_models:
|
||||||
|
keys = list(peft_model.state_dict.keys())
|
||||||
|
|
||||||
|
unet_keys = [k for k in keys if k.startswith(UNET_NAME)]
|
||||||
|
state_dict = {
|
||||||
|
k.replace(f"{UNET_NAME}.", ""): v for k, v in peft_model.state_dict.items() if k in unet_keys
|
||||||
|
}
|
||||||
|
|
||||||
|
network_alphas = peft_model.network_alphas
|
||||||
|
if network_alphas is not None:
|
||||||
|
alpha_keys = [k for k in network_alphas.keys() if k.startswith(UNET_NAME)]
|
||||||
|
network_alphas = {
|
||||||
|
k.replace(f"{UNET_NAME}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
|
||||||
|
}
|
||||||
|
|
||||||
|
if len(state_dict) == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if peft_model.name in getattr(unet, "peft_config", {}):
|
||||||
|
raise ValueError(f"Adapter name {peft_model.name} already in use in the Unet.")
|
||||||
|
|
||||||
|
state_dict = convert_unet_state_dict_to_peft(state_dict)
|
||||||
|
|
||||||
|
if network_alphas is not None:
|
||||||
|
# The alphas state dict have the same structure as Unet, thus we convert it to peft format using
|
||||||
|
# `convert_unet_state_dict_to_peft` method.
|
||||||
|
network_alphas = convert_unet_state_dict_to_peft(network_alphas)
|
||||||
|
|
||||||
|
rank = {}
|
||||||
|
for key, val in state_dict.items():
|
||||||
|
if "lora_B" in key:
|
||||||
|
rank[key] = val.shape[1]
|
||||||
|
|
||||||
|
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict, is_unet=True)
|
||||||
|
lora_config_kwargs["inference_mode"] = True
|
||||||
|
lora_config = LoraConfig(**lora_config_kwargs)
|
||||||
|
|
||||||
|
inject_adapter_in_model(lora_config, unet, adapter_name=peft_model.name)
|
||||||
|
incompatible_keys = set_peft_model_state_dict(unet, state_dict, peft_model.name)
|
||||||
|
if incompatible_keys is not None:
|
||||||
|
# check only for unexpected keys
|
||||||
|
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
||||||
|
if unexpected_keys:
|
||||||
|
raise ValueError(f"Failed to inject unexpected PEFT keys: {unexpected_keys}")
|
||||||
|
|
||||||
|
# TODO(ryand): What does this do?
|
||||||
|
unet.load_attn_procs(state_dict, network_alphas=network_alphas, low_cpu_mem_usage=True)
|
||||||
|
|
||||||
|
# TODO(ryand): Apply the lora weight. Where does diffusers do this? They don't seem to do it when they
|
||||||
|
# patch the UNet.
|
||||||
|
yield
|
||||||
|
finally:
|
||||||
|
# TODO
|
||||||
|
pass
|
||||||
|
# for module_key, weight in original_weights.items():
|
||||||
|
# model.get_submodule(module_key).weight.copy_(weight)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@contextmanager
|
||||||
|
@torch.no_grad()
|
||||||
|
def apply_peft_patch(
|
||||||
|
cls,
|
||||||
|
model: torch.nn.Module,
|
||||||
|
peft_models: Iterator[Tuple[PeftModel, float]],
|
||||||
|
prefix: str,
|
||||||
|
):
|
||||||
|
original_weights = {}
|
||||||
|
|
||||||
|
model_state_dict = model.state_dict()
|
||||||
|
try:
|
||||||
|
for peft_model, peft_model_weight in peft_models:
|
||||||
|
for layer_key, layer in peft_model.state_dict.items():
|
||||||
|
if not layer_key.startswith(prefix):
|
||||||
|
continue
|
||||||
|
|
||||||
|
module_key = layer_key.replace(prefix + ".", "")
|
||||||
|
# TODO(ryand): Make this work.
|
||||||
|
|
||||||
|
module = model_state_dict[module_key]
|
||||||
|
|
||||||
|
# All of the LoRA weight calculations will be done on the same device as the module weight.
|
||||||
|
# (Performance will be best if this is a CUDA device.)
|
||||||
|
device = module.weight.device
|
||||||
|
dtype = module.weight.dtype
|
||||||
|
|
||||||
|
if module_key not in original_weights:
|
||||||
|
# TODO(ryand): Set non_blocking = True?
|
||||||
|
original_weights[module_key] = module.weight.detach().to(device="cpu", copy=True)
|
||||||
|
|
||||||
|
layer_scale = layer.alpha / layer.rank if (layer.alpha and layer.rank) else 1.0
|
||||||
|
|
||||||
|
# We intentionally move to the target device first, then cast. Experimentally, this was found to
|
||||||
|
# be significantly faster for 16-bit CPU tensors being moved to a CUDA device than doing the
|
||||||
|
# same thing in a single call to '.to(...)'.
|
||||||
|
layer.to(device=device)
|
||||||
|
layer.to(dtype=torch.float32)
|
||||||
|
# TODO(ryand): Using torch.autocast(...) over explicit casting may offer a speed benefit on CUDA
|
||||||
|
# devices here. Experimentally, it was found to be very slow on CPU. More investigation needed.
|
||||||
|
layer_weight = layer.get_weight(module.weight) * (lora_weight * layer_scale)
|
||||||
|
layer.to(device=torch.device("cpu"))
|
||||||
|
|
||||||
|
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
|
||||||
|
if module.weight.shape != layer_weight.shape:
|
||||||
|
# TODO: debug on lycoris
|
||||||
|
assert hasattr(layer_weight, "reshape")
|
||||||
|
layer_weight = layer_weight.reshape(module.weight.shape)
|
||||||
|
|
||||||
|
assert isinstance(layer_weight, torch.Tensor) # mypy thinks layer_weight is a float|Any ??!
|
||||||
|
module.weight += layer_weight.to(dtype=dtype)
|
||||||
|
yield
|
||||||
|
finally:
|
||||||
|
for module_key, weight in original_weights.items():
|
||||||
|
model.get_submodule(module_key).weight.copy_(weight)
|
||||||
154
invokeai/backend/peft/sdxl_format_utils.py
Normal file
154
invokeai/backend/peft/sdxl_format_utils.py
Normal file
@@ -0,0 +1,154 @@
|
|||||||
|
import bisect
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def convert_sdxl_keys_to_diffusers_format(state_dict: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
|
||||||
|
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
|
||||||
|
|
||||||
|
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
|
||||||
|
diffusers format, then this function will have no effect.
|
||||||
|
|
||||||
|
This function is adapted from:
|
||||||
|
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
|
||||||
|
|
||||||
|
Args:
|
||||||
|
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dict[str, Tensor]: The diffusers-format state_dict.
|
||||||
|
"""
|
||||||
|
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
|
||||||
|
not_converted_count = 0 # The number of keys that were not converted.
|
||||||
|
|
||||||
|
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
|
||||||
|
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
|
||||||
|
# `input_blocks_4_1_proj_in`.
|
||||||
|
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
|
||||||
|
stability_unet_keys.sort()
|
||||||
|
|
||||||
|
new_state_dict = {}
|
||||||
|
for full_key, value in state_dict.items():
|
||||||
|
if full_key.startswith("lora_unet_"):
|
||||||
|
search_key = full_key.replace("lora_unet_", "")
|
||||||
|
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
|
||||||
|
position = bisect.bisect_right(stability_unet_keys, search_key)
|
||||||
|
map_key = stability_unet_keys[position - 1]
|
||||||
|
# Now, check if the map_key *actually* matches the search_key.
|
||||||
|
if search_key.startswith(map_key):
|
||||||
|
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
|
||||||
|
new_state_dict[new_key] = value
|
||||||
|
converted_count += 1
|
||||||
|
else:
|
||||||
|
new_state_dict[full_key] = value
|
||||||
|
not_converted_count += 1
|
||||||
|
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
|
||||||
|
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
|
||||||
|
new_state_dict[full_key] = value
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
|
||||||
|
|
||||||
|
if converted_count > 0 and not_converted_count > 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
|
||||||
|
f" not_converted={not_converted_count}"
|
||||||
|
)
|
||||||
|
|
||||||
|
return new_state_dict
|
||||||
|
|
||||||
|
|
||||||
|
# Code based on:
|
||||||
|
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
|
||||||
|
def make_sdxl_unet_conversion_map() -> list[tuple[str, str]]:
|
||||||
|
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
|
||||||
|
unet_conversion_map_layer: list[tuple[str, str]] = []
|
||||||
|
|
||||||
|
for i in range(3): # num_blocks is 3 in sdxl
|
||||||
|
# loop over downblocks/upblocks
|
||||||
|
for j in range(2):
|
||||||
|
# loop over resnets/attentions for downblocks
|
||||||
|
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
||||||
|
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
||||||
|
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
||||||
|
|
||||||
|
if i < 3:
|
||||||
|
# no attention layers in down_blocks.3
|
||||||
|
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
||||||
|
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
||||||
|
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
||||||
|
|
||||||
|
for j in range(3):
|
||||||
|
# loop over resnets/attentions for upblocks
|
||||||
|
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
||||||
|
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
||||||
|
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
||||||
|
|
||||||
|
# if i > 0: commentout for sdxl
|
||||||
|
# no attention layers in up_blocks.0
|
||||||
|
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
||||||
|
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
||||||
|
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
||||||
|
|
||||||
|
if i < 3:
|
||||||
|
# no downsample in down_blocks.3
|
||||||
|
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
||||||
|
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
||||||
|
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
||||||
|
|
||||||
|
# no upsample in up_blocks.3
|
||||||
|
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
||||||
|
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
||||||
|
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
||||||
|
|
||||||
|
hf_mid_atn_prefix = "mid_block.attentions.0."
|
||||||
|
sd_mid_atn_prefix = "middle_block.1."
|
||||||
|
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
||||||
|
|
||||||
|
for j in range(2):
|
||||||
|
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
||||||
|
sd_mid_res_prefix = f"middle_block.{2*j}."
|
||||||
|
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
||||||
|
|
||||||
|
unet_conversion_map_resnet = [
|
||||||
|
# (stable-diffusion, HF Diffusers)
|
||||||
|
("in_layers.0.", "norm1."),
|
||||||
|
("in_layers.2.", "conv1."),
|
||||||
|
("out_layers.0.", "norm2."),
|
||||||
|
("out_layers.3.", "conv2."),
|
||||||
|
("emb_layers.1.", "time_emb_proj."),
|
||||||
|
("skip_connection.", "conv_shortcut."),
|
||||||
|
]
|
||||||
|
|
||||||
|
unet_conversion_map: list[tuple[str, str]] = []
|
||||||
|
for sd, hf in unet_conversion_map_layer:
|
||||||
|
if "resnets" in hf:
|
||||||
|
for sd_res, hf_res in unet_conversion_map_resnet:
|
||||||
|
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
||||||
|
else:
|
||||||
|
unet_conversion_map.append((sd, hf))
|
||||||
|
|
||||||
|
for j in range(2):
|
||||||
|
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
||||||
|
sd_time_embed_prefix = f"time_embed.{j*2}."
|
||||||
|
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
||||||
|
|
||||||
|
for j in range(2):
|
||||||
|
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
||||||
|
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
||||||
|
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
||||||
|
|
||||||
|
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
||||||
|
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
||||||
|
unet_conversion_map.append(("out.2.", "conv_out."))
|
||||||
|
|
||||||
|
return unet_conversion_map
|
||||||
|
|
||||||
|
|
||||||
|
# A mapping of state_dict key prefixes from Stability AI SDXL format to diffusers SDXL format.
|
||||||
|
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
|
||||||
|
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
|
||||||
|
}
|
||||||
@@ -1,15 +0,0 @@
|
|||||||
"""Base class for 'Raw' models.
|
|
||||||
|
|
||||||
The RawModel class is the base class of LoRAModelRaw and TextualInversionModelRaw,
|
|
||||||
and is used for type checking of calls to the model patcher. Its main purpose
|
|
||||||
is to avoid a circular import issues when lora.py tries to import BaseModelType
|
|
||||||
from invokeai.backend.model_manager.config, and the latter tries to import LoRAModelRaw
|
|
||||||
from lora.py.
|
|
||||||
|
|
||||||
The term 'raw' was introduced to describe a wrapper around a torch.nn.Module
|
|
||||||
that adds additional methods and attributes.
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
|
||||||
class RawModel:
|
|
||||||
"""Base class for 'Raw' model wrappers."""
|
|
||||||
@@ -9,10 +9,8 @@ from safetensors.torch import load_file
|
|||||||
from transformers import CLIPTokenizer
|
from transformers import CLIPTokenizer
|
||||||
from typing_extensions import Self
|
from typing_extensions import Self
|
||||||
|
|
||||||
from .raw_model import RawModel
|
|
||||||
|
|
||||||
|
class TextualInversionModelRaw(torch.nn.Module):
|
||||||
class TextualInversionModelRaw(RawModel):
|
|
||||||
embedding: torch.Tensor # [n, 768]|[n, 1280]
|
embedding: torch.Tensor # [n, 768]|[n, 1280]
|
||||||
embedding_2: Optional[torch.Tensor] = None # [n, 768]|[n, 1280] - for SDXL models
|
embedding_2: Optional[torch.Tensor] = None # [n, 768]|[n, 1280] - for SDXL models
|
||||||
|
|
||||||
|
|||||||
37
invokeai/backend/util/serialization.py
Normal file
37
invokeai/backend/util/serialization.py
Normal file
@@ -0,0 +1,37 @@
|
|||||||
|
from pathlib import Path
|
||||||
|
from typing import Any, Optional, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from safetensors.torch import load_file
|
||||||
|
|
||||||
|
|
||||||
|
def state_dict_to(
|
||||||
|
state_dict: dict[str, torch.Tensor], device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None
|
||||||
|
) -> dict[str, torch.Tensor]:
|
||||||
|
new_state_dict: dict[str, torch.Tensor] = {}
|
||||||
|
for k, v in state_dict.items():
|
||||||
|
new_state_dict[k] = v.to(device=device, dtype=dtype, non_blocking=True)
|
||||||
|
return new_state_dict
|
||||||
|
|
||||||
|
|
||||||
|
def load_state_dict(file_path: Union[str, Path], device: str = "cpu") -> Any:
|
||||||
|
"""Load a state_dict from a file that may be in either PyTorch or safetensors format. The file format is inferred
|
||||||
|
from the file extension.
|
||||||
|
"""
|
||||||
|
file_path = Path(file_path)
|
||||||
|
|
||||||
|
if file_path.suffix == ".safetensors":
|
||||||
|
state_dict = load_file(
|
||||||
|
file_path,
|
||||||
|
device=device,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# weights_only=True is used to address a security vulnerability that allows arbitrary code execution.
|
||||||
|
# This option was first introduced in https://github.com/pytorch/pytorch/pull/86812.
|
||||||
|
#
|
||||||
|
# mmap=True is used to both reduce memory usage and speed up loading. This setting causes torch.load() to more
|
||||||
|
# closely mirror the behaviour of safetensors.torch.load_file(). This option was first introduced in
|
||||||
|
# https://github.com/pytorch/pytorch/pull/102549. The discussion on that PR provides helpful context.
|
||||||
|
state_dict = torch.load(file_path, map_location=device, weights_only=True, mmap=True)
|
||||||
|
|
||||||
|
return state_dict
|
||||||
Reference in New Issue
Block a user