Compare commits

...

24 Commits

Author SHA1 Message Date
Lincoln Stein
bd85e00530 Last PR needed for v2.3.1 (#2788)
- Add curated set of starter models based on team discussion. The final
list of starter models can be found in
`invokeai/configs/INITIAL_MODELS.yaml`

- To test model installation, I selected and installed all the models on
the list. This led to my discovering that when there are no more starter
models to display, the console front end crashes. So I made a fix to
this in which the entire starter model selection is no longer shown.

- Update model table in 050_INSTALL_MODELS.md

- Add guide to dealing with low-memory situations
- Version is now `v2.3.1`
2023-02-24 10:31:38 -05:00
Lincoln Stein
4e446130d8 Merge branch 'v2.3' into enhance/curated-2.3.1-models 2023-02-24 10:30:42 -05:00
Lincoln Stein
4c93b514bb bump version to final 2.3.1 2023-02-24 10:04:41 -05:00
Lincoln Stein
d078941316 add low memory troubleshooting guide 2023-02-24 10:04:06 -05:00
Lincoln Stein
230d3a496d document starter models
- add new script `scripts/make_models_markdown_table.py` that parses
  INITIAL_MODELS.yaml and creates markdown table for the model installation
  documentation file

- update 050_INSTALLING_MODELS.md with above table, and add a warning
  about additional license terms that apply to some of the models.
2023-02-24 09:33:07 -05:00
Jonathan
ec2890c19b Run garbage collection to allow the CUDA cache to completely empty. (#2791) 2023-02-24 08:48:54 -05:00
Lincoln Stein
a540cc537f add curated set of HuggingFace diffusers models for 2.3.1 release
- Final list can be found in invokeai/configs/INITIAL_MODELS.yaml

- After installing all the models, I discovered a bug in the file
  selection form that caused a crash when no remaining uninstalled
  models remained. So had to fix this.
2023-02-24 00:53:48 -05:00
Lincoln Stein
39c57aa358 fix generate backend to generate "accurate" intermediate images (#2787)
The sample_to_image method in `ldm.invoke.generator.base` was still
using ckpt-era code. As a result when the WebUI was set to show
"accurate" intermediate images, there'd be a crash. This PR corrects the
problem.

- Closes #2784
- Closes #2775
2023-02-24 00:33:29 -05:00
Lincoln Stein
2d990c1f54 Merge branch 'v2.3' into bugfix/webui-accurate-intermediates 2023-02-23 22:07:18 -05:00
Lincoln Stein
7fb2da8741 fix generate backend to generate "accurate" intermediate images
- Closes #2784
- Closes #2775
2023-02-23 22:03:28 -05:00
Lincoln Stein
c69fcb1c10 fix ckpt_convert module to work with dreambooth v2 models (#2776)
- Discord member @marcus.llewellyn reported that some civitai
2.1-derived checkpoints were not converting properly (probably
dreambooth-generated):
https://discord.com/channels/1020123559063990373/1078386197589655582/1078387806122025070

- @blessedcoolant tracked this down to a missing key that was used to
derive vector length of the CLIP model used by fetching the second
dimension of the tensor at "cond_stage_model.model.text_projection".

- On inspection, I found that the same second dimension can be recovered
from key 'cond_stage_model.model.ln_final.bias', and use that instead. I
hope this is correct; tested on multiple v1, v2 and inpainting models
and they converted correctly.

- While debugging this, I found and fixed several other issues:

- model download script was not pre-downloading the OpenCLIP
text_encoder or text_tokenizer. This is fixed.
- got rid of legacy code in `ckpt_to_diffuser.py` and replaced with
calls into `model_manager`
  - more consistent status reporting in the CLI.
2023-02-23 21:51:57 -05:00
Lincoln Stein
0982548e1f Merge branch 'v2.3' into bugfix/v2-model-conversion 2023-02-23 21:27:49 -05:00
Lincoln Stein
24407048a5 Version 2.3.1-rc4 (#2782)
Just a version bump to use a format recognized by PyPi.
2023-02-23 18:09:43 -05:00
Lincoln Stein
b5b541c747 bump version; use correct format for PyPi 2023-02-23 17:47:36 -05:00
Lincoln Stein
a094bbd839 push to pypi from branch v2.3 (#2778)
This change will cause releases on the v2.3 branch to be pushed to PyPi.
2023-02-23 17:20:24 -05:00
Lincoln Stein
73dda812ea push to pypi from branch v2.3
This change will cause releases on the v2.3 branch to be pushed
to PyPi.
2023-02-23 16:55:25 -05:00
Lincoln Stein
8eaf1c4033 Revert "(updater) style 'pip' progress to use dark background"
This reverts commit 89239d1c54.

- This was making a subprocess call to 'bash', and hence crashing
  on windows systems!
2023-02-23 16:33:57 -05:00
Lincoln Stein
4f44b64052 fix ckpt_convert module to work with dreambooth v2 models
- Discord member @marcus.llewellyn reported that some civitai 2.1-derived checkpoints were
  not converting properly (probably dreambooth-generated):
  https://discord.com/channels/1020123559063990373/1078386197589655582/1078387806122025070

- @blessedcoolant tracked this down to a missing key that was used to
  derive vector length of the CLIP model used by fetching the second
  dimension of the tensor at "cond_stage_model.model.text_projection".
  His proposed solution was to hardcode a value of 1024.

- On inspection, I found that the same second dimension can be
  recovered from key 'cond_stage_model.model.ln_final.bias', and use
  that instead. I hope this is correct; tested on multiple v1, v2 and
  inpainting models and they converted correctly.

- While debugging this, I found and fixed several other issues:

  - model download script was not pre-downloading the OpenCLIP
    text_encoder or text_tokenizer. This is fixed.
  - got rid of legacy code in `ckpt_to_diffuser.py` and replaced
    with calls into `model_manager`
  - more consistent status reporting in the CLI.
2023-02-23 15:43:58 -05:00
Lincoln Stein
c559bf3e10 Add a sanity check to root directory finding algorithm (#2772)
Root directory finding algorithm is:

2) use --root argument
2) use INVOKEAI_ROOT environment variable
3) use VIRTUAL_ENV environment variable
4) use ~/invokeai

Since developers are liable to put virtual environments in their
favorite places, not necessarily in the invokeai root directory, this PR
adds a sanity check that looks for the existence of
`VIRTUAL_ENV/invokeai.init`, and moves on to (4) if not found.
2023-02-23 11:37:11 -05:00
Lincoln Stein
a485515bc6 Merge branch 'v2.3' into bugfix/sanity-check-rootdir 2023-02-23 11:14:52 -05:00
Lincoln Stein
2c9b29725b Bugfix/windows install (#2770)
# This will constitute v2.3.1+rc2

## Windows installer enhancements
  
1. resize installer window to give more room for configure and download
forms
2. replace '\' with '/' in directory names to allow user to
drag-and-drop
       folders into the dialogue boxes that accept directories.
3. similar change in CLI for the !import_model and !convert_model
commands
4. better error reporting when a model download fails due to network
errors
5. put the launcher scripts into a loop so that menu reappears after
       invokeai, merge script, etc exits. User can quit with "Q".
6. do not try to download fp16 of sd-ft-mse-vae, since it doesn't exist.
7. cleaned up status reporting when installing models
8. Detect when install failed for some reason and print helpful error
      message rather than stack trace.
9. Detect window size and resize to minimum acceptable values to provide
      better display of configure and install forms.
10. Fix a bug in the CLI which prevented diffusers imported by their
repo_ids
from being correctly registered in the current session (though they
install
      correctly)
11. Capitalize the "i" in Imported in the autogenerated descriptions.
2023-02-23 11:14:30 -05:00
Lincoln Stein
28612c899a add a sanity check to root directory finding algorithm
Root directory finding algorithm is:

2) use --root argument
2) use INVOKEAI_ROOT environment variable
3) use VIRTUAL_ENV environment variable
4) use ~/invokeai

Since developer's are liable to put virtual environments in their
favorite places, not necessarily in the invokeai root directory, this
PR adds a sanity check that looks for the existence of
VIRTUAL_ENV/invokeai.init, and moves to (4) if not found.
2023-02-23 10:15:01 -05:00
Lincoln Stein
88acbeaa35 install creator tags but don't commit 2023-02-23 07:08:41 -05:00
Lincoln Stein
46729efe95 upgrade to compel 0.1.7 2023-02-23 07:06:40 -05:00
17 changed files with 283 additions and 178 deletions

View File

@@ -28,7 +28,7 @@ jobs:
run: twine check dist/*
- name: check PyPI versions
if: github.ref == 'refs/heads/main'
if: github.ref == 'refs/heads/main' || github.ref == 'refs/heads/v2.3'
run: |
pip install --upgrade requests
python -c "\

View File

@@ -221,7 +221,10 @@ experimental versions later.
- ***NSFW checker***
If checked, InvokeAI will test images for potential sexual content
and blur them out if found.
and blur them out if found. Note that the NSFW checker consumes
an additional 0.6 GB of VRAM on top of the 2-3 GB of VRAM used
by most image models. If you have a low VRAM GPU (4-6 GB), you
can reduce out of memory errors by disabling the checker.
- ***HuggingFace Access Token***
InvokeAI has the ability to download embedded styles and subjects
@@ -440,6 +443,52 @@ the [InvokeAI Issues](https://github.com/invoke-ai/InvokeAI/issues) section, or
visit our [Discord Server](https://discord.gg/ZmtBAhwWhy) for interactive
assistance.
### Out of Memory Issues
The models are large, VRAM is expensive, and you may find yourself
faced with Out of Memory errors when generating images. Here are some
tips to reduce the problem:
* **4 GB of VRAM**
This should be adequate for 512x512 pixel images using Stable Diffusion 1.5
and derived models, provided that you **disable** the NSFW checker. To
disable the filter, do one of the following:
* Select option (6) "_change InvokeAI startup options_" from the
launcher. This will bring up the console-based startup settings
dialogue and allow you to unselect the "NSFW Checker" option.
* Start the startup settings dialogue directly by running
`invokeai-configure --skip-sd-weights --skip-support-models`
from the command line.
* Find the `invokeai.init` initialization file in the InvokeAI root
directory, open it in a text editor, and change `--nsfw_checker`
to `--no-nsfw_checker`
If you are on a CUDA system, you can realize significant memory
savings by activating the `xformers` library as described above. The
downside is `xformers` introduces non-deterministic behavior, such
that images generated with exactly the same prompt and settings will
be slightly different from each other. See above for more information.
* **6 GB of VRAM**
This is a border case. Using the SD 1.5 series you should be able to
generate images up to 640x640 with the NSFW checker enabled, and up to
1024x1024 with it disabled and `xformers` activated.
If you run into persistent memory issues there are a series of
environment variables that you can set before launching InvokeAI that
alter how the PyTorch machine learning library manages memory. See
https://pytorch.org/docs/stable/notes/cuda.html#memory-management for
a list of these tweaks.
* **12 GB of VRAM**
This should be sufficient to generate larger images up to about
1280x1280. If you wish to push further, consider activating
`xformers`.
### Other Problems
If you run into problems during or after installation, the InvokeAI team is

View File

@@ -43,25 +43,31 @@ InvokeAI comes with support for a good set of starter models. You'll
find them listed in the master models file
`configs/INITIAL_MODELS.yaml` in the InvokeAI root directory. The
subset that are currently installed are found in
`configs/models.yaml`. The current list is:
`configs/models.yaml`. As of v2.3.1, the list of starter models is:
| Model | HuggingFace Repo ID | Description | URL
| -------------------- | --------------------------------- | ---------------------------------------------------------- | -------------------------------------------------------------- |
| stable-diffusion-1.5 | runwayml/stable-diffusion-v1-5 | Most recent version of base Stable Diffusion model | https://huggingface.co/runwayml/stable-diffusion-v1-5 |
| stable-diffusion-1.4 | runwayml/stable-diffusion-v1-4 | Previous version of base Stable Diffusion model | https://huggingface.co/runwayml/stable-diffusion-v1-4 |
| inpainting-1.5 | runwayml/stable-diffusion-inpainting | Stable diffusion 1.5 optimized for inpainting | https://huggingface.co/runwayml/stable-diffusion-inpainting |
| stable-diffusion-2.1-base |stabilityai/stable-diffusion-2-1-base | Stable Diffusion version 2.1 trained on 512 pixel images | https://huggingface.co/stabilityai/stable-diffusion-2-1-base |
| stable-diffusion-2.1-768 |stabilityai/stable-diffusion-2-1 | Stable Diffusion version 2.1 trained on 768 pixel images | https://huggingface.co/stabilityai/stable-diffusion-2-1 |
| dreamlike-diffusion-1.0 | dreamlike-art/dreamlike-diffusion-1.0 | An SD 1.5 model finetuned on high quality art | https://huggingface.co/dreamlike-art/dreamlike-diffusion-1.0 |
| dreamlike-photoreal-2.0 | dreamlike-art/dreamlike-photoreal-2.0 | A photorealistic model trained on 768 pixel images| https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0 |
| openjourney-4.0 | prompthero/openjourney | An SD 1.5 model finetuned on Midjourney images prompt with "mdjrny-v4 style" | https://huggingface.co/prompthero/openjourney |
| nitro-diffusion-1.0 | nitrosocke/Nitro-Diffusion | An SD 1.5 model finetuned on three styles, prompt with "archer style", "arcane style" or "modern disney style" | https://huggingface.co/nitrosocke/Nitro-Diffusion|
| trinart-2.0 | naclbit/trinart_stable_diffusion_v2 | An SD 1.5 model finetuned with ~40,000 assorted high resolution manga/anime-style pictures | https://huggingface.co/naclbit/trinart_stable_diffusion_v2|
| trinart-characters-2_0 | naclbit/trinart_derrida_characters_v2_stable_diffusion | An SD 1.5 model finetuned with 19.2M manga/anime-style pictures | https://huggingface.co/naclbit/trinart_derrida_characters_v2_stable_diffusion|
|Model Name | HuggingFace Repo ID | Description | URL |
|---------- | ---------- | ----------- | --- |
|stable-diffusion-1.5|runwayml/stable-diffusion-v1-5|Stable Diffusion version 1.5 diffusers model (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-v1-5 |
|sd-inpainting-1.5|runwayml/stable-diffusion-inpainting|RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-inpainting |
|stable-diffusion-2.1|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|sd-inpainting-2.0|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.0 inpainting model (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|analog-diffusion-1.0|wavymulder/Analog-Diffusion|An SD-1.5 model trained on diverse analog photographs (2.13 GB)|https://huggingface.co/wavymulder/Analog-Diffusion |
|deliberate-1.0|XpucT/Deliberate|Versatile model that produces detailed images up to 768px (4.27 GB)|https://huggingface.co/XpucT/Deliberate |
|d&d-diffusion-1.0|0xJustin/Dungeons-and-Diffusion|Dungeons & Dragons characters (2.13 GB)|https://huggingface.co/0xJustin/Dungeons-and-Diffusion |
|dreamlike-photoreal-2.0|dreamlike-art/dreamlike-photoreal-2.0|A photorealistic model trained on 768 pixel images based on SD 1.5 (2.13 GB)|https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0 |
|inkpunk-1.0|Envvi/Inkpunk-Diffusion|Stylized illustrations inspired by Gorillaz, FLCL and Shinkawa; prompt with "nvinkpunk" (4.27 GB)|https://huggingface.co/Envvi/Inkpunk-Diffusion |
|openjourney-4.0|prompthero/openjourney|An SD 1.5 model fine tuned on Midjourney; prompt with "mdjrny-v4 style" (2.13 GB)|https://huggingface.co/prompthero/openjourney |
|portrait-plus-1.0|wavymulder/portraitplus|An SD-1.5 model trained on close range portraits of people; prompt with "portrait+" (2.13 GB)|https://huggingface.co/wavymulder/portraitplus |
|seek-art-mega-1.0|coreco/seek.art_MEGA|A general use SD-1.5 "anything" model that supports multiple styles (2.1 GB)|https://huggingface.co/coreco/seek.art_MEGA |
|trinart-2.0|naclbit/trinart_stable_diffusion_v2|An SD-1.5 model finetuned with ~40K assorted high resolution manga/anime-style images (2.13 GB)|https://huggingface.co/naclbit/trinart_stable_diffusion_v2 |
|waifu-diffusion-1.4|hakurei/waifu-diffusion|An SD-1.5 model trained on 680k anime/manga-style images (2.13 GB)|https://huggingface.co/hakurei/waifu-diffusion |
Note that these files are covered by an "Ethical AI" license which forbids
certain uses. When you initially download them, you are asked to
accept the license terms.
Note that these files are covered by an "Ethical AI" license which
forbids certain uses. When you initially download them, you are asked
to accept the license terms. In addition, some of these models carry
additional license terms that limit their use in commercial
applications or on public servers. Be sure to familiarize yourself
with the model terms by visiting the URLs in the table above.
## Community-Contributed Models

View File

@@ -20,10 +20,9 @@ echo Building installer for version $VERSION
echo "Be certain that you're in the 'installer' directory before continuing."
read -p "Press any key to continue, or CTRL-C to exit..."
read -e -p "Commit and tag this repo with '${VERSION}' and '${LATEST_TAG}'? [n]: " input
read -e -p "Tag this repo with '${VERSION}' and '${LATEST_TAG}'? [n]: " input
RESPONSE=${input:='n'}
if [ "$RESPONSE" == 'y' ]; then
git commit -a
if ! git tag $VERSION ; then
echo "Existing/invalid tag"
@@ -32,6 +31,8 @@ if [ "$RESPONSE" == 'y' ]; then
git push origin :refs/tags/$LATEST_TAG
git tag -fa $LATEST_TAG
echo "remember to push --tags!"
fi
# ----------------------

View File

@@ -6,53 +6,78 @@ stable-diffusion-1.5:
repo_id: stabilityai/sd-vae-ft-mse
recommended: True
default: True
inpainting-1.5:
sd-inpainting-1.5:
description: RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)
repo_id: runwayml/stable-diffusion-inpainting
format: diffusers
vae:
repo_id: stabilityai/sd-vae-ft-mse
recommended: True
dreamlike-diffusion-1.0:
description: An SD 1.5 model fine tuned on high quality art by dreamlike.art, diffusers version (2.13 BG)
format: diffusers
repo_id: dreamlike-art/dreamlike-diffusion-1.0
vae:
repo_id: stabilityai/sd-vae-ft-mse
recommended: True
dreamlike-photoreal-2.0:
description: A photorealistic model trained on 768 pixel images based on SD 1.5 (2.13 GB)
format: diffusers
repo_id: dreamlike-art/dreamlike-photoreal-2.0
recommended: False
stable-diffusion-2.1-768:
stable-diffusion-2.1:
description: Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)
repo_id: stabilityai/stable-diffusion-2-1
format: diffusers
recommended: True
stable-diffusion-2.1-base:
description: Stable Diffusion version 2.1 diffusers base model, trained on 512 pixel images (5.21 GB)
repo_id: stabilityai/stable-diffusion-2-1-base
sd-inpainting-2.0:
description: Stable Diffusion version 2.0 inpainting model (5.21 GB)
repo_id: stabilityai/stable-diffusion-2-1
format: diffusers
recommended: False
analog-diffusion-1.0:
description: An SD-1.5 model trained on diverse analog photographs (2.13 GB)
repo_id: wavymulder/Analog-Diffusion
format: diffusers
recommended: false
deliberate-1.0:
description: Versatile model that produces detailed images up to 768px (4.27 GB)
format: diffusers
repo_id: XpucT/Deliberate
recommended: False
d&d-diffusion-1.0:
description: Dungeons & Dragons characters (2.13 GB)
format: diffusers
repo_id: 0xJustin/Dungeons-and-Diffusion
recommended: False
dreamlike-photoreal-2.0:
description: A photorealistic model trained on 768 pixel images based on SD 1.5 (2.13 GB)
format: diffusers
repo_id: dreamlike-art/dreamlike-photoreal-2.0
recommended: False
inkpunk-1.0:
description: Stylized illustrations inspired by Gorillaz, FLCL and Shinkawa; prompt with "nvinkpunk" (4.27 GB)
format: diffusers
repo_id: Envvi/Inkpunk-Diffusion
recommended: False
openjourney-4.0:
description: An SD 1.5 model fine tuned on Midjourney images by PromptHero - include "mdjrny-v4 style" in your prompts (2.13 GB)
format: diffusers
repo_id: prompthero/openjourney
vae:
description: An SD 1.5 model fine tuned on Midjourney; prompt with "mdjrny-v4 style" (2.13 GB)
format: diffusers
repo_id: prompthero/openjourney
vae:
repo_id: stabilityai/sd-vae-ft-mse
recommended: False
nitro-diffusion-1.0:
description: A SD 1.5 model trained on three artstyles - prompt with "archer style", "arcane style" and/or "modern disney style" (2.13 GB)
repo_id: nitrosocke/Nitro-Diffusion
recommended: False
portrait-plus-1.0:
description: An SD-1.5 model trained on close range portraits of people; prompt with "portrait+" (2.13 GB)
format: diffusers
repo_id: wavymulder/portraitplus
recommended: False
seek-art-mega-1.0:
description: A general use SD-1.5 "anything" model that supports multiple styles (2.1 GB)
repo_id: coreco/seek.art_MEGA
format: diffusers
vae:
repo_id: stabilityai/sd-vae-ft-mse
recommended: False
trinart-2.0:
description: An SD model finetuned with ~40,000 assorted high resolution manga/anime-style pictures, diffusers version (2.13 GB)
description: An SD-1.5 model finetuned with ~40K assorted high resolution manga/anime-style images (2.13 GB)
repo_id: naclbit/trinart_stable_diffusion_v2
format: diffusers
vae:
repo_id: stabilityai/sd-vae-ft-mse
recommended: False
waifu-diffusion-1.4:
description: An SD-1.5 model trained on 680k anime/manga-style images (2.13 GB)
repo_id: hakurei/waifu-diffusion
format: diffusers
vae:
repo_id: stabilityai/sd-vae-ft-mse
recommended: False

View File

@@ -650,6 +650,8 @@ class Generate:
def clear_cuda_cache(self):
if self._has_cuda():
self.gather_cuda_stats()
# Run garbage collection prior to emptying the CUDA cache
gc.collect()
torch.cuda.empty_cache()
def clear_cuda_stats(self):

View File

@@ -625,7 +625,7 @@ def set_default_output_dir(opt: Args, completer: Completer):
completer.set_default_dir(opt.outdir)
def import_model(model_path: str, gen, opt, completer, convert=False) -> str:
def import_model(model_path: str, gen, opt, completer, convert=False):
"""
model_path can be (1) a URL to a .ckpt file; (2) a local .ckpt file path;
(3) a huggingface repository id; or (4) a local directory containing a
@@ -679,7 +679,7 @@ def _verify_load(model_name: str, gen) -> bool:
current_model = gen.model_name
try:
if not gen.set_model(model_name):
return False
return
except Exception as e:
print(f"** model failed to load: {str(e)}")
print(
@@ -706,7 +706,7 @@ def _get_model_name_and_desc(
)
return model_name, model_description
def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer) -> str:
def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
model_name_or_path = model_name_or_path.replace("\\", "/") # windows
manager = gen.model_manager
ckpt_path = None
@@ -740,19 +740,14 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer) ->
)
else:
try:
model_name = import_model(model_name_or_path, gen, opt, completer, convert=True)
import_model(model_name_or_path, gen, opt, completer, convert=True)
except KeyboardInterrupt:
return
if not model_name:
print("** Conversion failed. Aborting.")
return
manager.commit(opt.conf)
if click.confirm(f"Delete the original .ckpt file at {ckpt_path}?", default=False):
ckpt_path.unlink(missing_ok=True)
print(f"{ckpt_path} deleted")
return model_name
def del_config(model_name: str, gen, opt, completer):

View File

@@ -1 +1 @@
__version__='2.3.1+rc2'
__version__='2.3.1'

View File

@@ -17,16 +17,15 @@
# Original file at: https://github.com/huggingface/diffusers/blob/main/scripts/convert_ldm_original_checkpoint_to_diffusers.py
""" Conversion script for the LDM checkpoints. """
import os
import re
import torch
import warnings
from pathlib import Path
from ldm.invoke.globals import (
Globals,
global_cache_dir,
global_config_dir,
)
from ldm.invoke.model_manager import ModelManager, SDLegacyType
from safetensors.torch import load_file
from typing import Union
@@ -760,7 +759,12 @@ def convert_open_clip_checkpoint(checkpoint):
text_model_dict = {}
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0])
if 'cond_stage_model.model.text_projection' in keys:
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0])
elif 'cond_stage_model.model.ln_final.bias' in keys:
d_model = int(checkpoint['cond_stage_model.model.ln_final.bias'].shape[0])
else:
raise KeyError('Expected key "cond_stage_model.model.text_projection" not found in model')
text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids")
@@ -856,20 +860,23 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
upcast_attention = False
if original_config_file is None:
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in checkpoint and checkpoint[key_name].shape[-1] == 1024:
model_type = ModelManager.probe_model_type(checkpoint)
if model_type == SDLegacyType.V2:
original_config_file = global_config_dir() / 'stable-diffusion' / 'v2-inference-v.yaml'
if global_step == 110000:
# v2.1 needs to upcast attention
upcast_attention = True
elif str(checkpoint_path).lower().find('inpaint') >= 0: # brittle - please pass original_config_file parameter!
print(f' | checkpoint has "inpaint" in name, assuming an inpainting model')
elif model_type == SDLegacyType.V1_INPAINT:
original_config_file = global_config_dir() / 'stable-diffusion' / 'v1-inpainting-inference.yaml'
else:
elif model_type == SDLegacyType.V1:
original_config_file = global_config_dir() / 'stable-diffusion' / 'v1-inference.yaml'
else:
raise Exception('Unknown checkpoint type')
original_config = OmegaConf.load(original_config_file)
if num_in_channels is not None:
@@ -960,7 +967,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
text_model = convert_open_clip_checkpoint(checkpoint)
tokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2",
subfolder="tokenizer",
cache_dir=global_cache_dir('diffusers')
cache_dir=cache_dir,
)
pipe = pipeline_class(
vae=vae,

View File

@@ -191,14 +191,18 @@ def download_bert():
# ---------------------------------------------
def download_clip():
print("Installing CLIP model...", file=sys.stderr)
def download_sd1_clip():
print("Installing SD1 clip model...", file=sys.stderr)
version = "openai/clip-vit-large-patch14"
print("Tokenizer...", file=sys.stderr)
download_from_hf(CLIPTokenizer, version)
print("Text model...", file=sys.stderr)
download_from_hf(CLIPTextModel, version)
# ---------------------------------------------
def download_sd2_clip():
version = 'stabilityai/stable-diffusion-2'
print("Installing SD2 clip model...", file=sys.stderr)
download_from_hf(CLIPTokenizer, version, subfolder='tokenizer')
download_from_hf(CLIPTextModel, version, subfolder='text_encoder')
# ---------------------------------------------
def download_realesrgan():
@@ -832,7 +836,8 @@ def main():
else:
print("\n** DOWNLOADING SUPPORT MODELS **")
download_bert()
download_clip()
download_sd1_clip()
download_sd2_clip()
download_realesrgan()
download_gfpgan()
download_codeformer()

View File

@@ -2,18 +2,16 @@
Minimalist updater script. Prompts user for the tag or branch to update to and runs
pip install <path_to_git_source>.
'''
import os
import platform
import requests
import subprocess
from rich import box, print
from rich.console import Console, group
from rich.console import Console, Group, group
from rich.panel import Panel
from rich.prompt import Prompt
from rich.style import Style
from rich.syntax import Syntax
from rich.text import Text
from rich.live import Live
from rich.table import Table
from ldm.invoke import __version__
@@ -23,19 +21,17 @@ INVOKE_AI_REL="https://api.github.com/repos/invoke-ai/InvokeAI/releases"
OS = platform.uname().system
ARCH = platform.uname().machine
ORANGE_ON_DARK_GREY = Style(bgcolor="grey23", color="orange1")
if OS == "Windows":
# Windows terminals look better without a background colour
console = Console(style=Style(color="grey74"))
else:
console = Console(style=Style(color="grey74", bgcolor="grey23"))
console = Console(style=Style(color="grey74", bgcolor="grey19"))
def get_versions()->dict:
return requests.get(url=INVOKE_AI_REL).json()
def welcome(versions: dict):
@group()
def text():
yield f'InvokeAI Version: [bold yellow]{__version__}'
@@ -48,55 +44,45 @@ def welcome(versions: dict):
[3] Manually enter the tag or branch name you wish to update'''
console.rule()
console.print(
print(
Panel(
title="[bold wheat1]InvokeAI Updater",
renderable=text(),
box=box.DOUBLE,
expand=True,
padding=(1, 2),
style=ORANGE_ON_DARK_GREY,
style=Style(bgcolor="grey23", color="orange1"),
subtitle=f"[bold grey39]{OS}-{ARCH}",
)
)
# console.rule is used instead of console.line to maintain dark background
# on terminals where light background is the default
console.rule(characters=" ")
console.line()
def main():
versions = get_versions()
welcome(versions)
tag = None
choice = Prompt.ask(Text.from_markup(('[grey74 on grey23]Choice:')),choices=['1','2','3'],default='1')
choice = Prompt.ask('Choice:',choices=['1','2','3'],default='1')
if choice=='1':
tag = versions[0]['tag_name']
elif choice=='2':
tag = 'main'
elif choice=='3':
tag = Prompt.ask('[grey74 on grey23]Enter an InvokeAI tag or branch name')
console.print(Panel(f':crossed_fingers: Upgrading to [yellow]{tag}[/yellow]', box=box.MINIMAL, style=ORANGE_ON_DARK_GREY))
tag = Prompt.ask('Enter an InvokeAI tag or branch name')
print(f':crossed_fingers: Upgrading to [yellow]{tag}[/yellow]')
cmd = f'pip install {INVOKE_AI_SRC}/{tag}.zip --use-pep517'
progress = Table.grid(expand=True)
progress_panel = Panel(progress, box=box.MINIMAL, style=ORANGE_ON_DARK_GREY)
with subprocess.Popen(['bash', '-c', cmd], stdout=subprocess.PIPE, stderr=subprocess.PIPE) as proc:
progress.add_column()
with Live(progress_panel, console=console, vertical_overflow='visible'):
while proc.poll() is None:
for l in iter(proc.stdout.readline, b''):
progress.add_row(l.decode().strip(), style=ORANGE_ON_DARK_GREY)
if proc.returncode == 0:
console.rule(f':heavy_check_mark: Upgrade successful')
else:
console.rule(f':exclamation: [bold red]Upgrade failed[/red bold]')
print('')
print('')
if os.system(cmd)==0:
print(f':heavy_check_mark: Upgrade successful')
else:
print(f':exclamation: [bold red]Upgrade failed[/red bold]')
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
pass

View File

@@ -114,37 +114,37 @@ class addModelsForm(npyscreen.FormMultiPage):
relx=4,
)
self.nextrely += 1
self.add_widget_intelligent(
CenteredTitleText,
name="== STARTER MODELS (recommended ones selected) ==",
editable=False,
color="CONTROL",
)
self.nextrely -= 1
self.add_widget_intelligent(
CenteredTitleText,
name="Select from a starter set of Stable Diffusion models from HuggingFace:",
editable=False,
labelColor="CAUTION",
)
self.nextrely -= 1
# if user has already installed some initial models, then don't patronize them
# by showing more recommendations
show_recommended = not self.existing_models
self.models_selected = self.add_widget_intelligent(
npyscreen.MultiSelect,
name="Install Starter Models",
values=starter_model_labels,
value=[
self.starter_model_list.index(x)
for x in self.starter_model_list
if show_recommended and x in recommended_models
],
max_height=len(starter_model_labels) + 1,
relx=4,
scroll_exit=True,
)
if len(self.starter_model_list) > 0:
self.add_widget_intelligent(
CenteredTitleText,
name="== STARTER MODELS (recommended ones selected) ==",
editable=False,
color="CONTROL",
)
self.nextrely -= 1
self.add_widget_intelligent(
CenteredTitleText,
name="Select from a starter set of Stable Diffusion models from HuggingFace.",
editable=False,
labelColor="CAUTION",
)
self.nextrely -= 1
# if user has already installed some initial models, then don't patronize them
# by showing more recommendations
show_recommended = not self.existing_models
self.models_selected = self.add_widget_intelligent(
npyscreen.MultiSelect,
name="Install Starter Models",
values=starter_model_labels,
value=[
self.starter_model_list.index(x)
for x in self.starter_model_list
if show_recommended and x in recommended_models
],
max_height=len(starter_model_labels) + 1,
relx=4,
scroll_exit=True,
)
self.add_widget_intelligent(
CenteredTitleText,
name='== IMPORT LOCAL AND REMOTE MODELS ==',
@@ -166,7 +166,11 @@ class addModelsForm(npyscreen.FormMultiPage):
)
self.nextrely -= 1
self.import_model_paths = self.add_widget_intelligent(
TextBox, max_height=5, scroll_exit=True, editable=True, relx=4
TextBox,
max_height=7,
scroll_exit=True,
editable=True,
relx=4
)
self.nextrely += 1
self.show_directory_fields = self.add_widget_intelligent(
@@ -241,7 +245,8 @@ class addModelsForm(npyscreen.FormMultiPage):
def resize(self):
super().resize()
self.models_selected.values = self._get_starter_model_labels()
if hasattr(self,'models_selected'):
self.models_selected.values = self._get_starter_model_labels()
def _clear_scan_directory(self):
if not self.show_directory_fields.value:
@@ -320,11 +325,14 @@ class addModelsForm(npyscreen.FormMultiPage):
selections = self.parentApp.user_selections
# starter models to install/remove
starter_models = dict(
map(
lambda x: (self.starter_model_list[x], True), self.models_selected.value
if hasattr(self,'models_selected'):
starter_models = dict(
map(
lambda x: (self.starter_model_list[x], True), self.models_selected.value
)
)
)
else:
starter_models = dict()
selections.purge_deleted_models = False
if hasattr(self, "previously_installed_models"):
unchecked = [

View File

@@ -137,17 +137,9 @@ class Generator:
Given samples returned from a sampler, converts
it into a PIL Image
"""
x_samples = self.model.decode_first_stage(samples)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
if len(x_samples) != 1:
raise Exception(
f'>> expected to get a single image, but got {len(x_samples)}')
x_sample = 255.0 * rearrange(
x_samples[0].cpu().numpy(), 'c h w -> h w c'
)
return Image.fromarray(x_sample.astype(np.uint8))
# write an approximate RGB image from latent samples for a single step to PNG
with torch.inference_mode():
image = self.model.decode_latents(samples)
return self.model.numpy_to_pil(image)[0]
def repaste_and_color_correct(self, result: Image.Image, init_image: Image.Image, init_mask: Image.Image, mask_blur_radius: int = 8) -> Image.Image:
if init_image is None or init_mask is None:

View File

@@ -19,15 +19,7 @@ from typing import Union
Globals = Namespace()
# This is usually overwritten by the command line and/or environment variables
if os.environ.get('INVOKEAI_ROOT'):
Globals.root = osp.abspath(os.environ.get('INVOKEAI_ROOT'))
elif os.environ.get('VIRTUAL_ENV'):
Globals.root = osp.abspath(osp.join(os.environ.get('VIRTUAL_ENV'), '..'))
else:
Globals.root = osp.abspath(osp.expanduser('~/invokeai'))
# Where to look for the initialization file
# Where to look for the initialization file and other key components
Globals.initfile = 'invokeai.init'
Globals.models_file = 'models.yaml'
Globals.models_dir = 'models'
@@ -35,6 +27,20 @@ Globals.config_dir = 'configs'
Globals.autoscan_dir = 'weights'
Globals.converted_ckpts_dir = 'converted_ckpts'
# Set the default root directory. This can be overwritten by explicitly
# passing the `--root <directory>` argument on the command line.
# logic is:
# 1) use INVOKEAI_ROOT environment variable (no check for this being a valid directory)
# 2) use VIRTUAL_ENV environment variable, with a check for initfile being there
# 3) use ~/invokeai
if os.environ.get('INVOKEAI_ROOT'):
Globals.root = osp.abspath(os.environ.get('INVOKEAI_ROOT'))
elif os.environ.get('VIRTUAL_ENV') and Path(os.environ.get('VIRTUAL_ENV'),'..',Globals.initfile).exists():
Globals.root = osp.abspath(osp.join(os.environ.get('VIRTUAL_ENV'), '..'))
else:
Globals.root = osp.abspath(osp.expanduser('~/invokeai'))
# Try loading patchmatch
Globals.try_patchmatch = True

View File

@@ -725,7 +725,7 @@ class ModelManager(object):
SDLegacyType.V1
SDLegacyType.V1_INPAINT
SDLegacyType.V2
UNKNOWN
SDLegacyType.UNKNOWN
"""
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in checkpoint and checkpoint[key_name].shape[-1] == 1024:
@@ -785,7 +785,7 @@ class ModelManager(object):
print(f">> Probing {thing} for import")
if thing.startswith(("http:", "https:", "ftp:")):
print(f" | {thing} appears to be a URL")
print(f" | {thing} appears to be a URL")
model_path = self._resolve_path(
thing, "models/ldm/stable-diffusion-v1"
) # _resolve_path does a download if needed
@@ -793,15 +793,15 @@ class ModelManager(object):
elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")):
if Path(thing).stem in ["model", "diffusion_pytorch_model"]:
print(
f" | {Path(thing).name} appears to be part of a diffusers model. Skipping import"
f" | {Path(thing).name} appears to be part of a diffusers model. Skipping import"
)
return
else:
print(f" | {thing} appears to be a checkpoint file on disk")
print(f" | {thing} appears to be a checkpoint file on disk")
model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1")
elif Path(thing).is_dir() and Path(thing, "model_index.json").exists():
print(f" | {thing} appears to be a diffusers file on disk")
print(f" | {thing} appears to be a diffusers file on disk")
model_name = self.import_diffuser_model(
thing,
vae=dict(repo_id="stabilityai/sd-vae-ft-mse"),
@@ -812,13 +812,13 @@ class ModelManager(object):
elif Path(thing).is_dir():
if (Path(thing) / "model_index.json").exists():
print(f">> {thing} appears to be a diffusers model.")
print(f" | {thing} appears to be a diffusers model.")
model_name = self.import_diffuser_model(
thing, commit_to_conf=commit_to_conf
)
else:
print(
f">> {thing} appears to be a directory. Will scan for models to import"
f" |{thing} appears to be a directory. Will scan for models to import"
)
for m in list(Path(thing).rglob("*.ckpt")) + list(
Path(thing).rglob("*.safetensors")
@@ -830,7 +830,7 @@ class ModelManager(object):
return model_name
elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing):
print(f" | {thing} appears to be a HuggingFace diffusers repo_id")
print(f" | {thing} appears to be a HuggingFace diffusers repo_id")
model_name = self.import_diffuser_model(
thing, commit_to_conf=commit_to_conf
)
@@ -847,7 +847,7 @@ class ModelManager(object):
return
if model_path.stem in self.config: # already imported
print(" | Already imported. Skipping")
print(" | Already imported. Skipping")
return
# another round of heuristics to guess the correct config file.
@@ -860,18 +860,18 @@ class ModelManager(object):
model_config_file = None
if model_type == SDLegacyType.V1:
print(" | SD-v1 model detected")
print(" | SD-v1 model detected")
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v1-inference.yaml"
)
elif model_type == SDLegacyType.V1_INPAINT:
print(" | SD-v1 inpainting model detected")
print(" | SD-v1 inpainting model detected")
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v1-inpainting-inference.yaml"
)
elif model_type == SDLegacyType.V2:
print(
" | SD-v2 model detected; model will be converted to diffusers format"
" | SD-v2 model detected; model will be converted to diffusers format"
)
model_config_file = Path(
Globals.root, "configs/stable-diffusion/v2-inference-v.yaml"
@@ -923,7 +923,7 @@ class ModelManager(object):
vae=None,
original_config_file: Path = None,
commit_to_conf: Path = None,
) -> dict:
) -> str:
"""
Convert a legacy ckpt weights file to diffuser model and import
into models.yaml.

View File

@@ -38,7 +38,7 @@ dependencies = [
"albumentations",
"click",
"clip_anytorch", # replacing "clip @ https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip",
"compel>=0.1.6",
"compel==0.1.7",
"datasets",
"diffusers[torch]~=0.13",
"dnspython==2.2.1",

View File

@@ -0,0 +1,23 @@
#!/usr/bin/env python
'''
This script is used at release time to generate a markdown table describing the
starter models. This text is then manually copied into 050_INSTALL_MODELS.md.
'''
from omegaconf import OmegaConf
from pathlib import Path
def main():
initial_models_file = Path(__file__).parent / '../invokeai/configs/INITIAL_MODELS.yaml'
models = OmegaConf.load(initial_models_file)
print('|Model Name | HuggingFace Repo ID | Description | URL |')
print('|---------- | ---------- | ----------- | --- |')
for model in models:
repo_id = models[model].repo_id
url = f'https://huggingface.co/{repo_id}'
print(f'|{model}|{repo_id}|{models[model].description}|{url} |')
if __name__ == '__main__':
main()