mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-01-21 20:08:00 -05:00
Compare commits
24 Commits
v2.3.1+rc2
...
v2.3.1
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
bd85e00530 | ||
|
|
4e446130d8 | ||
|
|
4c93b514bb | ||
|
|
d078941316 | ||
|
|
230d3a496d | ||
|
|
ec2890c19b | ||
|
|
a540cc537f | ||
|
|
39c57aa358 | ||
|
|
2d990c1f54 | ||
|
|
7fb2da8741 | ||
|
|
c69fcb1c10 | ||
|
|
0982548e1f | ||
|
|
24407048a5 | ||
|
|
b5b541c747 | ||
|
|
a094bbd839 | ||
|
|
73dda812ea | ||
|
|
8eaf1c4033 | ||
|
|
4f44b64052 | ||
|
|
c559bf3e10 | ||
|
|
a485515bc6 | ||
|
|
2c9b29725b | ||
|
|
28612c899a | ||
|
|
88acbeaa35 | ||
|
|
46729efe95 |
2
.github/workflows/pypi-release.yml
vendored
2
.github/workflows/pypi-release.yml
vendored
@@ -28,7 +28,7 @@ jobs:
|
||||
run: twine check dist/*
|
||||
|
||||
- name: check PyPI versions
|
||||
if: github.ref == 'refs/heads/main'
|
||||
if: github.ref == 'refs/heads/main' || github.ref == 'refs/heads/v2.3'
|
||||
run: |
|
||||
pip install --upgrade requests
|
||||
python -c "\
|
||||
|
||||
@@ -221,7 +221,10 @@ experimental versions later.
|
||||
|
||||
- ***NSFW checker***
|
||||
If checked, InvokeAI will test images for potential sexual content
|
||||
and blur them out if found.
|
||||
and blur them out if found. Note that the NSFW checker consumes
|
||||
an additional 0.6 GB of VRAM on top of the 2-3 GB of VRAM used
|
||||
by most image models. If you have a low VRAM GPU (4-6 GB), you
|
||||
can reduce out of memory errors by disabling the checker.
|
||||
|
||||
- ***HuggingFace Access Token***
|
||||
InvokeAI has the ability to download embedded styles and subjects
|
||||
@@ -440,6 +443,52 @@ the [InvokeAI Issues](https://github.com/invoke-ai/InvokeAI/issues) section, or
|
||||
visit our [Discord Server](https://discord.gg/ZmtBAhwWhy) for interactive
|
||||
assistance.
|
||||
|
||||
### Out of Memory Issues
|
||||
|
||||
The models are large, VRAM is expensive, and you may find yourself
|
||||
faced with Out of Memory errors when generating images. Here are some
|
||||
tips to reduce the problem:
|
||||
|
||||
* **4 GB of VRAM**
|
||||
|
||||
This should be adequate for 512x512 pixel images using Stable Diffusion 1.5
|
||||
and derived models, provided that you **disable** the NSFW checker. To
|
||||
disable the filter, do one of the following:
|
||||
|
||||
* Select option (6) "_change InvokeAI startup options_" from the
|
||||
launcher. This will bring up the console-based startup settings
|
||||
dialogue and allow you to unselect the "NSFW Checker" option.
|
||||
* Start the startup settings dialogue directly by running
|
||||
`invokeai-configure --skip-sd-weights --skip-support-models`
|
||||
from the command line.
|
||||
* Find the `invokeai.init` initialization file in the InvokeAI root
|
||||
directory, open it in a text editor, and change `--nsfw_checker`
|
||||
to `--no-nsfw_checker`
|
||||
|
||||
If you are on a CUDA system, you can realize significant memory
|
||||
savings by activating the `xformers` library as described above. The
|
||||
downside is `xformers` introduces non-deterministic behavior, such
|
||||
that images generated with exactly the same prompt and settings will
|
||||
be slightly different from each other. See above for more information.
|
||||
|
||||
* **6 GB of VRAM**
|
||||
|
||||
This is a border case. Using the SD 1.5 series you should be able to
|
||||
generate images up to 640x640 with the NSFW checker enabled, and up to
|
||||
1024x1024 with it disabled and `xformers` activated.
|
||||
|
||||
If you run into persistent memory issues there are a series of
|
||||
environment variables that you can set before launching InvokeAI that
|
||||
alter how the PyTorch machine learning library manages memory. See
|
||||
https://pytorch.org/docs/stable/notes/cuda.html#memory-management for
|
||||
a list of these tweaks.
|
||||
|
||||
* **12 GB of VRAM**
|
||||
|
||||
This should be sufficient to generate larger images up to about
|
||||
1280x1280. If you wish to push further, consider activating
|
||||
`xformers`.
|
||||
|
||||
### Other Problems
|
||||
|
||||
If you run into problems during or after installation, the InvokeAI team is
|
||||
|
||||
@@ -43,25 +43,31 @@ InvokeAI comes with support for a good set of starter models. You'll
|
||||
find them listed in the master models file
|
||||
`configs/INITIAL_MODELS.yaml` in the InvokeAI root directory. The
|
||||
subset that are currently installed are found in
|
||||
`configs/models.yaml`. The current list is:
|
||||
`configs/models.yaml`. As of v2.3.1, the list of starter models is:
|
||||
|
||||
| Model | HuggingFace Repo ID | Description | URL
|
||||
| -------------------- | --------------------------------- | ---------------------------------------------------------- | -------------------------------------------------------------- |
|
||||
| stable-diffusion-1.5 | runwayml/stable-diffusion-v1-5 | Most recent version of base Stable Diffusion model | https://huggingface.co/runwayml/stable-diffusion-v1-5 |
|
||||
| stable-diffusion-1.4 | runwayml/stable-diffusion-v1-4 | Previous version of base Stable Diffusion model | https://huggingface.co/runwayml/stable-diffusion-v1-4 |
|
||||
| inpainting-1.5 | runwayml/stable-diffusion-inpainting | Stable diffusion 1.5 optimized for inpainting | https://huggingface.co/runwayml/stable-diffusion-inpainting |
|
||||
| stable-diffusion-2.1-base |stabilityai/stable-diffusion-2-1-base | Stable Diffusion version 2.1 trained on 512 pixel images | https://huggingface.co/stabilityai/stable-diffusion-2-1-base |
|
||||
| stable-diffusion-2.1-768 |stabilityai/stable-diffusion-2-1 | Stable Diffusion version 2.1 trained on 768 pixel images | https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|
||||
| dreamlike-diffusion-1.0 | dreamlike-art/dreamlike-diffusion-1.0 | An SD 1.5 model finetuned on high quality art | https://huggingface.co/dreamlike-art/dreamlike-diffusion-1.0 |
|
||||
| dreamlike-photoreal-2.0 | dreamlike-art/dreamlike-photoreal-2.0 | A photorealistic model trained on 768 pixel images| https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0 |
|
||||
| openjourney-4.0 | prompthero/openjourney | An SD 1.5 model finetuned on Midjourney images prompt with "mdjrny-v4 style" | https://huggingface.co/prompthero/openjourney |
|
||||
| nitro-diffusion-1.0 | nitrosocke/Nitro-Diffusion | An SD 1.5 model finetuned on three styles, prompt with "archer style", "arcane style" or "modern disney style" | https://huggingface.co/nitrosocke/Nitro-Diffusion|
|
||||
| trinart-2.0 | naclbit/trinart_stable_diffusion_v2 | An SD 1.5 model finetuned with ~40,000 assorted high resolution manga/anime-style pictures | https://huggingface.co/naclbit/trinart_stable_diffusion_v2|
|
||||
| trinart-characters-2_0 | naclbit/trinart_derrida_characters_v2_stable_diffusion | An SD 1.5 model finetuned with 19.2M manga/anime-style pictures | https://huggingface.co/naclbit/trinart_derrida_characters_v2_stable_diffusion|
|
||||
|Model Name | HuggingFace Repo ID | Description | URL |
|
||||
|---------- | ---------- | ----------- | --- |
|
||||
|stable-diffusion-1.5|runwayml/stable-diffusion-v1-5|Stable Diffusion version 1.5 diffusers model (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-v1-5 |
|
||||
|sd-inpainting-1.5|runwayml/stable-diffusion-inpainting|RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)|https://huggingface.co/runwayml/stable-diffusion-inpainting |
|
||||
|stable-diffusion-2.1|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|
||||
|sd-inpainting-2.0|stabilityai/stable-diffusion-2-1|Stable Diffusion version 2.0 inpainting model (5.21 GB)|https://huggingface.co/stabilityai/stable-diffusion-2-1 |
|
||||
|analog-diffusion-1.0|wavymulder/Analog-Diffusion|An SD-1.5 model trained on diverse analog photographs (2.13 GB)|https://huggingface.co/wavymulder/Analog-Diffusion |
|
||||
|deliberate-1.0|XpucT/Deliberate|Versatile model that produces detailed images up to 768px (4.27 GB)|https://huggingface.co/XpucT/Deliberate |
|
||||
|d&d-diffusion-1.0|0xJustin/Dungeons-and-Diffusion|Dungeons & Dragons characters (2.13 GB)|https://huggingface.co/0xJustin/Dungeons-and-Diffusion |
|
||||
|dreamlike-photoreal-2.0|dreamlike-art/dreamlike-photoreal-2.0|A photorealistic model trained on 768 pixel images based on SD 1.5 (2.13 GB)|https://huggingface.co/dreamlike-art/dreamlike-photoreal-2.0 |
|
||||
|inkpunk-1.0|Envvi/Inkpunk-Diffusion|Stylized illustrations inspired by Gorillaz, FLCL and Shinkawa; prompt with "nvinkpunk" (4.27 GB)|https://huggingface.co/Envvi/Inkpunk-Diffusion |
|
||||
|openjourney-4.0|prompthero/openjourney|An SD 1.5 model fine tuned on Midjourney; prompt with "mdjrny-v4 style" (2.13 GB)|https://huggingface.co/prompthero/openjourney |
|
||||
|portrait-plus-1.0|wavymulder/portraitplus|An SD-1.5 model trained on close range portraits of people; prompt with "portrait+" (2.13 GB)|https://huggingface.co/wavymulder/portraitplus |
|
||||
|seek-art-mega-1.0|coreco/seek.art_MEGA|A general use SD-1.5 "anything" model that supports multiple styles (2.1 GB)|https://huggingface.co/coreco/seek.art_MEGA |
|
||||
|trinart-2.0|naclbit/trinart_stable_diffusion_v2|An SD-1.5 model finetuned with ~40K assorted high resolution manga/anime-style images (2.13 GB)|https://huggingface.co/naclbit/trinart_stable_diffusion_v2 |
|
||||
|waifu-diffusion-1.4|hakurei/waifu-diffusion|An SD-1.5 model trained on 680k anime/manga-style images (2.13 GB)|https://huggingface.co/hakurei/waifu-diffusion |
|
||||
|
||||
Note that these files are covered by an "Ethical AI" license which forbids
|
||||
certain uses. When you initially download them, you are asked to
|
||||
accept the license terms.
|
||||
Note that these files are covered by an "Ethical AI" license which
|
||||
forbids certain uses. When you initially download them, you are asked
|
||||
to accept the license terms. In addition, some of these models carry
|
||||
additional license terms that limit their use in commercial
|
||||
applications or on public servers. Be sure to familiarize yourself
|
||||
with the model terms by visiting the URLs in the table above.
|
||||
|
||||
## Community-Contributed Models
|
||||
|
||||
|
||||
@@ -20,10 +20,9 @@ echo Building installer for version $VERSION
|
||||
echo "Be certain that you're in the 'installer' directory before continuing."
|
||||
read -p "Press any key to continue, or CTRL-C to exit..."
|
||||
|
||||
read -e -p "Commit and tag this repo with '${VERSION}' and '${LATEST_TAG}'? [n]: " input
|
||||
read -e -p "Tag this repo with '${VERSION}' and '${LATEST_TAG}'? [n]: " input
|
||||
RESPONSE=${input:='n'}
|
||||
if [ "$RESPONSE" == 'y' ]; then
|
||||
git commit -a
|
||||
|
||||
if ! git tag $VERSION ; then
|
||||
echo "Existing/invalid tag"
|
||||
@@ -32,6 +31,8 @@ if [ "$RESPONSE" == 'y' ]; then
|
||||
|
||||
git push origin :refs/tags/$LATEST_TAG
|
||||
git tag -fa $LATEST_TAG
|
||||
|
||||
echo "remember to push --tags!"
|
||||
fi
|
||||
|
||||
# ----------------------
|
||||
|
||||
@@ -6,53 +6,78 @@ stable-diffusion-1.5:
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
recommended: True
|
||||
default: True
|
||||
inpainting-1.5:
|
||||
sd-inpainting-1.5:
|
||||
description: RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)
|
||||
repo_id: runwayml/stable-diffusion-inpainting
|
||||
format: diffusers
|
||||
vae:
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
recommended: True
|
||||
dreamlike-diffusion-1.0:
|
||||
description: An SD 1.5 model fine tuned on high quality art by dreamlike.art, diffusers version (2.13 BG)
|
||||
format: diffusers
|
||||
repo_id: dreamlike-art/dreamlike-diffusion-1.0
|
||||
vae:
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
recommended: True
|
||||
dreamlike-photoreal-2.0:
|
||||
description: A photorealistic model trained on 768 pixel images based on SD 1.5 (2.13 GB)
|
||||
format: diffusers
|
||||
repo_id: dreamlike-art/dreamlike-photoreal-2.0
|
||||
recommended: False
|
||||
stable-diffusion-2.1-768:
|
||||
stable-diffusion-2.1:
|
||||
description: Stable Diffusion version 2.1 diffusers model, trained on 768 pixel images (5.21 GB)
|
||||
repo_id: stabilityai/stable-diffusion-2-1
|
||||
format: diffusers
|
||||
recommended: True
|
||||
stable-diffusion-2.1-base:
|
||||
description: Stable Diffusion version 2.1 diffusers base model, trained on 512 pixel images (5.21 GB)
|
||||
repo_id: stabilityai/stable-diffusion-2-1-base
|
||||
sd-inpainting-2.0:
|
||||
description: Stable Diffusion version 2.0 inpainting model (5.21 GB)
|
||||
repo_id: stabilityai/stable-diffusion-2-1
|
||||
format: diffusers
|
||||
recommended: False
|
||||
analog-diffusion-1.0:
|
||||
description: An SD-1.5 model trained on diverse analog photographs (2.13 GB)
|
||||
repo_id: wavymulder/Analog-Diffusion
|
||||
format: diffusers
|
||||
recommended: false
|
||||
deliberate-1.0:
|
||||
description: Versatile model that produces detailed images up to 768px (4.27 GB)
|
||||
format: diffusers
|
||||
repo_id: XpucT/Deliberate
|
||||
recommended: False
|
||||
d&d-diffusion-1.0:
|
||||
description: Dungeons & Dragons characters (2.13 GB)
|
||||
format: diffusers
|
||||
repo_id: 0xJustin/Dungeons-and-Diffusion
|
||||
recommended: False
|
||||
dreamlike-photoreal-2.0:
|
||||
description: A photorealistic model trained on 768 pixel images based on SD 1.5 (2.13 GB)
|
||||
format: diffusers
|
||||
repo_id: dreamlike-art/dreamlike-photoreal-2.0
|
||||
recommended: False
|
||||
inkpunk-1.0:
|
||||
description: Stylized illustrations inspired by Gorillaz, FLCL and Shinkawa; prompt with "nvinkpunk" (4.27 GB)
|
||||
format: diffusers
|
||||
repo_id: Envvi/Inkpunk-Diffusion
|
||||
recommended: False
|
||||
openjourney-4.0:
|
||||
description: An SD 1.5 model fine tuned on Midjourney images by PromptHero - include "mdjrny-v4 style" in your prompts (2.13 GB)
|
||||
format: diffusers
|
||||
repo_id: prompthero/openjourney
|
||||
vae:
|
||||
description: An SD 1.5 model fine tuned on Midjourney; prompt with "mdjrny-v4 style" (2.13 GB)
|
||||
format: diffusers
|
||||
repo_id: prompthero/openjourney
|
||||
vae:
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
recommended: False
|
||||
nitro-diffusion-1.0:
|
||||
description: A SD 1.5 model trained on three artstyles - prompt with "archer style", "arcane style" and/or "modern disney style" (2.13 GB)
|
||||
repo_id: nitrosocke/Nitro-Diffusion
|
||||
recommended: False
|
||||
portrait-plus-1.0:
|
||||
description: An SD-1.5 model trained on close range portraits of people; prompt with "portrait+" (2.13 GB)
|
||||
format: diffusers
|
||||
repo_id: wavymulder/portraitplus
|
||||
recommended: False
|
||||
seek-art-mega-1.0:
|
||||
description: A general use SD-1.5 "anything" model that supports multiple styles (2.1 GB)
|
||||
repo_id: coreco/seek.art_MEGA
|
||||
format: diffusers
|
||||
vae:
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
recommended: False
|
||||
trinart-2.0:
|
||||
description: An SD model finetuned with ~40,000 assorted high resolution manga/anime-style pictures, diffusers version (2.13 GB)
|
||||
description: An SD-1.5 model finetuned with ~40K assorted high resolution manga/anime-style images (2.13 GB)
|
||||
repo_id: naclbit/trinart_stable_diffusion_v2
|
||||
format: diffusers
|
||||
vae:
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
recommended: False
|
||||
waifu-diffusion-1.4:
|
||||
description: An SD-1.5 model trained on 680k anime/manga-style images (2.13 GB)
|
||||
repo_id: hakurei/waifu-diffusion
|
||||
format: diffusers
|
||||
vae:
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
recommended: False
|
||||
|
||||
@@ -650,6 +650,8 @@ class Generate:
|
||||
def clear_cuda_cache(self):
|
||||
if self._has_cuda():
|
||||
self.gather_cuda_stats()
|
||||
# Run garbage collection prior to emptying the CUDA cache
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def clear_cuda_stats(self):
|
||||
|
||||
@@ -625,7 +625,7 @@ def set_default_output_dir(opt: Args, completer: Completer):
|
||||
completer.set_default_dir(opt.outdir)
|
||||
|
||||
|
||||
def import_model(model_path: str, gen, opt, completer, convert=False) -> str:
|
||||
def import_model(model_path: str, gen, opt, completer, convert=False):
|
||||
"""
|
||||
model_path can be (1) a URL to a .ckpt file; (2) a local .ckpt file path;
|
||||
(3) a huggingface repository id; or (4) a local directory containing a
|
||||
@@ -679,7 +679,7 @@ def _verify_load(model_name: str, gen) -> bool:
|
||||
current_model = gen.model_name
|
||||
try:
|
||||
if not gen.set_model(model_name):
|
||||
return False
|
||||
return
|
||||
except Exception as e:
|
||||
print(f"** model failed to load: {str(e)}")
|
||||
print(
|
||||
@@ -706,7 +706,7 @@ def _get_model_name_and_desc(
|
||||
)
|
||||
return model_name, model_description
|
||||
|
||||
def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer) -> str:
|
||||
def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer):
|
||||
model_name_or_path = model_name_or_path.replace("\\", "/") # windows
|
||||
manager = gen.model_manager
|
||||
ckpt_path = None
|
||||
@@ -740,19 +740,14 @@ def convert_model(model_name_or_path: Union[Path, str], gen, opt, completer) ->
|
||||
)
|
||||
else:
|
||||
try:
|
||||
model_name = import_model(model_name_or_path, gen, opt, completer, convert=True)
|
||||
import_model(model_name_or_path, gen, opt, completer, convert=True)
|
||||
except KeyboardInterrupt:
|
||||
return
|
||||
|
||||
if not model_name:
|
||||
print("** Conversion failed. Aborting.")
|
||||
return
|
||||
|
||||
manager.commit(opt.conf)
|
||||
if click.confirm(f"Delete the original .ckpt file at {ckpt_path}?", default=False):
|
||||
ckpt_path.unlink(missing_ok=True)
|
||||
print(f"{ckpt_path} deleted")
|
||||
return model_name
|
||||
|
||||
|
||||
def del_config(model_name: str, gen, opt, completer):
|
||||
|
||||
@@ -1 +1 @@
|
||||
__version__='2.3.1+rc2'
|
||||
__version__='2.3.1'
|
||||
|
||||
@@ -17,16 +17,15 @@
|
||||
# Original file at: https://github.com/huggingface/diffusers/blob/main/scripts/convert_ldm_original_checkpoint_to_diffusers.py
|
||||
""" Conversion script for the LDM checkpoints. """
|
||||
|
||||
import os
|
||||
import re
|
||||
import torch
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
from ldm.invoke.globals import (
|
||||
Globals,
|
||||
global_cache_dir,
|
||||
global_config_dir,
|
||||
)
|
||||
from ldm.invoke.model_manager import ModelManager, SDLegacyType
|
||||
from safetensors.torch import load_file
|
||||
from typing import Union
|
||||
|
||||
@@ -760,7 +759,12 @@ def convert_open_clip_checkpoint(checkpoint):
|
||||
|
||||
text_model_dict = {}
|
||||
|
||||
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0])
|
||||
if 'cond_stage_model.model.text_projection' in keys:
|
||||
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0])
|
||||
elif 'cond_stage_model.model.ln_final.bias' in keys:
|
||||
d_model = int(checkpoint['cond_stage_model.model.ln_final.bias'].shape[0])
|
||||
else:
|
||||
raise KeyError('Expected key "cond_stage_model.model.text_projection" not found in model')
|
||||
|
||||
text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids")
|
||||
|
||||
@@ -856,20 +860,23 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
|
||||
upcast_attention = False
|
||||
if original_config_file is None:
|
||||
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
||||
|
||||
if key_name in checkpoint and checkpoint[key_name].shape[-1] == 1024:
|
||||
model_type = ModelManager.probe_model_type(checkpoint)
|
||||
|
||||
if model_type == SDLegacyType.V2:
|
||||
original_config_file = global_config_dir() / 'stable-diffusion' / 'v2-inference-v.yaml'
|
||||
|
||||
if global_step == 110000:
|
||||
# v2.1 needs to upcast attention
|
||||
upcast_attention = True
|
||||
elif str(checkpoint_path).lower().find('inpaint') >= 0: # brittle - please pass original_config_file parameter!
|
||||
print(f' | checkpoint has "inpaint" in name, assuming an inpainting model')
|
||||
|
||||
elif model_type == SDLegacyType.V1_INPAINT:
|
||||
original_config_file = global_config_dir() / 'stable-diffusion' / 'v1-inpainting-inference.yaml'
|
||||
else:
|
||||
|
||||
elif model_type == SDLegacyType.V1:
|
||||
original_config_file = global_config_dir() / 'stable-diffusion' / 'v1-inference.yaml'
|
||||
|
||||
else:
|
||||
raise Exception('Unknown checkpoint type')
|
||||
|
||||
original_config = OmegaConf.load(original_config_file)
|
||||
|
||||
if num_in_channels is not None:
|
||||
@@ -960,7 +967,7 @@ def load_pipeline_from_original_stable_diffusion_ckpt(
|
||||
text_model = convert_open_clip_checkpoint(checkpoint)
|
||||
tokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2",
|
||||
subfolder="tokenizer",
|
||||
cache_dir=global_cache_dir('diffusers')
|
||||
cache_dir=cache_dir,
|
||||
)
|
||||
pipe = pipeline_class(
|
||||
vae=vae,
|
||||
|
||||
@@ -191,14 +191,18 @@ def download_bert():
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
def download_clip():
|
||||
print("Installing CLIP model...", file=sys.stderr)
|
||||
def download_sd1_clip():
|
||||
print("Installing SD1 clip model...", file=sys.stderr)
|
||||
version = "openai/clip-vit-large-patch14"
|
||||
print("Tokenizer...", file=sys.stderr)
|
||||
download_from_hf(CLIPTokenizer, version)
|
||||
print("Text model...", file=sys.stderr)
|
||||
download_from_hf(CLIPTextModel, version)
|
||||
|
||||
# ---------------------------------------------
|
||||
def download_sd2_clip():
|
||||
version = 'stabilityai/stable-diffusion-2'
|
||||
print("Installing SD2 clip model...", file=sys.stderr)
|
||||
download_from_hf(CLIPTokenizer, version, subfolder='tokenizer')
|
||||
download_from_hf(CLIPTextModel, version, subfolder='text_encoder')
|
||||
|
||||
# ---------------------------------------------
|
||||
def download_realesrgan():
|
||||
@@ -832,7 +836,8 @@ def main():
|
||||
else:
|
||||
print("\n** DOWNLOADING SUPPORT MODELS **")
|
||||
download_bert()
|
||||
download_clip()
|
||||
download_sd1_clip()
|
||||
download_sd2_clip()
|
||||
download_realesrgan()
|
||||
download_gfpgan()
|
||||
download_codeformer()
|
||||
|
||||
@@ -2,18 +2,16 @@
|
||||
Minimalist updater script. Prompts user for the tag or branch to update to and runs
|
||||
pip install <path_to_git_source>.
|
||||
'''
|
||||
|
||||
import os
|
||||
import platform
|
||||
import requests
|
||||
import subprocess
|
||||
from rich import box, print
|
||||
from rich.console import Console, group
|
||||
from rich.console import Console, Group, group
|
||||
from rich.panel import Panel
|
||||
from rich.prompt import Prompt
|
||||
from rich.style import Style
|
||||
from rich.syntax import Syntax
|
||||
from rich.text import Text
|
||||
from rich.live import Live
|
||||
from rich.table import Table
|
||||
|
||||
from ldm.invoke import __version__
|
||||
|
||||
@@ -23,19 +21,17 @@ INVOKE_AI_REL="https://api.github.com/repos/invoke-ai/InvokeAI/releases"
|
||||
OS = platform.uname().system
|
||||
ARCH = platform.uname().machine
|
||||
|
||||
ORANGE_ON_DARK_GREY = Style(bgcolor="grey23", color="orange1")
|
||||
|
||||
if OS == "Windows":
|
||||
# Windows terminals look better without a background colour
|
||||
console = Console(style=Style(color="grey74"))
|
||||
else:
|
||||
console = Console(style=Style(color="grey74", bgcolor="grey23"))
|
||||
console = Console(style=Style(color="grey74", bgcolor="grey19"))
|
||||
|
||||
def get_versions()->dict:
|
||||
return requests.get(url=INVOKE_AI_REL).json()
|
||||
|
||||
def welcome(versions: dict):
|
||||
|
||||
|
||||
@group()
|
||||
def text():
|
||||
yield f'InvokeAI Version: [bold yellow]{__version__}'
|
||||
@@ -48,55 +44,45 @@ def welcome(versions: dict):
|
||||
[3] Manually enter the tag or branch name you wish to update'''
|
||||
|
||||
console.rule()
|
||||
console.print(
|
||||
print(
|
||||
Panel(
|
||||
title="[bold wheat1]InvokeAI Updater",
|
||||
renderable=text(),
|
||||
box=box.DOUBLE,
|
||||
expand=True,
|
||||
padding=(1, 2),
|
||||
style=ORANGE_ON_DARK_GREY,
|
||||
style=Style(bgcolor="grey23", color="orange1"),
|
||||
subtitle=f"[bold grey39]{OS}-{ARCH}",
|
||||
)
|
||||
)
|
||||
# console.rule is used instead of console.line to maintain dark background
|
||||
# on terminals where light background is the default
|
||||
console.rule(characters=" ")
|
||||
console.line()
|
||||
|
||||
def main():
|
||||
versions = get_versions()
|
||||
welcome(versions)
|
||||
|
||||
tag = None
|
||||
choice = Prompt.ask(Text.from_markup(('[grey74 on grey23]Choice:')),choices=['1','2','3'],default='1')
|
||||
|
||||
choice = Prompt.ask('Choice:',choices=['1','2','3'],default='1')
|
||||
|
||||
if choice=='1':
|
||||
tag = versions[0]['tag_name']
|
||||
elif choice=='2':
|
||||
tag = 'main'
|
||||
elif choice=='3':
|
||||
tag = Prompt.ask('[grey74 on grey23]Enter an InvokeAI tag or branch name')
|
||||
|
||||
console.print(Panel(f':crossed_fingers: Upgrading to [yellow]{tag}[/yellow]', box=box.MINIMAL, style=ORANGE_ON_DARK_GREY))
|
||||
tag = Prompt.ask('Enter an InvokeAI tag or branch name')
|
||||
|
||||
print(f':crossed_fingers: Upgrading to [yellow]{tag}[/yellow]')
|
||||
cmd = f'pip install {INVOKE_AI_SRC}/{tag}.zip --use-pep517'
|
||||
|
||||
progress = Table.grid(expand=True)
|
||||
progress_panel = Panel(progress, box=box.MINIMAL, style=ORANGE_ON_DARK_GREY)
|
||||
|
||||
with subprocess.Popen(['bash', '-c', cmd], stdout=subprocess.PIPE, stderr=subprocess.PIPE) as proc:
|
||||
progress.add_column()
|
||||
with Live(progress_panel, console=console, vertical_overflow='visible'):
|
||||
while proc.poll() is None:
|
||||
for l in iter(proc.stdout.readline, b''):
|
||||
progress.add_row(l.decode().strip(), style=ORANGE_ON_DARK_GREY)
|
||||
if proc.returncode == 0:
|
||||
console.rule(f':heavy_check_mark: Upgrade successful')
|
||||
else:
|
||||
console.rule(f':exclamation: [bold red]Upgrade failed[/red bold]')
|
||||
|
||||
print('')
|
||||
print('')
|
||||
if os.system(cmd)==0:
|
||||
print(f':heavy_check_mark: Upgrade successful')
|
||||
else:
|
||||
print(f':exclamation: [bold red]Upgrade failed[/red bold]')
|
||||
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
main()
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
|
||||
|
||||
@@ -114,37 +114,37 @@ class addModelsForm(npyscreen.FormMultiPage):
|
||||
relx=4,
|
||||
)
|
||||
self.nextrely += 1
|
||||
self.add_widget_intelligent(
|
||||
CenteredTitleText,
|
||||
name="== STARTER MODELS (recommended ones selected) ==",
|
||||
editable=False,
|
||||
color="CONTROL",
|
||||
)
|
||||
self.nextrely -= 1
|
||||
self.add_widget_intelligent(
|
||||
CenteredTitleText,
|
||||
name="Select from a starter set of Stable Diffusion models from HuggingFace:",
|
||||
editable=False,
|
||||
labelColor="CAUTION",
|
||||
)
|
||||
|
||||
self.nextrely -= 1
|
||||
# if user has already installed some initial models, then don't patronize them
|
||||
# by showing more recommendations
|
||||
show_recommended = not self.existing_models
|
||||
self.models_selected = self.add_widget_intelligent(
|
||||
npyscreen.MultiSelect,
|
||||
name="Install Starter Models",
|
||||
values=starter_model_labels,
|
||||
value=[
|
||||
self.starter_model_list.index(x)
|
||||
for x in self.starter_model_list
|
||||
if show_recommended and x in recommended_models
|
||||
],
|
||||
max_height=len(starter_model_labels) + 1,
|
||||
relx=4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
if len(self.starter_model_list) > 0:
|
||||
self.add_widget_intelligent(
|
||||
CenteredTitleText,
|
||||
name="== STARTER MODELS (recommended ones selected) ==",
|
||||
editable=False,
|
||||
color="CONTROL",
|
||||
)
|
||||
self.nextrely -= 1
|
||||
self.add_widget_intelligent(
|
||||
CenteredTitleText,
|
||||
name="Select from a starter set of Stable Diffusion models from HuggingFace.",
|
||||
editable=False,
|
||||
labelColor="CAUTION",
|
||||
)
|
||||
self.nextrely -= 1
|
||||
# if user has already installed some initial models, then don't patronize them
|
||||
# by showing more recommendations
|
||||
show_recommended = not self.existing_models
|
||||
self.models_selected = self.add_widget_intelligent(
|
||||
npyscreen.MultiSelect,
|
||||
name="Install Starter Models",
|
||||
values=starter_model_labels,
|
||||
value=[
|
||||
self.starter_model_list.index(x)
|
||||
for x in self.starter_model_list
|
||||
if show_recommended and x in recommended_models
|
||||
],
|
||||
max_height=len(starter_model_labels) + 1,
|
||||
relx=4,
|
||||
scroll_exit=True,
|
||||
)
|
||||
self.add_widget_intelligent(
|
||||
CenteredTitleText,
|
||||
name='== IMPORT LOCAL AND REMOTE MODELS ==',
|
||||
@@ -166,7 +166,11 @@ class addModelsForm(npyscreen.FormMultiPage):
|
||||
)
|
||||
self.nextrely -= 1
|
||||
self.import_model_paths = self.add_widget_intelligent(
|
||||
TextBox, max_height=5, scroll_exit=True, editable=True, relx=4
|
||||
TextBox,
|
||||
max_height=7,
|
||||
scroll_exit=True,
|
||||
editable=True,
|
||||
relx=4
|
||||
)
|
||||
self.nextrely += 1
|
||||
self.show_directory_fields = self.add_widget_intelligent(
|
||||
@@ -241,7 +245,8 @@ class addModelsForm(npyscreen.FormMultiPage):
|
||||
|
||||
def resize(self):
|
||||
super().resize()
|
||||
self.models_selected.values = self._get_starter_model_labels()
|
||||
if hasattr(self,'models_selected'):
|
||||
self.models_selected.values = self._get_starter_model_labels()
|
||||
|
||||
def _clear_scan_directory(self):
|
||||
if not self.show_directory_fields.value:
|
||||
@@ -320,11 +325,14 @@ class addModelsForm(npyscreen.FormMultiPage):
|
||||
selections = self.parentApp.user_selections
|
||||
|
||||
# starter models to install/remove
|
||||
starter_models = dict(
|
||||
map(
|
||||
lambda x: (self.starter_model_list[x], True), self.models_selected.value
|
||||
if hasattr(self,'models_selected'):
|
||||
starter_models = dict(
|
||||
map(
|
||||
lambda x: (self.starter_model_list[x], True), self.models_selected.value
|
||||
)
|
||||
)
|
||||
)
|
||||
else:
|
||||
starter_models = dict()
|
||||
selections.purge_deleted_models = False
|
||||
if hasattr(self, "previously_installed_models"):
|
||||
unchecked = [
|
||||
|
||||
@@ -137,17 +137,9 @@ class Generator:
|
||||
Given samples returned from a sampler, converts
|
||||
it into a PIL Image
|
||||
"""
|
||||
x_samples = self.model.decode_first_stage(samples)
|
||||
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
if len(x_samples) != 1:
|
||||
raise Exception(
|
||||
f'>> expected to get a single image, but got {len(x_samples)}')
|
||||
x_sample = 255.0 * rearrange(
|
||||
x_samples[0].cpu().numpy(), 'c h w -> h w c'
|
||||
)
|
||||
return Image.fromarray(x_sample.astype(np.uint8))
|
||||
|
||||
# write an approximate RGB image from latent samples for a single step to PNG
|
||||
with torch.inference_mode():
|
||||
image = self.model.decode_latents(samples)
|
||||
return self.model.numpy_to_pil(image)[0]
|
||||
|
||||
def repaste_and_color_correct(self, result: Image.Image, init_image: Image.Image, init_mask: Image.Image, mask_blur_radius: int = 8) -> Image.Image:
|
||||
if init_image is None or init_mask is None:
|
||||
|
||||
@@ -19,15 +19,7 @@ from typing import Union
|
||||
|
||||
Globals = Namespace()
|
||||
|
||||
# This is usually overwritten by the command line and/or environment variables
|
||||
if os.environ.get('INVOKEAI_ROOT'):
|
||||
Globals.root = osp.abspath(os.environ.get('INVOKEAI_ROOT'))
|
||||
elif os.environ.get('VIRTUAL_ENV'):
|
||||
Globals.root = osp.abspath(osp.join(os.environ.get('VIRTUAL_ENV'), '..'))
|
||||
else:
|
||||
Globals.root = osp.abspath(osp.expanduser('~/invokeai'))
|
||||
|
||||
# Where to look for the initialization file
|
||||
# Where to look for the initialization file and other key components
|
||||
Globals.initfile = 'invokeai.init'
|
||||
Globals.models_file = 'models.yaml'
|
||||
Globals.models_dir = 'models'
|
||||
@@ -35,6 +27,20 @@ Globals.config_dir = 'configs'
|
||||
Globals.autoscan_dir = 'weights'
|
||||
Globals.converted_ckpts_dir = 'converted_ckpts'
|
||||
|
||||
# Set the default root directory. This can be overwritten by explicitly
|
||||
# passing the `--root <directory>` argument on the command line.
|
||||
# logic is:
|
||||
# 1) use INVOKEAI_ROOT environment variable (no check for this being a valid directory)
|
||||
# 2) use VIRTUAL_ENV environment variable, with a check for initfile being there
|
||||
# 3) use ~/invokeai
|
||||
|
||||
if os.environ.get('INVOKEAI_ROOT'):
|
||||
Globals.root = osp.abspath(os.environ.get('INVOKEAI_ROOT'))
|
||||
elif os.environ.get('VIRTUAL_ENV') and Path(os.environ.get('VIRTUAL_ENV'),'..',Globals.initfile).exists():
|
||||
Globals.root = osp.abspath(osp.join(os.environ.get('VIRTUAL_ENV'), '..'))
|
||||
else:
|
||||
Globals.root = osp.abspath(osp.expanduser('~/invokeai'))
|
||||
|
||||
# Try loading patchmatch
|
||||
Globals.try_patchmatch = True
|
||||
|
||||
|
||||
@@ -725,7 +725,7 @@ class ModelManager(object):
|
||||
SDLegacyType.V1
|
||||
SDLegacyType.V1_INPAINT
|
||||
SDLegacyType.V2
|
||||
UNKNOWN
|
||||
SDLegacyType.UNKNOWN
|
||||
"""
|
||||
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
||||
if key_name in checkpoint and checkpoint[key_name].shape[-1] == 1024:
|
||||
@@ -785,7 +785,7 @@ class ModelManager(object):
|
||||
print(f">> Probing {thing} for import")
|
||||
|
||||
if thing.startswith(("http:", "https:", "ftp:")):
|
||||
print(f" | {thing} appears to be a URL")
|
||||
print(f" | {thing} appears to be a URL")
|
||||
model_path = self._resolve_path(
|
||||
thing, "models/ldm/stable-diffusion-v1"
|
||||
) # _resolve_path does a download if needed
|
||||
@@ -793,15 +793,15 @@ class ModelManager(object):
|
||||
elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")):
|
||||
if Path(thing).stem in ["model", "diffusion_pytorch_model"]:
|
||||
print(
|
||||
f" | {Path(thing).name} appears to be part of a diffusers model. Skipping import"
|
||||
f" | {Path(thing).name} appears to be part of a diffusers model. Skipping import"
|
||||
)
|
||||
return
|
||||
else:
|
||||
print(f" | {thing} appears to be a checkpoint file on disk")
|
||||
print(f" | {thing} appears to be a checkpoint file on disk")
|
||||
model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1")
|
||||
|
||||
elif Path(thing).is_dir() and Path(thing, "model_index.json").exists():
|
||||
print(f" | {thing} appears to be a diffusers file on disk")
|
||||
print(f" | {thing} appears to be a diffusers file on disk")
|
||||
model_name = self.import_diffuser_model(
|
||||
thing,
|
||||
vae=dict(repo_id="stabilityai/sd-vae-ft-mse"),
|
||||
@@ -812,13 +812,13 @@ class ModelManager(object):
|
||||
|
||||
elif Path(thing).is_dir():
|
||||
if (Path(thing) / "model_index.json").exists():
|
||||
print(f">> {thing} appears to be a diffusers model.")
|
||||
print(f" | {thing} appears to be a diffusers model.")
|
||||
model_name = self.import_diffuser_model(
|
||||
thing, commit_to_conf=commit_to_conf
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f">> {thing} appears to be a directory. Will scan for models to import"
|
||||
f" |{thing} appears to be a directory. Will scan for models to import"
|
||||
)
|
||||
for m in list(Path(thing).rglob("*.ckpt")) + list(
|
||||
Path(thing).rglob("*.safetensors")
|
||||
@@ -830,7 +830,7 @@ class ModelManager(object):
|
||||
return model_name
|
||||
|
||||
elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing):
|
||||
print(f" | {thing} appears to be a HuggingFace diffusers repo_id")
|
||||
print(f" | {thing} appears to be a HuggingFace diffusers repo_id")
|
||||
model_name = self.import_diffuser_model(
|
||||
thing, commit_to_conf=commit_to_conf
|
||||
)
|
||||
@@ -847,7 +847,7 @@ class ModelManager(object):
|
||||
return
|
||||
|
||||
if model_path.stem in self.config: # already imported
|
||||
print(" | Already imported. Skipping")
|
||||
print(" | Already imported. Skipping")
|
||||
return
|
||||
|
||||
# another round of heuristics to guess the correct config file.
|
||||
@@ -860,18 +860,18 @@ class ModelManager(object):
|
||||
|
||||
model_config_file = None
|
||||
if model_type == SDLegacyType.V1:
|
||||
print(" | SD-v1 model detected")
|
||||
print(" | SD-v1 model detected")
|
||||
model_config_file = Path(
|
||||
Globals.root, "configs/stable-diffusion/v1-inference.yaml"
|
||||
)
|
||||
elif model_type == SDLegacyType.V1_INPAINT:
|
||||
print(" | SD-v1 inpainting model detected")
|
||||
print(" | SD-v1 inpainting model detected")
|
||||
model_config_file = Path(
|
||||
Globals.root, "configs/stable-diffusion/v1-inpainting-inference.yaml"
|
||||
)
|
||||
elif model_type == SDLegacyType.V2:
|
||||
print(
|
||||
" | SD-v2 model detected; model will be converted to diffusers format"
|
||||
" | SD-v2 model detected; model will be converted to diffusers format"
|
||||
)
|
||||
model_config_file = Path(
|
||||
Globals.root, "configs/stable-diffusion/v2-inference-v.yaml"
|
||||
@@ -923,7 +923,7 @@ class ModelManager(object):
|
||||
vae=None,
|
||||
original_config_file: Path = None,
|
||||
commit_to_conf: Path = None,
|
||||
) -> dict:
|
||||
) -> str:
|
||||
"""
|
||||
Convert a legacy ckpt weights file to diffuser model and import
|
||||
into models.yaml.
|
||||
|
||||
@@ -38,7 +38,7 @@ dependencies = [
|
||||
"albumentations",
|
||||
"click",
|
||||
"clip_anytorch", # replacing "clip @ https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip",
|
||||
"compel>=0.1.6",
|
||||
"compel==0.1.7",
|
||||
"datasets",
|
||||
"diffusers[torch]~=0.13",
|
||||
"dnspython==2.2.1",
|
||||
|
||||
23
scripts/make_models_markdown_table.py
Executable file
23
scripts/make_models_markdown_table.py
Executable file
@@ -0,0 +1,23 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
This script is used at release time to generate a markdown table describing the
|
||||
starter models. This text is then manually copied into 050_INSTALL_MODELS.md.
|
||||
'''
|
||||
|
||||
from omegaconf import OmegaConf
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def main():
|
||||
initial_models_file = Path(__file__).parent / '../invokeai/configs/INITIAL_MODELS.yaml'
|
||||
models = OmegaConf.load(initial_models_file)
|
||||
print('|Model Name | HuggingFace Repo ID | Description | URL |')
|
||||
print('|---------- | ---------- | ----------- | --- |')
|
||||
for model in models:
|
||||
repo_id = models[model].repo_id
|
||||
url = f'https://huggingface.co/{repo_id}'
|
||||
print(f'|{model}|{repo_id}|{models[model].description}|{url} |')
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user