# Initially pulled from https://github.com/black-forest-labs/flux from dataclasses import dataclass from typing import Optional import torch from torch import Tensor, nn from invokeai.backend.flux.custom_block_processor import ( CustomDoubleStreamBlockProcessor, CustomSingleStreamBlockProcessor, ) from invokeai.backend.flux.extensions.regional_prompting_extension import RegionalPromptingExtension from invokeai.backend.flux.extensions.xlabs_ip_adapter_extension import XLabsIPAdapterExtension from invokeai.backend.flux.modules.layers import ( DoubleStreamBlock, EmbedND, LastLayer, MLPEmbedder, SingleStreamBlock, timestep_embedding, ) @dataclass class FluxParams: in_channels: int vec_in_dim: int context_in_dim: int hidden_size: int mlp_ratio: float num_heads: int depth: int depth_single_blocks: int axes_dim: list[int] theta: int qkv_bias: bool guidance_embed: bool out_channels: Optional[int] = None class Flux(nn.Module): """ Transformer model for flow matching on sequences. """ def __init__(self, params: FluxParams): super().__init__() self.params = params self.in_channels = params.in_channels self.out_channels = params.out_channels or self.in_channels if params.hidden_size % params.num_heads != 0: raise ValueError(f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}") pe_dim = params.hidden_size // params.num_heads if sum(params.axes_dim) != pe_dim: raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") self.hidden_size = params.hidden_size self.num_heads = params.num_heads self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) self.guidance_in = ( MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity() ) self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) self.double_blocks = nn.ModuleList( [ DoubleStreamBlock( self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, qkv_bias=params.qkv_bias, ) for _ in range(params.depth) ] ) self.single_blocks = nn.ModuleList( [ SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio) for _ in range(params.depth_single_blocks) ] ) self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) def forward( self, img: Tensor, img_ids: Tensor, txt: Tensor, txt_ids: Tensor, timesteps: Tensor, y: Tensor, guidance: Tensor | None, timestep_index: int, total_num_timesteps: int, controlnet_double_block_residuals: list[Tensor] | None, controlnet_single_block_residuals: list[Tensor] | None, ip_adapter_extensions: list[XLabsIPAdapterExtension], regional_prompting_extension: RegionalPromptingExtension, ) -> Tensor: if img.ndim != 3 or txt.ndim != 3: raise ValueError("Input img and txt tensors must have 3 dimensions.") # running on sequences img img = self.img_in(img) vec = self.time_in(timestep_embedding(timesteps, 256)) if self.params.guidance_embed: if guidance is None: raise ValueError("Didn't get guidance strength for guidance distilled model.") vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) vec = vec + self.vector_in(y) txt = self.txt_in(txt) ids = torch.cat((txt_ids, img_ids), dim=1) pe = self.pe_embedder(ids) # Validate double_block_residuals shape. if controlnet_double_block_residuals is not None: assert len(controlnet_double_block_residuals) == len(self.double_blocks) for block_index, block in enumerate(self.double_blocks): assert isinstance(block, DoubleStreamBlock) img, txt = CustomDoubleStreamBlockProcessor.custom_double_block_forward( timestep_index=timestep_index, total_num_timesteps=total_num_timesteps, block_index=block_index, block=block, img=img, txt=txt, vec=vec, pe=pe, ip_adapter_extensions=ip_adapter_extensions, regional_prompting_extension=regional_prompting_extension, ) if controlnet_double_block_residuals is not None: img += controlnet_double_block_residuals[block_index] img = torch.cat((txt, img), 1) # Validate single_block_residuals shape. if controlnet_single_block_residuals is not None: assert len(controlnet_single_block_residuals) == len(self.single_blocks) for block_index, block in enumerate(self.single_blocks): assert isinstance(block, SingleStreamBlock) img = CustomSingleStreamBlockProcessor.custom_single_block_forward( timestep_index=timestep_index, total_num_timesteps=total_num_timesteps, block_index=block_index, block=block, img=img, vec=vec, pe=pe, regional_prompting_extension=regional_prompting_extension, ) if controlnet_single_block_residuals is not None: img[:, txt.shape[1] :, ...] += controlnet_single_block_residuals[block_index] img = img[:, txt.shape[1] :, ...] img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) return img