from typing import Callable import torch from tqdm import tqdm from invokeai.backend.flux.inpaint_extension import InpaintExtension from invokeai.backend.flux.model import Flux from invokeai.backend.stable_diffusion.diffusers_pipeline import PipelineIntermediateState def denoise( model: Flux, # model input img: torch.Tensor, img_ids: torch.Tensor, txt: torch.Tensor, txt_ids: torch.Tensor, vec: torch.Tensor, # sampling parameters timesteps: list[float], step_callback: Callable[[PipelineIntermediateState], None], guidance: float, inpaint_extension: InpaintExtension | None, ): step = 0 # guidance_vec is ignored for schnell. guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype) for t_curr, t_prev in tqdm(list(zip(timesteps[:-1], timesteps[1:], strict=True))): t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device) pred = model( img=img, img_ids=img_ids, txt=txt, txt_ids=txt_ids, y=vec, timesteps=t_vec, guidance=guidance_vec, ) preview_img = img - t_curr * pred img = img + (t_prev - t_curr) * pred if inpaint_extension is not None: img = inpaint_extension.merge_intermediate_latents_with_init_latents(img, t_prev) step_callback( PipelineIntermediateState( step=step, order=1, total_steps=len(timesteps), timestep=int(t_curr), latents=preview_img, ), ) step += 1 return img