import { logger } from 'app/logging/logger'; import { RootState } from 'app/store/store'; import { NonNullableGraph } from 'features/nodes/types/types'; import { initialGenerationState } from 'features/parameters/store/generationSlice'; import { DenoiseLatentsInvocation, ONNXTextToLatentsInvocation, } from 'services/api/types'; import { addControlNetToLinearGraph } from './addControlNetToLinearGraph'; import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph'; import { addLoRAsToGraph } from './addLoRAsToGraph'; import { addNSFWCheckerToGraph } from './addNSFWCheckerToGraph'; import { addVAEToGraph } from './addVAEToGraph'; import { addWatermarkerToGraph } from './addWatermarkerToGraph'; import { CANVAS_OUTPUT, CANVAS_TEXT_TO_IMAGE_GRAPH, CLIP_SKIP, DENOISE_LATENTS, MAIN_MODEL_LOADER, METADATA_ACCUMULATOR, NEGATIVE_CONDITIONING, NOISE, ONNX_MODEL_LOADER, POSITIVE_CONDITIONING, } from './constants'; /** * Builds the Canvas tab's Text to Image graph. */ export const buildCanvasTextToImageGraph = ( state: RootState ): NonNullableGraph => { const log = logger('nodes'); const { positivePrompt, negativePrompt, model, cfgScale: cfg_scale, scheduler, steps, clipSkip, shouldUseCpuNoise, shouldUseNoiseSettings, } = state.generation; // The bounding box determines width and height, not the width and height params const { width, height } = state.canvas.boundingBoxDimensions; const { shouldAutoSave } = state.canvas; if (!model) { log.error('No model found in state'); throw new Error('No model found in state'); } const use_cpu = shouldUseNoiseSettings ? shouldUseCpuNoise : initialGenerationState.shouldUseCpuNoise; const isUsingOnnxModel = model.model_type === 'onnx'; const modelLoaderNodeId = isUsingOnnxModel ? ONNX_MODEL_LOADER : MAIN_MODEL_LOADER; const modelLoaderNodeType = isUsingOnnxModel ? 'onnx_model_loader' : 'main_model_loader'; const t2lNode: DenoiseLatentsInvocation | ONNXTextToLatentsInvocation = isUsingOnnxModel ? { type: 't2l_onnx', id: DENOISE_LATENTS, is_intermediate: true, cfg_scale, scheduler, steps, } : { type: 'denoise_latents', id: DENOISE_LATENTS, is_intermediate: true, cfg_scale, scheduler, steps, denoising_start: 0, denoising_end: 1, }; /** * The easiest way to build linear graphs is to do it in the node editor, then copy and paste the * full graph here as a template. Then use the parameters from app state and set friendlier node * ids. * * The only thing we need extra logic for is handling randomized seed, control net, and for img2img, * the `fit` param. These are added to the graph at the end. */ // copy-pasted graph from node editor, filled in with state values & friendly node ids // TODO: Actually create the graph correctly for ONNX const graph: NonNullableGraph = { id: CANVAS_TEXT_TO_IMAGE_GRAPH, nodes: { [modelLoaderNodeId]: { type: modelLoaderNodeType, id: modelLoaderNodeId, is_intermediate: true, model, }, [CLIP_SKIP]: { type: 'clip_skip', id: CLIP_SKIP, is_intermediate: true, skipped_layers: clipSkip, }, [POSITIVE_CONDITIONING]: { type: isUsingOnnxModel ? 'prompt_onnx' : 'compel', id: POSITIVE_CONDITIONING, is_intermediate: true, prompt: positivePrompt, }, [NEGATIVE_CONDITIONING]: { type: isUsingOnnxModel ? 'prompt_onnx' : 'compel', id: NEGATIVE_CONDITIONING, is_intermediate: true, prompt: negativePrompt, }, [NOISE]: { type: 'noise', id: NOISE, is_intermediate: true, width, height, use_cpu, }, [t2lNode.id]: t2lNode, [CANVAS_OUTPUT]: { type: isUsingOnnxModel ? 'l2i_onnx' : 'l2i', id: CANVAS_OUTPUT, is_intermediate: !shouldAutoSave, }, }, edges: [ // Connect Model Loader to UNet & CLIP Skip { source: { node_id: modelLoaderNodeId, field: 'unet', }, destination: { node_id: DENOISE_LATENTS, field: 'unet', }, }, { source: { node_id: modelLoaderNodeId, field: 'clip', }, destination: { node_id: CLIP_SKIP, field: 'clip', }, }, // Connect CLIP Skip to Conditioning { source: { node_id: CLIP_SKIP, field: 'clip', }, destination: { node_id: POSITIVE_CONDITIONING, field: 'clip', }, }, { source: { node_id: CLIP_SKIP, field: 'clip', }, destination: { node_id: NEGATIVE_CONDITIONING, field: 'clip', }, }, // Connect everything to Denoise Latents { source: { node_id: POSITIVE_CONDITIONING, field: 'conditioning', }, destination: { node_id: DENOISE_LATENTS, field: 'positive_conditioning', }, }, { source: { node_id: NEGATIVE_CONDITIONING, field: 'conditioning', }, destination: { node_id: DENOISE_LATENTS, field: 'negative_conditioning', }, }, { source: { node_id: NOISE, field: 'noise', }, destination: { node_id: DENOISE_LATENTS, field: 'noise', }, }, // Decode denoised latents to image { source: { node_id: DENOISE_LATENTS, field: 'latents', }, destination: { node_id: CANVAS_OUTPUT, field: 'latents', }, }, ], }; // add metadata accumulator, which is only mostly populated - some fields are added later graph.nodes[METADATA_ACCUMULATOR] = { id: METADATA_ACCUMULATOR, type: 'metadata_accumulator', generation_mode: 'txt2img', cfg_scale, height, width, positive_prompt: '', // set in addDynamicPromptsToGraph negative_prompt: negativePrompt, model, seed: 0, // set in addDynamicPromptsToGraph steps, rand_device: use_cpu ? 'cpu' : 'cuda', scheduler, vae: undefined, // option; set in addVAEToGraph controlnets: [], // populated in addControlNetToLinearGraph loras: [], // populated in addLoRAsToGraph clip_skip: clipSkip, }; graph.edges.push({ source: { node_id: METADATA_ACCUMULATOR, field: 'metadata', }, destination: { node_id: CANVAS_OUTPUT, field: 'metadata', }, }); // optionally add custom VAE addVAEToGraph(state, graph, modelLoaderNodeId); // add LoRA support addLoRAsToGraph(state, graph, DENOISE_LATENTS, modelLoaderNodeId); // add dynamic prompts - also sets up core iteration and seed addDynamicPromptsToGraph(state, graph); // add controlnet, mutating `graph` addControlNetToLinearGraph(state, graph, DENOISE_LATENTS); // NSFW & watermark - must be last thing added to graph if (state.system.shouldUseNSFWChecker) { // must add before watermarker! addNSFWCheckerToGraph(state, graph, CANVAS_OUTPUT); } if (state.system.shouldUseWatermarker) { // must add after nsfw checker! addWatermarkerToGraph(state, graph, CANVAS_OUTPUT); } return graph; };