Files
InvokeAI/invokeai/app/invocations/mask.py

267 lines
9.3 KiB
Python

import numpy as np
import torch
from PIL import Image
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
InvocationContext,
invocation,
)
from invokeai.app.invocations.fields import (
BoundingBoxField,
ColorField,
ImageField,
InputField,
TensorField,
WithBoard,
WithMetadata,
)
from invokeai.app.invocations.primitives import BoundingBoxOutput, ImageOutput, MaskOutput
from invokeai.backend.image_util.util import pil_to_np
@invocation(
"rectangle_mask",
title="Create Rectangle Mask",
tags=["conditioning"],
category="conditioning",
version="1.0.1",
)
class RectangleMaskInvocation(BaseInvocation, WithMetadata):
"""Create a rectangular mask."""
width: int = InputField(description="The width of the entire mask.")
height: int = InputField(description="The height of the entire mask.")
x_left: int = InputField(description="The left x-coordinate of the rectangular masked region (inclusive).")
y_top: int = InputField(description="The top y-coordinate of the rectangular masked region (inclusive).")
rectangle_width: int = InputField(description="The width of the rectangular masked region.")
rectangle_height: int = InputField(description="The height of the rectangular masked region.")
def invoke(self, context: InvocationContext) -> MaskOutput:
mask = torch.zeros((1, self.height, self.width), dtype=torch.bool)
mask[:, self.y_top : self.y_top + self.rectangle_height, self.x_left : self.x_left + self.rectangle_width] = (
True
)
mask_tensor_name = context.tensors.save(mask)
return MaskOutput(
mask=TensorField(tensor_name=mask_tensor_name),
width=self.width,
height=self.height,
)
@invocation(
"alpha_mask_to_tensor",
title="Alpha Mask to Tensor",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class AlphaMaskToTensorInvocation(BaseInvocation):
"""Convert a mask image to a tensor. Opaque regions are 1 and transparent regions are 0."""
image: ImageField = InputField(description="The mask image to convert.")
invert: bool = InputField(default=False, description="Whether to invert the mask.")
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.images.get_pil(self.image.image_name, mode="RGBA")
mask = torch.zeros((1, image.height, image.width), dtype=torch.bool)
if self.invert:
mask[0] = torch.tensor(np.array(image)[:, :, 3] == 0, dtype=torch.bool)
else:
mask[0] = torch.tensor(np.array(image)[:, :, 3] > 0, dtype=torch.bool)
return MaskOutput(
mask=TensorField(tensor_name=context.tensors.save(mask)),
height=mask.shape[1],
width=mask.shape[2],
)
@invocation(
"invert_tensor_mask",
title="Invert Tensor Mask",
tags=["conditioning"],
category="conditioning",
version="1.1.0",
)
class InvertTensorMaskInvocation(BaseInvocation):
"""Inverts a tensor mask."""
mask: TensorField = InputField(description="The tensor mask to convert.")
def invoke(self, context: InvocationContext) -> MaskOutput:
mask = context.tensors.load(self.mask.tensor_name)
# Verify dtype and shape.
assert mask.dtype == torch.bool
assert mask.dim() in [2, 3]
# Unsqueeze the channel dimension if it is missing. The MaskOutput type expects a single channel.
if mask.dim() == 2:
mask = mask.unsqueeze(0)
inverted = ~mask
return MaskOutput(
mask=TensorField(tensor_name=context.tensors.save(inverted)),
height=inverted.shape[1],
width=inverted.shape[2],
)
@invocation(
"image_mask_to_tensor",
title="Image Mask to Tensor",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class ImageMaskToTensorInvocation(BaseInvocation, WithMetadata):
"""Convert a mask image to a tensor. Converts the image to grayscale and uses thresholding at the specified value."""
image: ImageField = InputField(description="The mask image to convert.")
cutoff: int = InputField(ge=0, le=255, description="Cutoff (<)", default=128)
invert: bool = InputField(default=False, description="Whether to invert the mask.")
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.images.get_pil(self.image.image_name, mode="L")
mask = torch.zeros((1, image.height, image.width), dtype=torch.bool)
if self.invert:
mask[0] = torch.tensor(np.array(image)[:, :] >= self.cutoff, dtype=torch.bool)
else:
mask[0] = torch.tensor(np.array(image)[:, :] < self.cutoff, dtype=torch.bool)
return MaskOutput(
mask=TensorField(tensor_name=context.tensors.save(mask)),
height=mask.shape[1],
width=mask.shape[2],
)
@invocation(
"tensor_mask_to_image",
title="Tensor Mask to Image",
tags=["mask"],
category="mask",
version="1.1.0",
)
class MaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Convert a mask tensor to an image."""
mask: TensorField = InputField(description="The mask tensor to convert.")
def invoke(self, context: InvocationContext) -> ImageOutput:
mask = context.tensors.load(self.mask.tensor_name)
# Squeeze the channel dimension if it exists.
if mask.dim() == 3:
mask = mask.squeeze(0)
# Ensure that the mask is binary.
if mask.dtype != torch.bool:
mask = mask > 0.5
mask_np = (mask.float() * 255).byte().cpu().numpy()
mask_pil = Image.fromarray(mask_np, mode="L")
image_dto = context.images.save(image=mask_pil)
return ImageOutput.build(image_dto)
@invocation(
"apply_tensor_mask_to_image",
title="Apply Tensor Mask to Image",
tags=["mask"],
category="mask",
version="1.0.0",
)
class ApplyMaskTensorToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Applies a tensor mask to an image.
The image is converted to RGBA and the mask is applied to the alpha channel."""
mask: TensorField = InputField(description="The mask tensor to apply.")
image: ImageField = InputField(description="The image to apply the mask to.")
invert: bool = InputField(default=False, description="Whether to invert the mask.")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, mode="RGBA")
mask = context.tensors.load(self.mask.tensor_name)
# Squeeze the channel dimension if it exists.
if mask.dim() == 3:
mask = mask.squeeze(0)
# Ensure that the mask is binary.
if mask.dtype != torch.bool:
mask = mask > 0.5
mask_np = (mask.float() * 255).byte().cpu().numpy().astype(np.uint8)
if self.invert:
mask_np = 255 - mask_np
# Apply the mask only to the alpha channel where the original alpha is non-zero. This preserves the original
# image's transparency - else the transparent regions would end up as opaque black.
# Separate the image into R, G, B, and A channels
image_np = pil_to_np(image)
r, g, b, a = np.split(image_np, 4, axis=-1)
# Apply the mask to the alpha channel
new_alpha = np.where(a.squeeze() > 0, mask_np, a.squeeze())
# Stack the RGB channels with the modified alpha
masked_image_np = np.dstack([r.squeeze(), g.squeeze(), b.squeeze(), new_alpha])
# Convert back to an image (RGBA)
masked_image = Image.fromarray(masked_image_np.astype(np.uint8), "RGBA")
image_dto = context.images.save(image=masked_image)
return ImageOutput.build(image_dto)
WHITE = ColorField(r=255, g=255, b=255, a=255)
@invocation(
"get_image_mask_bounding_box",
title="Get Image Mask Bounding Box",
tags=["mask"],
category="mask",
version="1.0.0",
)
class GetMaskBoundingBoxInvocation(BaseInvocation):
"""Gets the bounding box of the given mask image."""
mask: ImageField = InputField(description="The mask to crop.")
margin: int = InputField(default=0, description="Margin to add to the bounding box.")
mask_color: ColorField = InputField(default=WHITE, description="Color of the mask in the image.")
def invoke(self, context: InvocationContext) -> BoundingBoxOutput:
mask = context.images.get_pil(self.mask.image_name, mode="RGBA")
mask_np = np.array(mask)
# Convert mask_color to RGBA tuple
mask_color_rgb = self.mask_color.tuple()
# Find the bounding box of the mask color
y, x = np.where(np.all(mask_np == mask_color_rgb, axis=-1))
if len(x) == 0 or len(y) == 0:
# No pixels found with the given color
return BoundingBoxOutput(bounding_box=BoundingBoxField(x_min=0, y_min=0, x_max=0, y_max=0))
left, upper, right, lower = x.min(), y.min(), x.max(), y.max()
# Add the margin
left = max(0, left - self.margin)
upper = max(0, upper - self.margin)
right = min(mask_np.shape[1], right + self.margin)
lower = min(mask_np.shape[0], lower + self.margin)
bounding_box = BoundingBoxField(x_min=left, y_min=upper, x_max=right, y_max=lower)
return BoundingBoxOutput(bounding_box=bounding_box)