Files
InvokeAI/invokeai/backend/image_util/hed.py

218 lines
7.9 KiB
Python

# Adapted from https://github.com/huggingface/controlnet_aux
import pathlib
import cv2
import huggingface_hub
import numpy as np
import torch
from einops import rearrange
from huggingface_hub import hf_hub_download
from PIL import Image
from invokeai.backend.image_util.util import (
nms,
normalize_image_channel_count,
np_to_pil,
pil_to_np,
resize_image_to_resolution,
safe_step,
)
from invokeai.backend.model_manager.load.model_cache.utils import get_effective_device
class DoubleConvBlock(torch.nn.Module):
def __init__(self, input_channel, output_channel, layer_number):
super().__init__()
self.convs = torch.nn.Sequential()
self.convs.append(
torch.nn.Conv2d(
in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1
)
)
for _i in range(1, layer_number):
self.convs.append(
torch.nn.Conv2d(
in_channels=output_channel,
out_channels=output_channel,
kernel_size=(3, 3),
stride=(1, 1),
padding=1,
)
)
self.projection = torch.nn.Conv2d(
in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0
)
def __call__(self, x, down_sampling=False):
h = x
if down_sampling:
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
for conv in self.convs:
h = conv(h)
h = torch.nn.functional.relu(h)
return h, self.projection(h)
class ControlNetHED_Apache2(torch.nn.Module):
def __init__(self):
super().__init__()
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
def __call__(self, x):
h = x - self.norm
h, projection1 = self.block1(h)
h, projection2 = self.block2(h, down_sampling=True)
h, projection3 = self.block3(h, down_sampling=True)
h, projection4 = self.block4(h, down_sampling=True)
h, projection5 = self.block5(h, down_sampling=True)
return projection1, projection2, projection3, projection4, projection5
class HEDProcessor:
"""Holistically-Nested Edge Detection.
On instantiation, loads the HED model from the HuggingFace Hub.
"""
def __init__(self):
model_path = hf_hub_download("lllyasviel/Annotators", "ControlNetHED.pth")
self.network = ControlNetHED_Apache2()
self.network.load_state_dict(torch.load(model_path, map_location="cpu"))
self.network.float().eval()
def to(self, device: torch.device):
self.network.to(device)
return self
def run(
self,
input_image: Image.Image,
detect_resolution: int = 512,
image_resolution: int = 512,
safe: bool = False,
scribble: bool = False,
) -> Image.Image:
"""Processes an image and returns the detected edges.
Args:
input_image: The input image.
detect_resolution: The resolution to fit the image to before edge detection.
image_resolution: The resolution to fit the edges to before returning.
safe: Whether to apply safe step to the detected edges.
scribble: Whether to apply non-maximum suppression and Gaussian blur to the detected edges.
Returns:
The detected edges.
"""
device = get_effective_device(self.network)
np_image = pil_to_np(input_image)
np_image = normalize_image_channel_count(np_image)
np_image = resize_image_to_resolution(np_image, detect_resolution)
assert np_image.ndim == 3
height, width, _channels = np_image.shape
with torch.no_grad():
image_hed = torch.from_numpy(np_image.copy()).float().to(device)
image_hed = rearrange(image_hed, "h w c -> 1 c h w")
edges = self.network(image_hed)
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
edges = [cv2.resize(e, (width, height), interpolation=cv2.INTER_LINEAR) for e in edges]
edges = np.stack(edges, axis=2)
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
if safe:
edge = safe_step(edge)
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
detected_map = edge
detected_map = normalize_image_channel_count(detected_map)
img = resize_image_to_resolution(np_image, image_resolution)
height, width, _channels = img.shape
detected_map = cv2.resize(detected_map, (width, height), interpolation=cv2.INTER_LINEAR)
if scribble:
detected_map = nms(detected_map, 127, 3.0)
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
detected_map[detected_map > 4] = 255
detected_map[detected_map < 255] = 0
return np_to_pil(detected_map)
class HEDEdgeDetector:
"""Simple wrapper around the HED model for detecting edges in an image."""
hf_repo_id = "lllyasviel/Annotators"
hf_filename = "ControlNetHED.pth"
def __init__(self, model: ControlNetHED_Apache2):
self.model = model
@classmethod
def get_model_url(cls) -> str:
"""Get the URL to download the model from the Hugging Face Hub."""
return huggingface_hub.hf_hub_url(cls.hf_repo_id, cls.hf_filename)
@classmethod
def load_model(cls, model_path: pathlib.Path) -> ControlNetHED_Apache2:
"""Load the model from a file."""
model = ControlNetHED_Apache2()
model.load_state_dict(torch.load(model_path, map_location="cpu"))
model.float().eval()
return model
def to(self, device: torch.device):
self.model.to(device)
return self
def run(self, image: Image.Image, safe: bool = False, scribble: bool = False) -> Image.Image:
"""Processes an image and returns the detected edges.
Args:
image: The input image.
safe: Whether to apply safe step to the detected edges.
scribble: Whether to apply non-maximum suppression and Gaussian blur to the detected edges.
Returns:
The detected edges.
"""
device = get_effective_device(self.model)
np_image = pil_to_np(image)
height, width, _channels = np_image.shape
with torch.no_grad():
image_hed = torch.from_numpy(np_image.copy()).float().to(device)
image_hed = rearrange(image_hed, "h w c -> 1 c h w")
edges = self.model(image_hed)
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
edges = [cv2.resize(e, (width, height), interpolation=cv2.INTER_LINEAR) for e in edges]
edges = np.stack(edges, axis=2)
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
if safe:
edge = safe_step(edge)
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
detected_map = edge
detected_map = cv2.resize(detected_map, (width, height), interpolation=cv2.INTER_LINEAR)
if scribble:
detected_map = nms(detected_map, 127, 3.0)
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
detected_map[detected_map > 4] = 255
detected_map[detected_map < 255] = 0
output = np_to_pil(detected_map)
return output