Files
InvokeAI/tests/app/util/test_torch_cuda_allocator.py

128 lines
4.9 KiB
Python

import pytest
import torch
from tests.dangerously_run_function_in_subprocess import dangerously_run_function_in_subprocess
# These tests are a bit fiddly, because the depend on the import behaviour of torch. They use subprocesses to isolate
# the import behaviour of torch, and then check that the function behaves as expected. We have to hack in some logging
# to check that the tested function is behaving as expected.
@pytest.mark.skipif(not torch.cuda.is_available(), reason="Requires CUDA device.")
def test_configure_torch_cuda_allocator_configures_backend():
"""Test that configure_torch_cuda_allocator() raises a RuntimeError if the configured backend does not match the
expected backend."""
def test_func():
import os
# Unset the environment variable if it is set so that we can test setting it
try:
del os.environ["PYTORCH_CUDA_ALLOC_CONF"]
except KeyError:
pass
from unittest.mock import MagicMock
from invokeai.app.util.torch_cuda_allocator import configure_torch_cuda_allocator
mock_logger = MagicMock()
# Set the PyTorch CUDA memory allocator to cudaMallocAsync
configure_torch_cuda_allocator("backend:cudaMallocAsync", logger=mock_logger)
# Verify that the PyTorch CUDA memory allocator was configured correctly
import torch
assert torch.cuda.get_allocator_backend() == "cudaMallocAsync"
# Verify that the logger was called with the correct message
mock_logger.info.assert_called_once()
args, _kwargs = mock_logger.info.call_args
logged_message = args[0]
print(logged_message)
stdout, _stderr, returncode = dangerously_run_function_in_subprocess(test_func)
assert returncode == 0
assert "PyTorch CUDA memory allocator: cudaMallocAsync" in stdout
@pytest.mark.skipif(not torch.cuda.is_available(), reason="Requires CUDA device.")
def test_configure_torch_cuda_allocator_raises_if_torch_already_imported():
"""Test that configure_torch_cuda_allocator() raises a RuntimeError if torch was already imported."""
def test_func():
from unittest.mock import MagicMock
# Import torch before calling configure_torch_cuda_allocator()
import torch # noqa: F401
from invokeai.app.util.torch_cuda_allocator import configure_torch_cuda_allocator
try:
configure_torch_cuda_allocator("backend:cudaMallocAsync", logger=MagicMock())
except RuntimeError as e:
print(e)
stdout, _stderr, returncode = dangerously_run_function_in_subprocess(test_func)
assert returncode == 0
assert "configure_torch_cuda_allocator() must be called before importing torch." in stdout
@pytest.mark.skipif(not torch.cuda.is_available(), reason="Requires CUDA device.")
def test_configure_torch_cuda_allocator_warns_if_env_var_is_set_differently():
"""Test that configure_torch_cuda_allocator() logs at WARNING level if PYTORCH_CUDA_ALLOC_CONF is set and doesn't
match the requested configuration."""
def test_func():
import os
# Explicitly set the environment variable
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "backend:native"
from unittest.mock import MagicMock
from invokeai.app.util.torch_cuda_allocator import configure_torch_cuda_allocator
mock_logger = MagicMock()
# Set the PyTorch CUDA memory allocator a different configuration
configure_torch_cuda_allocator("backend:cudaMallocAsync", logger=mock_logger)
# Verify that the logger was called with the correct message
mock_logger.warning.assert_called_once()
args, _kwargs = mock_logger.warning.call_args
logged_message = args[0]
print(logged_message)
stdout, _stderr, returncode = dangerously_run_function_in_subprocess(test_func)
assert returncode == 0
assert "Attempted to configure the PyTorch CUDA memory allocator with 'backend:cudaMallocAsync'" in stdout
@pytest.mark.skipif(not torch.cuda.is_available(), reason="Requires CUDA device.")
def test_configure_torch_cuda_allocator_logs_if_env_var_is_already_set_correctly():
"""Test that configure_torch_cuda_allocator() logs at INFO level if PYTORCH_CUDA_ALLOC_CONF is set and matches the
requested configuration."""
def test_func():
import os
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "backend:native"
from unittest.mock import MagicMock
from invokeai.app.util.torch_cuda_allocator import configure_torch_cuda_allocator
mock_logger = MagicMock()
configure_torch_cuda_allocator("backend:native", logger=mock_logger)
mock_logger.info.assert_called_once()
args, _kwargs = mock_logger.info.call_args
logged_message = args[0]
print(logged_message)
stdout, _stderr, returncode = dangerously_run_function_in_subprocess(test_func)
assert returncode == 0
assert "PYTORCH_CUDA_ALLOC_CONF is already set to 'backend:native'" in stdout