mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-02-02 12:15:02 -05:00
184 lines
6.0 KiB
Python
184 lines
6.0 KiB
Python
from pathlib import Path
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from .blocks import FeatureFusionBlock, _make_scratch
|
|
|
|
torchhub_path = Path(__file__).parent.parent / "torchhub"
|
|
|
|
|
|
def _make_fusion_block(features, use_bn, size=None):
|
|
return FeatureFusionBlock(
|
|
features,
|
|
nn.ReLU(False),
|
|
deconv=False,
|
|
bn=use_bn,
|
|
expand=False,
|
|
align_corners=True,
|
|
size=size,
|
|
)
|
|
|
|
|
|
class DPTHead(nn.Module):
|
|
def __init__(self, nclass, in_channels, features, out_channels, use_bn=False, use_clstoken=False):
|
|
super(DPTHead, self).__init__()
|
|
|
|
self.nclass = nclass
|
|
self.use_clstoken = use_clstoken
|
|
|
|
self.projects = nn.ModuleList(
|
|
[
|
|
nn.Conv2d(
|
|
in_channels=in_channels,
|
|
out_channels=out_channel,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
)
|
|
for out_channel in out_channels
|
|
]
|
|
)
|
|
|
|
self.resize_layers = nn.ModuleList(
|
|
[
|
|
nn.ConvTranspose2d(
|
|
in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
|
|
),
|
|
nn.ConvTranspose2d(
|
|
in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
|
|
),
|
|
nn.Identity(),
|
|
nn.Conv2d(
|
|
in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
|
|
),
|
|
]
|
|
)
|
|
|
|
if use_clstoken:
|
|
self.readout_projects = nn.ModuleList()
|
|
for _ in range(len(self.projects)):
|
|
self.readout_projects.append(nn.Sequential(nn.Linear(2 * in_channels, in_channels), nn.GELU()))
|
|
|
|
self.scratch = _make_scratch(
|
|
out_channels,
|
|
features,
|
|
groups=1,
|
|
expand=False,
|
|
)
|
|
|
|
self.scratch.stem_transpose = None
|
|
|
|
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
|
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
|
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
|
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
|
|
|
head_features_1 = features
|
|
head_features_2 = 32
|
|
|
|
if nclass > 1:
|
|
self.scratch.output_conv = nn.Sequential(
|
|
nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1),
|
|
nn.ReLU(True),
|
|
nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0),
|
|
)
|
|
else:
|
|
self.scratch.output_conv1 = nn.Conv2d(
|
|
head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
self.scratch.output_conv2 = nn.Sequential(
|
|
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
|
|
nn.ReLU(True),
|
|
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
|
|
nn.ReLU(True),
|
|
nn.Identity(),
|
|
)
|
|
|
|
def forward(self, out_features, patch_h, patch_w):
|
|
out = []
|
|
for i, x in enumerate(out_features):
|
|
if self.use_clstoken:
|
|
x, cls_token = x[0], x[1]
|
|
readout = cls_token.unsqueeze(1).expand_as(x)
|
|
x = self.readout_projects[i](torch.cat((x, readout), -1))
|
|
else:
|
|
x = x[0]
|
|
|
|
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w))
|
|
|
|
x = self.projects[i](x)
|
|
x = self.resize_layers[i](x)
|
|
|
|
out.append(x)
|
|
|
|
layer_1, layer_2, layer_3, layer_4 = out
|
|
|
|
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
|
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
|
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
|
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
|
|
|
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
|
|
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
|
|
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
|
|
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
|
|
|
out = self.scratch.output_conv1(path_1)
|
|
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
|
|
out = self.scratch.output_conv2(out)
|
|
|
|
return out
|
|
|
|
|
|
class DPT_DINOv2(nn.Module):
|
|
def __init__(
|
|
self,
|
|
features,
|
|
out_channels,
|
|
encoder="vitl",
|
|
use_bn=False,
|
|
use_clstoken=False,
|
|
):
|
|
super(DPT_DINOv2, self).__init__()
|
|
|
|
assert encoder in ["vits", "vitb", "vitl"]
|
|
|
|
# # in case the Internet connection is not stable, please load the DINOv2 locally
|
|
# if use_local:
|
|
# self.pretrained = torch.hub.load(
|
|
# torchhub_path / "facebookresearch_dinov2_main",
|
|
# "dinov2_{:}14".format(encoder),
|
|
# source="local",
|
|
# pretrained=False,
|
|
# )
|
|
# else:
|
|
# self.pretrained = torch.hub.load(
|
|
# "facebookresearch/dinov2",
|
|
# "dinov2_{:}14".format(encoder),
|
|
# )
|
|
|
|
self.pretrained = torch.hub.load(
|
|
"facebookresearch/dinov2",
|
|
"dinov2_{:}14".format(encoder),
|
|
)
|
|
|
|
dim = self.pretrained.blocks[0].attn.qkv.in_features
|
|
|
|
self.depth_head = DPTHead(1, dim, features, out_channels=out_channels, use_bn=use_bn, use_clstoken=use_clstoken)
|
|
|
|
def forward(self, x):
|
|
h, w = x.shape[-2:]
|
|
|
|
features = self.pretrained.get_intermediate_layers(x, 4, return_class_token=True)
|
|
|
|
patch_h, patch_w = h // 14, w // 14
|
|
|
|
depth = self.depth_head(features, patch_h, patch_w)
|
|
depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True)
|
|
depth = F.relu(depth)
|
|
|
|
return depth.squeeze(1)
|