Files
InvokeAI/tests/test_model_probe.py
psychedelicious deb1984289 fix(mm): disable new model probe API
There is a subtle change in behaviour with the new model probe API.

Previously, checks for model types was done in a specific order. For example, we did all main model checks before LoRA checks.

With the new API, the order of checks has changed. Check ordering is as follows:
- New API checks are run first, then legacy API checks.
- New API checks categorized by their speed. When we run new API checks, we sort them from fastest to slowest, and run them in that order. This is a performance optimization.

Currently, LoRA and LLaVA models are the only model types with the new API. Checks for them are thus run first.

LoRA checks involve checking the state dict for presence of keys with specific prefixes. We expect these keys to only exist in LoRAs.

It turns out that main models may have some of these keys.

For example, this model has keys that match the LoRA prefix `lora_te_`: https://civitai.com/models/134442/helloyoung25d

Under the old probe, we'd do the main model checks first and correctly identify this as a main model. But with the new setup, we do the LoRA check first, and those pass. So we import this model as a LoRA.

Thankfully, the old probe still exists. For now, the new probe is fully disabled. It was only called in one spot.

I've also added the example affected model as a test case for the model probe. Right now, this causes the test to fail, and I've marked the test as xfail. CI will pass.

Once we enable the new API again, the xfail will pass, and CI will fail, and we'll be reminded to update the test.
2025-04-18 22:44:10 +10:00

258 lines
9.8 KiB
Python

import abc
import json
from pathlib import Path
from typing import Any, get_args
import pydantic
import pytest
import torch
from polyfactory.factories.pydantic_factory import ModelFactory
from sympy.testing.pytest import slow
from torch import tensor
from invokeai.backend.model_manager import BaseModelType, ModelFormat, ModelRepoVariant, ModelType, ModelVariantType
from invokeai.backend.model_manager.config import (
AnyModelConfig,
InvalidModelConfigException,
MainDiffusersConfig,
ModelConfigBase,
ModelConfigFactory,
get_model_discriminator_value,
)
from invokeai.backend.model_manager.legacy_probe import (
CkptType,
ModelProbe,
VaeFolderProbe,
get_default_settings_control_adapters,
get_default_settings_main,
)
from invokeai.backend.model_manager.model_on_disk import ModelOnDisk
from invokeai.backend.model_manager.search import ModelSearch
from invokeai.backend.util.logging import InvokeAILogger
@pytest.mark.parametrize(
"vae_path,expected_type",
[
("sd-vae-ft-mse", BaseModelType.StableDiffusion1),
("sdxl-vae", BaseModelType.StableDiffusionXL),
("taesd", BaseModelType.StableDiffusion1),
("taesdxl", BaseModelType.StableDiffusionXL),
],
)
def test_get_base_type(vae_path: str, expected_type: BaseModelType, datadir: Path):
sd1_vae_path = datadir / "vae" / vae_path
probe = VaeFolderProbe(sd1_vae_path)
base_type = probe.get_base_type()
assert base_type == expected_type
repo_variant = probe.get_repo_variant()
assert repo_variant == ModelRepoVariant.Default
def test_repo_variant(datadir: Path):
probe = VaeFolderProbe(datadir / "vae" / "taesdxl-fp16")
repo_variant = probe.get_repo_variant()
assert repo_variant == ModelRepoVariant.FP16
def test_controlnet_t2i_default_settings():
assert get_default_settings_control_adapters("some_canny_model").preprocessor == "canny_image_processor"
assert get_default_settings_control_adapters("some_depth_model").preprocessor == "depth_anything_image_processor"
assert get_default_settings_control_adapters("some_pose_model").preprocessor == "dw_openpose_image_processor"
assert get_default_settings_control_adapters("i like turtles") is None
def test_default_settings_main():
assert get_default_settings_main(BaseModelType.StableDiffusion1).width == 512
assert get_default_settings_main(BaseModelType.StableDiffusion1).height == 512
assert get_default_settings_main(BaseModelType.StableDiffusion2).width == 512
assert get_default_settings_main(BaseModelType.StableDiffusion2).height == 512
assert get_default_settings_main(BaseModelType.StableDiffusionXL).width == 1024
assert get_default_settings_main(BaseModelType.StableDiffusionXL).height == 1024
assert get_default_settings_main(BaseModelType.StableDiffusionXLRefiner) is None
assert get_default_settings_main(BaseModelType.Any) is None
def test_probe_handles_state_dict_with_integer_keys(tmp_path: Path):
# This structure isn't supported by invoke, but we still need to handle it gracefully.
# See https://github.com/invoke-ai/InvokeAI/issues/6044
state_dict_with_integer_keys: CkptType = {
320: (
{
"linear1.weight": tensor([1.0]),
"linear1.bias": tensor([1.0]),
"linear2.weight": tensor([1.0]),
"linear2.bias": tensor([1.0]),
},
{
"linear1.weight": tensor([1.0]),
"linear1.bias": tensor([1.0]),
"linear2.weight": tensor([1.0]),
"linear2.bias": tensor([1.0]),
},
),
}
sd_path = tmp_path / "sd.pt"
torch.save(state_dict_with_integer_keys, sd_path)
with pytest.raises(InvalidModelConfigException):
ModelProbe.get_model_type_from_checkpoint(sd_path, state_dict_with_integer_keys)
def test_probe_sd1_diffusers_inpainting(datadir: Path):
config = ModelProbe.probe(datadir / "sd-1/main/dreamshaper-8-inpainting")
assert isinstance(config, MainDiffusersConfig)
assert config.base is BaseModelType.StableDiffusion1
assert config.variant is ModelVariantType.Inpaint
assert config.repo_variant is ModelRepoVariant.FP16
class MinimalConfigExample(ModelConfigBase):
type: ModelType = ModelType.Main
format: ModelFormat = ModelFormat.Checkpoint
fun_quote: str
@classmethod
def matches(cls, mod: ModelOnDisk) -> bool:
return mod.path.suffix == ".json"
@classmethod
def parse(cls, mod: ModelOnDisk) -> dict[str, Any]:
with open(mod.path, "r") as f:
contents = json.load(f)
return {
"fun_quote": contents["quote"],
"base": BaseModelType.Any,
}
def test_minimal_working_example(datadir: Path):
model_path = datadir / "minimal_config_model.json"
overrides = {"base": BaseModelType.StableDiffusion1}
config = ModelConfigBase.classify(model_path, **overrides)
assert isinstance(config, MinimalConfigExample)
assert config.base == BaseModelType.StableDiffusion1
assert config.path == model_path.as_posix()
assert config.fun_quote == "Minimal working example of a ModelConfigBase subclass"
@pytest.mark.xfail(reason="Known issue with 'helloyoung25d_V15j.safetensors'.", strict=True)
def test_regression_against_model_probe(datadir: Path, override_model_loading):
"""Verifies results from ModelConfigBase.classify are consistent with those from ModelProbe.probe.
The test paths are gathered from the 'test_model_probe' directory.
"""
configs_with_tests = set()
model_paths = ModelSearch().search(datadir / "stripped_models")
fake_hash = "abcdefgh" # skip hashing to make test quicker
fake_key = "123" # fixed uuid for comparison
for path in model_paths:
legacy_config = new_config = None
try:
legacy_config = ModelProbe.probe(path, {"hash": fake_hash, "key": fake_key})
except InvalidModelConfigException:
pass
try:
new_config = ModelConfigBase.classify(path, hash=fake_hash, key=fake_key)
except InvalidModelConfigException:
pass
if legacy_config and new_config:
assert type(legacy_config) is type(new_config)
assert legacy_config.model_dump_json() == new_config.model_dump_json()
elif legacy_config:
assert type(legacy_config) in ModelConfigBase._USING_LEGACY_PROBE
elif new_config:
assert type(new_config) in ModelConfigBase._USING_CLASSIFY_API
else:
raise ValueError(f"Both probe and classify failed to classify model at path {path}.")
config_type = type(legacy_config or new_config)
configs_with_tests.add(config_type)
untested_configs = ModelConfigBase.all_config_classes() - configs_with_tests - {MinimalConfigExample}
logger = InvokeAILogger.get_logger(__file__)
logger.warning(f"Function test_regression_against_model_probe missing test case for: {untested_configs}")
def create_fake_configs(config_cls, n):
factory_args = {
"__use_defaults__": True,
"__random_seed__": 1234,
"__check_model__": True,
}
factory = ModelFactory.create_factory(config_cls, **factory_args)
return [factory.build() for _ in range(n)]
@slow
def test_serialisation_roundtrip():
"""After classification, models are serialised to json and stored in the database.
We need to ensure they are de-serialised into the original config with all relevant fields restored.
"""
excluded = {MinimalConfigExample}
for config_cls in ModelConfigBase.all_config_classes() - excluded:
trials_per_class = 50
configs_with_random_data = create_fake_configs(config_cls, trials_per_class)
for config in configs_with_random_data:
as_json = config.model_dump_json()
as_dict = json.loads(as_json)
reconstructed = ModelConfigFactory.make_config(as_dict)
assert isinstance(reconstructed, config_cls)
assert config.model_dump_json() == reconstructed.model_dump_json()
def test_discriminator_tagging_for_config_instances():
"""Verify that each ModelConfig instance is assigned the correct, unique Pydantic discriminator tag."""
excluded = {MinimalConfigExample}
config_classes = ModelConfigBase.all_config_classes() - excluded
tags = {c.get_tag() for c in config_classes}
assert len(tags) == len(config_classes), "Each config should have its own unique tag"
for config_cls in config_classes:
expected_tag = config_cls.get_tag().tag
trials_per_class = 3
configs_with_random_data = create_fake_configs(config_cls, trials_per_class)
for config in configs_with_random_data:
assert get_model_discriminator_value(config) == expected_tag
def test_inheritance_order():
"""
Safeguard test to warn against incorrect inheritance order.
Config classes using multiple inheritance should inherit from ModelConfigBase last
to ensure that more specific fields take precedence over the generic defaults.
It may be worth rethinking our config taxonomy in the future, but in the meantime
this test can help prevent debugging effort.
"""
for config_cls in ModelConfigBase.all_config_classes():
excluded = {abc.ABC, pydantic.BaseModel, object}
inheritance_list = [cls for cls in config_cls.mro() if cls not in excluded]
assert inheritance_list[-1] is ModelConfigBase
def test_any_model_config_includes_all_config_classes():
"""Safeguard test to ensure that AnyModelConfig includes all ModelConfigBase subclasses."""
union_type = get_args(AnyModelConfig)[0]
extracted = set()
for annotated_pair in get_args(union_type):
config_class, _ = get_args(annotated_pair)
extracted.add(config_class)
expected = set(ModelConfigBase.all_config_classes()) - {MinimalConfigExample}
assert extracted == expected