mirror of
https://github.com/invoke-ai/InvokeAI.git
synced 2026-02-18 17:44:42 -05:00
- Update model listing code to use `rtk-query` - Update all graph generation to use new `pipeline_model_loader` node
342 lines
8.1 KiB
TypeScript
342 lines
8.1 KiB
TypeScript
import { RootState } from 'app/store/store';
|
|
import {
|
|
ImageResizeInvocation,
|
|
RandomIntInvocation,
|
|
RangeOfSizeInvocation,
|
|
} from 'services/api';
|
|
import { NonNullableGraph } from 'features/nodes/types/types';
|
|
import { log } from 'app/logging/useLogger';
|
|
import {
|
|
ITERATE,
|
|
LATENTS_TO_IMAGE,
|
|
MODEL_LOADER,
|
|
NEGATIVE_CONDITIONING,
|
|
NOISE,
|
|
POSITIVE_CONDITIONING,
|
|
RANDOM_INT,
|
|
RANGE_OF_SIZE,
|
|
IMAGE_TO_IMAGE_GRAPH,
|
|
IMAGE_TO_LATENTS,
|
|
LATENTS_TO_LATENTS,
|
|
RESIZE,
|
|
} from './constants';
|
|
import { set } from 'lodash-es';
|
|
import { addControlNetToLinearGraph } from '../addControlNetToLinearGraph';
|
|
import { modelIdToPipelineModelField } from '../modelIdToPipelineModelField';
|
|
|
|
const moduleLog = log.child({ namespace: 'nodes' });
|
|
|
|
/**
|
|
* Builds the Image to Image tab graph.
|
|
*/
|
|
export const buildLinearImageToImageGraph = (
|
|
state: RootState
|
|
): NonNullableGraph => {
|
|
const {
|
|
positivePrompt,
|
|
negativePrompt,
|
|
model: modelId,
|
|
cfgScale: cfg_scale,
|
|
scheduler,
|
|
steps,
|
|
initialImage,
|
|
img2imgStrength: strength,
|
|
shouldFitToWidthHeight,
|
|
width,
|
|
height,
|
|
iterations,
|
|
seed,
|
|
shouldRandomizeSeed,
|
|
} = state.generation;
|
|
|
|
/**
|
|
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
|
|
* full graph here as a template. Then use the parameters from app state and set friendlier node
|
|
* ids.
|
|
*
|
|
* The only thing we need extra logic for is handling randomized seed, control net, and for img2img,
|
|
* the `fit` param. These are added to the graph at the end.
|
|
*/
|
|
|
|
if (!initialImage) {
|
|
moduleLog.error('No initial image found in state');
|
|
throw new Error('No initial image found in state');
|
|
}
|
|
|
|
const model = modelIdToPipelineModelField(modelId);
|
|
|
|
// copy-pasted graph from node editor, filled in with state values & friendly node ids
|
|
const graph: NonNullableGraph = {
|
|
id: IMAGE_TO_IMAGE_GRAPH,
|
|
nodes: {
|
|
[POSITIVE_CONDITIONING]: {
|
|
type: 'compel',
|
|
id: POSITIVE_CONDITIONING,
|
|
prompt: positivePrompt,
|
|
},
|
|
[NEGATIVE_CONDITIONING]: {
|
|
type: 'compel',
|
|
id: NEGATIVE_CONDITIONING,
|
|
prompt: negativePrompt,
|
|
},
|
|
[RANGE_OF_SIZE]: {
|
|
type: 'range_of_size',
|
|
id: RANGE_OF_SIZE,
|
|
// seed - must be connected manually
|
|
// start: 0,
|
|
size: iterations,
|
|
step: 1,
|
|
},
|
|
[NOISE]: {
|
|
type: 'noise',
|
|
id: NOISE,
|
|
},
|
|
[MODEL_LOADER]: {
|
|
type: 'pipeline_model_loader',
|
|
id: MODEL_LOADER,
|
|
model,
|
|
},
|
|
[LATENTS_TO_IMAGE]: {
|
|
type: 'l2i',
|
|
id: LATENTS_TO_IMAGE,
|
|
},
|
|
[ITERATE]: {
|
|
type: 'iterate',
|
|
id: ITERATE,
|
|
},
|
|
[LATENTS_TO_LATENTS]: {
|
|
type: 'l2l',
|
|
id: LATENTS_TO_LATENTS,
|
|
cfg_scale,
|
|
scheduler,
|
|
steps,
|
|
strength,
|
|
},
|
|
[IMAGE_TO_LATENTS]: {
|
|
type: 'i2l',
|
|
id: IMAGE_TO_LATENTS,
|
|
// must be set manually later, bc `fit` parameter may require a resize node inserted
|
|
// image: {
|
|
// image_name: initialImage.image_name,
|
|
// },
|
|
},
|
|
},
|
|
edges: [
|
|
{
|
|
source: {
|
|
node_id: MODEL_LOADER,
|
|
field: 'clip',
|
|
},
|
|
destination: {
|
|
node_id: POSITIVE_CONDITIONING,
|
|
field: 'clip',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: MODEL_LOADER,
|
|
field: 'clip',
|
|
},
|
|
destination: {
|
|
node_id: NEGATIVE_CONDITIONING,
|
|
field: 'clip',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: MODEL_LOADER,
|
|
field: 'vae',
|
|
},
|
|
destination: {
|
|
node_id: LATENTS_TO_IMAGE,
|
|
field: 'vae',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: RANGE_OF_SIZE,
|
|
field: 'collection',
|
|
},
|
|
destination: {
|
|
node_id: ITERATE,
|
|
field: 'collection',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: ITERATE,
|
|
field: 'item',
|
|
},
|
|
destination: {
|
|
node_id: NOISE,
|
|
field: 'seed',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: LATENTS_TO_LATENTS,
|
|
field: 'latents',
|
|
},
|
|
destination: {
|
|
node_id: LATENTS_TO_IMAGE,
|
|
field: 'latents',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: IMAGE_TO_LATENTS,
|
|
field: 'latents',
|
|
},
|
|
destination: {
|
|
node_id: LATENTS_TO_LATENTS,
|
|
field: 'latents',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: NOISE,
|
|
field: 'noise',
|
|
},
|
|
destination: {
|
|
node_id: LATENTS_TO_LATENTS,
|
|
field: 'noise',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: MODEL_LOADER,
|
|
field: 'vae',
|
|
},
|
|
destination: {
|
|
node_id: IMAGE_TO_LATENTS,
|
|
field: 'vae',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: MODEL_LOADER,
|
|
field: 'unet',
|
|
},
|
|
destination: {
|
|
node_id: LATENTS_TO_LATENTS,
|
|
field: 'unet',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: NEGATIVE_CONDITIONING,
|
|
field: 'conditioning',
|
|
},
|
|
destination: {
|
|
node_id: LATENTS_TO_LATENTS,
|
|
field: 'negative_conditioning',
|
|
},
|
|
},
|
|
{
|
|
source: {
|
|
node_id: POSITIVE_CONDITIONING,
|
|
field: 'conditioning',
|
|
},
|
|
destination: {
|
|
node_id: LATENTS_TO_LATENTS,
|
|
field: 'positive_conditioning',
|
|
},
|
|
},
|
|
],
|
|
};
|
|
|
|
// handle seed
|
|
if (shouldRandomizeSeed) {
|
|
// Random int node to generate the starting seed
|
|
const randomIntNode: RandomIntInvocation = {
|
|
id: RANDOM_INT,
|
|
type: 'rand_int',
|
|
};
|
|
|
|
graph.nodes[RANDOM_INT] = randomIntNode;
|
|
|
|
// Connect random int to the start of the range of size so the range starts on the random first seed
|
|
graph.edges.push({
|
|
source: { node_id: RANDOM_INT, field: 'a' },
|
|
destination: { node_id: RANGE_OF_SIZE, field: 'start' },
|
|
});
|
|
} else {
|
|
// User specified seed, so set the start of the range of size to the seed
|
|
(graph.nodes[RANGE_OF_SIZE] as RangeOfSizeInvocation).start = seed;
|
|
}
|
|
|
|
// handle `fit`
|
|
if (
|
|
shouldFitToWidthHeight &&
|
|
(initialImage.width !== width || initialImage.height !== height)
|
|
) {
|
|
// The init image needs to be resized to the specified width and height before being passed to `IMAGE_TO_LATENTS`
|
|
|
|
// Create a resize node, explicitly setting its image
|
|
const resizeNode: ImageResizeInvocation = {
|
|
id: RESIZE,
|
|
type: 'img_resize',
|
|
image: {
|
|
image_name: initialImage.imageName,
|
|
},
|
|
is_intermediate: true,
|
|
width,
|
|
height,
|
|
};
|
|
|
|
graph.nodes[RESIZE] = resizeNode;
|
|
|
|
// The `RESIZE` node then passes its image to `IMAGE_TO_LATENTS`
|
|
graph.edges.push({
|
|
source: { node_id: RESIZE, field: 'image' },
|
|
destination: {
|
|
node_id: IMAGE_TO_LATENTS,
|
|
field: 'image',
|
|
},
|
|
});
|
|
|
|
// The `RESIZE` node also passes its width and height to `NOISE`
|
|
graph.edges.push({
|
|
source: { node_id: RESIZE, field: 'width' },
|
|
destination: {
|
|
node_id: NOISE,
|
|
field: 'width',
|
|
},
|
|
});
|
|
|
|
graph.edges.push({
|
|
source: { node_id: RESIZE, field: 'height' },
|
|
destination: {
|
|
node_id: NOISE,
|
|
field: 'height',
|
|
},
|
|
});
|
|
} else {
|
|
// We are not resizing, so we need to set the image on the `IMAGE_TO_LATENTS` node explicitly
|
|
set(graph.nodes[IMAGE_TO_LATENTS], 'image', {
|
|
image_name: initialImage.imageName,
|
|
});
|
|
|
|
// Pass the image's dimensions to the `NOISE` node
|
|
graph.edges.push({
|
|
source: { node_id: IMAGE_TO_LATENTS, field: 'width' },
|
|
destination: {
|
|
node_id: NOISE,
|
|
field: 'width',
|
|
},
|
|
});
|
|
graph.edges.push({
|
|
source: { node_id: IMAGE_TO_LATENTS, field: 'height' },
|
|
destination: {
|
|
node_id: NOISE,
|
|
field: 'height',
|
|
},
|
|
});
|
|
}
|
|
|
|
// add controlnet
|
|
addControlNetToLinearGraph(graph, LATENTS_TO_LATENTS, state);
|
|
|
|
return graph;
|
|
};
|