Files
InvokeAI/invokeai/app/invocations/mlsd.py
psychedelicious fd42da5a36 feat(nodes): add MLSDEdgeDetectionInvocation
Similar to the existing node, but without any resizing and with a revised model loading API that uses the model manager.

All code related to the invocation now lives in the Invoke repo.
2024-09-11 08:12:48 -04:00

34 lines
1.5 KiB
Python

from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
from invokeai.app.invocations.fields import ImageField, InputField, WithBoard, WithMetadata
from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.image_util.mlsd import MLSDEdgeDetector
from invokeai.backend.image_util.mlsd.models.mbv2_mlsd_large import MobileV2_MLSD_Large
@invocation(
"mlsd_edge_detection",
title="MLSD Edge Detection",
tags=["controlnet", "mlsd", "edge"],
category="controlnet",
version="1.0.0",
)
class MLSDEdgeDetectionInvocation(BaseInvocation, WithMetadata, WithBoard):
"""Generates an line segment edge map using MLSD."""
image: ImageField = InputField(description="The image to process")
thr_v: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_v`")
thr_d: float = InputField(default=0.1, ge=0, description="MLSD parameter `thr_d`")
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.images.get_pil(self.image.image_name, "RGB")
loaded_model = context.models.load_remote_model(MLSDEdgeDetector.get_model_url(), MLSDEdgeDetector.load_model)
with loaded_model as model:
assert isinstance(model, MobileV2_MLSD_Large)
detector = MLSDEdgeDetector(model)
edge_map = detector.run(image, self.thr_v, self.thr_d)
image_dto = context.images.save(image=edge_map)
return ImageOutput.build(image_dto)