Files
InvokeAI/invokeai/frontend/web/src/features/nodes/util/graphBuilders/buildLinearSDXLImageToImageGraph.ts
psychedelicious 61291ea105 feat: sdxl metadata
- update `CoreMetadata` class & `MetadataAccumulator` with fields for SDXL-specific metadata
- update the linear UI graphs to populate this metadata
2023-07-26 14:46:38 +10:00

367 lines
8.9 KiB
TypeScript

import { logger } from 'app/logging/logger';
import { RootState } from 'app/store/store';
import { NonNullableGraph } from 'features/nodes/types/types';
import { initialGenerationState } from 'features/parameters/store/generationSlice';
import {
ImageResizeInvocation,
ImageToLatentsInvocation,
} from 'services/api/types';
import { addDynamicPromptsToGraph } from './addDynamicPromptsToGraph';
import { addSDXLRefinerToGraph } from './addSDXLRefinerToGraph';
import {
IMAGE_TO_LATENTS,
LATENTS_TO_IMAGE,
METADATA_ACCUMULATOR,
NEGATIVE_CONDITIONING,
NOISE,
POSITIVE_CONDITIONING,
RESIZE,
SDXL_IMAGE_TO_IMAGE_GRAPH,
SDXL_LATENTS_TO_LATENTS,
SDXL_MODEL_LOADER,
} from './constants';
/**
* Builds the Image to Image tab graph.
*/
export const buildLinearSDXLImageToImageGraph = (
state: RootState
): NonNullableGraph => {
const log = logger('nodes');
const {
positivePrompt,
negativePrompt,
model,
cfgScale: cfg_scale,
scheduler,
steps,
initialImage,
img2imgStrength: strength,
shouldFitToWidthHeight,
width,
height,
clipSkip,
shouldUseCpuNoise,
shouldUseNoiseSettings,
vaePrecision,
} = state.generation;
const {
positiveStylePrompt,
negativeStylePrompt,
shouldUseSDXLRefiner,
refinerStart,
} = state.sdxl;
/**
* The easiest way to build linear graphs is to do it in the node editor, then copy and paste the
* full graph here as a template. Then use the parameters from app state and set friendlier node
* ids.
*
* The only thing we need extra logic for is handling randomized seed, control net, and for img2img,
* the `fit` param. These are added to the graph at the end.
*/
if (!initialImage) {
log.error('No initial image found in state');
throw new Error('No initial image found in state');
}
if (!model) {
log.error('No model found in state');
throw new Error('No model found in state');
}
const use_cpu = shouldUseNoiseSettings
? shouldUseCpuNoise
: initialGenerationState.shouldUseCpuNoise;
// copy-pasted graph from node editor, filled in with state values & friendly node ids
const graph: NonNullableGraph = {
id: SDXL_IMAGE_TO_IMAGE_GRAPH,
nodes: {
[SDXL_MODEL_LOADER]: {
type: 'sdxl_model_loader',
id: SDXL_MODEL_LOADER,
model,
},
[POSITIVE_CONDITIONING]: {
type: 'sdxl_compel_prompt',
id: POSITIVE_CONDITIONING,
prompt: positivePrompt,
style: positiveStylePrompt,
},
[NEGATIVE_CONDITIONING]: {
type: 'sdxl_compel_prompt',
id: NEGATIVE_CONDITIONING,
prompt: negativePrompt,
style: negativeStylePrompt,
},
[NOISE]: {
type: 'noise',
id: NOISE,
use_cpu,
},
[LATENTS_TO_IMAGE]: {
type: 'l2i',
id: LATENTS_TO_IMAGE,
fp32: vaePrecision === 'fp32' ? true : false,
},
[SDXL_LATENTS_TO_LATENTS]: {
type: 'l2l_sdxl',
id: SDXL_LATENTS_TO_LATENTS,
cfg_scale,
scheduler,
steps,
denoising_start: shouldUseSDXLRefiner ? refinerStart : 1 - strength,
},
[IMAGE_TO_LATENTS]: {
type: 'i2l',
id: IMAGE_TO_LATENTS,
// must be set manually later, bc `fit` parameter may require a resize node inserted
// image: {
// image_name: initialImage.image_name,
// },
fp32: vaePrecision === 'fp32' ? true : false,
},
},
edges: [
{
source: {
node_id: SDXL_MODEL_LOADER,
field: 'unet',
},
destination: {
node_id: SDXL_LATENTS_TO_LATENTS,
field: 'unet',
},
},
{
source: {
node_id: SDXL_MODEL_LOADER,
field: 'vae',
},
destination: {
node_id: LATENTS_TO_IMAGE,
field: 'vae',
},
},
{
source: {
node_id: SDXL_MODEL_LOADER,
field: 'vae',
},
destination: {
node_id: IMAGE_TO_LATENTS,
field: 'vae',
},
},
{
source: {
node_id: SDXL_MODEL_LOADER,
field: 'clip',
},
destination: {
node_id: POSITIVE_CONDITIONING,
field: 'clip',
},
},
{
source: {
node_id: SDXL_MODEL_LOADER,
field: 'clip2',
},
destination: {
node_id: POSITIVE_CONDITIONING,
field: 'clip2',
},
},
{
source: {
node_id: SDXL_MODEL_LOADER,
field: 'clip',
},
destination: {
node_id: NEGATIVE_CONDITIONING,
field: 'clip',
},
},
{
source: {
node_id: SDXL_MODEL_LOADER,
field: 'clip2',
},
destination: {
node_id: NEGATIVE_CONDITIONING,
field: 'clip2',
},
},
{
source: {
node_id: SDXL_LATENTS_TO_LATENTS,
field: 'latents',
},
destination: {
node_id: LATENTS_TO_IMAGE,
field: 'latents',
},
},
{
source: {
node_id: IMAGE_TO_LATENTS,
field: 'latents',
},
destination: {
node_id: SDXL_LATENTS_TO_LATENTS,
field: 'latents',
},
},
{
source: {
node_id: NOISE,
field: 'noise',
},
destination: {
node_id: SDXL_LATENTS_TO_LATENTS,
field: 'noise',
},
},
{
source: {
node_id: POSITIVE_CONDITIONING,
field: 'conditioning',
},
destination: {
node_id: SDXL_LATENTS_TO_LATENTS,
field: 'positive_conditioning',
},
},
{
source: {
node_id: NEGATIVE_CONDITIONING,
field: 'conditioning',
},
destination: {
node_id: SDXL_LATENTS_TO_LATENTS,
field: 'negative_conditioning',
},
},
],
};
// handle `fit`
if (
shouldFitToWidthHeight &&
(initialImage.width !== width || initialImage.height !== height)
) {
// The init image needs to be resized to the specified width and height before being passed to `IMAGE_TO_LATENTS`
// Create a resize node, explicitly setting its image
const resizeNode: ImageResizeInvocation = {
id: RESIZE,
type: 'img_resize',
image: {
image_name: initialImage.imageName,
},
is_intermediate: true,
width,
height,
};
graph.nodes[RESIZE] = resizeNode;
// The `RESIZE` node then passes its image to `IMAGE_TO_LATENTS`
graph.edges.push({
source: { node_id: RESIZE, field: 'image' },
destination: {
node_id: IMAGE_TO_LATENTS,
field: 'image',
},
});
// The `RESIZE` node also passes its width and height to `NOISE`
graph.edges.push({
source: { node_id: RESIZE, field: 'width' },
destination: {
node_id: NOISE,
field: 'width',
},
});
graph.edges.push({
source: { node_id: RESIZE, field: 'height' },
destination: {
node_id: NOISE,
field: 'height',
},
});
} else {
// We are not resizing, so we need to set the image on the `IMAGE_TO_LATENTS` node explicitly
(graph.nodes[IMAGE_TO_LATENTS] as ImageToLatentsInvocation).image = {
image_name: initialImage.imageName,
};
// Pass the image's dimensions to the `NOISE` node
graph.edges.push({
source: { node_id: IMAGE_TO_LATENTS, field: 'width' },
destination: {
node_id: NOISE,
field: 'width',
},
});
graph.edges.push({
source: { node_id: IMAGE_TO_LATENTS, field: 'height' },
destination: {
node_id: NOISE,
field: 'height',
},
});
}
// add metadata accumulator, which is only mostly populated - some fields are added later
graph.nodes[METADATA_ACCUMULATOR] = {
id: METADATA_ACCUMULATOR,
type: 'metadata_accumulator',
generation_mode: 'sdxl_img2img',
cfg_scale,
height,
width,
positive_prompt: '', // set in addDynamicPromptsToGraph
negative_prompt: negativePrompt,
model,
seed: 0, // set in addDynamicPromptsToGraph
steps,
rand_device: use_cpu ? 'cpu' : 'cuda',
scheduler,
vae: undefined,
controlnets: [],
loras: [],
clip_skip: clipSkip,
strength,
init_image: initialImage.imageName,
positive_style_prompt: positiveStylePrompt,
negative_style_prompt: negativeStylePrompt,
};
graph.edges.push({
source: {
node_id: METADATA_ACCUMULATOR,
field: 'metadata',
},
destination: {
node_id: LATENTS_TO_IMAGE,
field: 'metadata',
},
});
// Add Refiner if enabled
if (shouldUseSDXLRefiner) {
addSDXLRefinerToGraph(state, graph, SDXL_LATENTS_TO_LATENTS);
}
// add dynamic prompts - also sets up core iteration and seed
addDynamicPromptsToGraph(state, graph);
return graph;
};