Files
InvokeAI/invokeai/backend/image_util/depth_anything/__init__.py
Lincoln Stein e93f4d632d [util] Add generic torch device class (#6174)
* introduce new abstraction layer for GPU devices

* add unit test for device abstraction

* fix ruff

* convert TorchDeviceSelect into a stateless class

* move logic to select context-specific execution device into context API

* add mock hardware environments to pytest

* remove dangling mocker fixture

* fix unit test for running on non-CUDA systems

* remove unimplemented get_execution_device() call

* remove autocast precision

* Multiple changes:

1. Remove TorchDeviceSelect.get_execution_device(), as well as calls to
   context.models.get_execution_device().
2. Rename TorchDeviceSelect to TorchDevice
3. Added back the legacy public API defined in `invocation_api`, including
   choose_precision().
4. Added a config file migration script to accommodate removal of precision=autocast.

* add deprecation warnings to choose_torch_device() and choose_precision()

* fix test crash

* remove app_config argument from choose_torch_device() and choose_torch_dtype()

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-04-15 13:12:49 +00:00

111 lines
4.3 KiB
Python

import pathlib
from typing import Literal, Union
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from einops import repeat
from PIL import Image
from torchvision.transforms import Compose
from invokeai.app.services.config.config_default import get_config
from invokeai.app.util.download_with_progress import download_with_progress_bar
from invokeai.backend.image_util.depth_anything.model.dpt import DPT_DINOv2
from invokeai.backend.image_util.depth_anything.utilities.util import NormalizeImage, PrepareForNet, Resize
from invokeai.backend.util.devices import TorchDevice
from invokeai.backend.util.logging import InvokeAILogger
config = get_config()
logger = InvokeAILogger.get_logger(config=config)
DEPTH_ANYTHING_MODELS = {
"large": {
"url": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth?download=true",
"local": "any/annotators/depth_anything/depth_anything_vitl14.pth",
},
"base": {
"url": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitb14.pth?download=true",
"local": "any/annotators/depth_anything/depth_anything_vitb14.pth",
},
"small": {
"url": "https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vits14.pth?download=true",
"local": "any/annotators/depth_anything/depth_anything_vits14.pth",
},
}
transform = Compose(
[
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
]
)
class DepthAnythingDetector:
def __init__(self) -> None:
self.model = None
self.model_size: Union[Literal["large", "base", "small"], None] = None
self.device = TorchDevice.choose_torch_device()
def load_model(self, model_size: Literal["large", "base", "small"] = "small"):
DEPTH_ANYTHING_MODEL_PATH = config.models_path / DEPTH_ANYTHING_MODELS[model_size]["local"]
download_with_progress_bar(
pathlib.Path(DEPTH_ANYTHING_MODELS[model_size]["url"]).name,
DEPTH_ANYTHING_MODELS[model_size]["url"],
DEPTH_ANYTHING_MODEL_PATH,
)
if not self.model or model_size != self.model_size:
del self.model
self.model_size = model_size
match self.model_size:
case "small":
self.model = DPT_DINOv2(encoder="vits", features=64, out_channels=[48, 96, 192, 384])
case "base":
self.model = DPT_DINOv2(encoder="vitb", features=128, out_channels=[96, 192, 384, 768])
case "large":
self.model = DPT_DINOv2(encoder="vitl", features=256, out_channels=[256, 512, 1024, 1024])
self.model.load_state_dict(torch.load(DEPTH_ANYTHING_MODEL_PATH.as_posix(), map_location="cpu"))
self.model.eval()
self.model.to(self.device)
return self.model
def __call__(self, image: Image.Image, resolution: int = 512) -> Image.Image:
if not self.model:
logger.warn("DepthAnything model was not loaded. Returning original image")
return image
np_image = np.array(image, dtype=np.uint8)
np_image = np_image[:, :, ::-1] / 255.0
image_height, image_width = np_image.shape[:2]
np_image = transform({"image": np_image})["image"]
tensor_image = torch.from_numpy(np_image).unsqueeze(0).to(self.device)
with torch.no_grad():
depth = self.model(tensor_image)
depth = F.interpolate(depth[None], (image_height, image_width), mode="bilinear", align_corners=False)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth_map = repeat(depth, "h w -> h w 3").cpu().numpy().astype(np.uint8)
depth_map = Image.fromarray(depth_map)
new_height = int(image_height * (resolution / image_width))
depth_map = depth_map.resize((resolution, new_height))
return depth_map